

Model Name: P280HVN01.0

Issue Date: 2014/06/03

() Preliminary Specifications

(*)Final Specifications

Customer Signature	Date	AUO	Date
Approved By		Approval By PM Director Kelly Kao	Mlly blo
Note	2	Reviewed By RD Director Eugene CC Chen	
		Reviewed By Project Leader Alex HM Chen	
		Prepared By PM Travis Huang	

Contents

necord of nevision	s
1. General Description	4
3. Electrical Specification	6
3.1.1 Electrical Characteristics	
3.1.2 AC Characteristics	6
LVDS Option for 8bit	6
3.3 Signal Timing Specification	
Timing Table (DE only Mode)	6
3.4 Signal Timing Waveforms	
3.5 Color Input Data Reference	
3.6 Power Sequence	6
Power Sequence of LCD	
3.7 Backlight Specification	
3.7.1 Electrical specification	6
3.7.2 Input Pin Assignment	6
3.7.3 Power Sequence for Backlight (LED)	6
4. Optical Specification	
5. Mechanical Characteristics	6
5.1 Placement suggestions:	
Front View / Back View	6
6. Reliability Test Items	6
7. International Standard	
7.1 Safety	
7.2 EMC	
8. Packing	6
8-1 DEFINITION OF LABEL:	6
A. Panel Label:	6
B. Carton Label:	6
8-2 PACKING METHODS:	6
8-3 Pallet and Shipment Information	
9. PRECAUTIONS	6
9-1 MOUNTING PRECAUTIONS	6
9-2 OPERATING PRECAUTIONS	6
9-3 ELECTROSTATIC DISCHARGE CONTROL	6
9-4 PRECAUTIONS FOR STRONG LIGHT EXPOSURE	
9-5 STORAGE	6
9-6 HANDLING PRECAUTIONS FOR PROTECTION FILM	6
9-7 Operating Condition in PID Application	6

Record of Revision

Version	Date	Page	Description
0.0	2013/08/08		First preliminary spec release
0.1	2013/09/11	22	Drawing update
		26	Packing drawing update
0.2	2013/11/18	4	Add Note 4.
0.3	2014/1/16	6	Life time correction
			- Committee
			- dimmily ,
			(Internal Control of C
			A second
		0	
		1	D
		1 %	
	<i>A</i> (10)	de .	
	- N.	p	
	A V		
- The second	Aleman .		
) "		
P Stant			
The same			

1. General Description

This specification applies to the 28.0 inch Color TFT-LCD Module P280HVN01.0. This LCD module contains TFT active matrix type liquid crystal panel 1,920x360 pixels, and diagonal size of 28.0 inch. This module supports 1,920x360 mode. Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for each dot. The P280HVN01.0 has been designed to apply the 8-bit 2 channel LVDS interface method. It is intended to support displays where high brightness, wide viewing angle, high color saturation, and high color depth.

General Information

Items	Specification	Unit	Note
Active Screen Size	28.0	Inch	Alma,
Display Area	698.3(H) x 130.9(V)	mm	
Outline Dimension	725.98(H) x 158.90(V) x 27.6(D)	mm	1
Driver Element	a-Si TFT active matrix	Para.	
Display Colors	8 bit, 16.7M	Colors	
Number of Pixels	1,920x360	Pixel	3
Pixel Pitch	0.3637 (H) x 0.3637(W)	mm	
Pixel Arrangement	RGB vertical stripe		
Display Operation Mode	Normally Black		
Display Orientation	Landscape/Portrait Enable		
Surface Treatment	AG, Hardness 3H		Haze = 2%

Note:

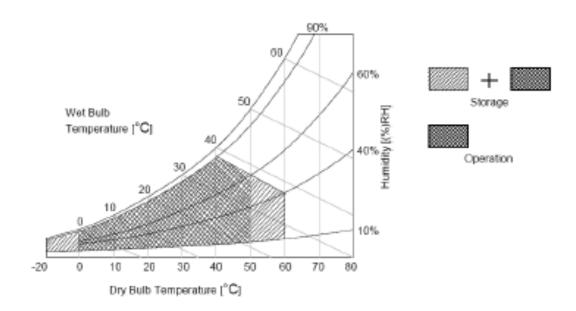
- D: 27.6 mm (side A to side B; front bezel to front bezel)
- (2) LCD display as below illustrated when signal input with "ABC"
- (3) Active Timing (H) needs to be set as 1920*1080.

Rear side Front side

Toon board

Absolute Maximum Ratings

The followings are maximum values which, if exceeded, may cause faulty operation or damage to the unit


Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	Voc	-0.3	14	[Volt]	Note 1
Input Voltage of Signal	Vīn	-0.3	4	[Volt]	Note 1
Operating Temperature	TOP	0	+50	[°C]	Note 2
Operating Humidity	HOP	10	90	[%RH]	Note 2
Storage Temperature	TST	-20	+60	[°C] (Note 2
Storage Humidity	HST	10	90	[%RH]	Note 2
Panel Surface Temperature	PST		65	[°C]	Note 3

Note 1: Duration:50 msec.

Note 2: Maximum Wet-Bulb should be 39 and No condensation.

The relative humidity must not exceed 90% non-condensing at temperatures of 40℃ or less. At temperatures greater than 40℃, the wet bulb temperature must not exceed 39℃.

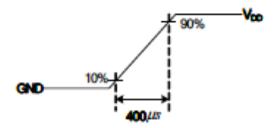
Note 3: Surface temperature is measured at 50 ℃ Dry condition

3. Electrical Specification

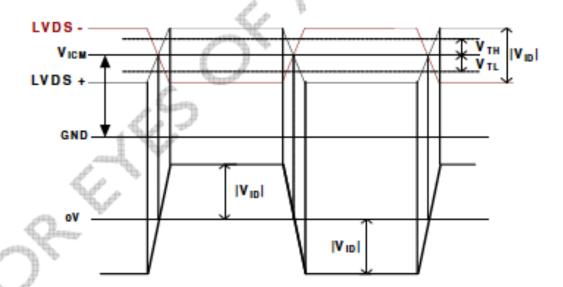
The P280HVN01.0 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The other one is employed for LED driver. The LVDS input of P280HVN01.0 needs FHD input. The data input needs to be FHD

3.1.1 Electrical Characteristics

	Parameter	Symbol		Value	Unit	Note	
	raiametei	Symbol	Min.	Тур.	Max	Onit	Note
LCD						0,0	S.
Power Sup	oply Input Voltage	V _{DD}	10.8	12	13.2	V _{DC}	
Power Sup	oply Input Current	IDD		0.39	0.56	A	1
Power Cor	nsumption	Pc	-	4.68	. 1	// Watt	1
Inrush Cur	rent	IRUSH	-		4	Α	2
Voltage	e Ripple of Power Supply Input	V _{RP}	-	X	V ₀₀ * 5%	mV _{pk-pk}	3
	Input Differential Voltage	V _D	200 4	400	600	mV _{DC}	4
LVDS	Differential Input High Threshold Voltage	V _{TH}	+100	-	+300	mV _{DC}	4
Interface	Differential Input Low Threshold Voltage	Vπ	-300	-	-100	mV _{DC}	4
	Input Common Mode Voltage	Vicm	1.1	1.25	1.4	VDC	4
CMOS	Input High Threshold Voltage	V _H (High)	2.7	-	3.3	V _{DC}	7
Interface	Input Low Threshold Voltage	V _{IL} (Low)	0	-	0.6	V _{DC}	
Backlight F	Backlight Power Consumption			39.0		w	
Life Time(MTTF)		30000				8

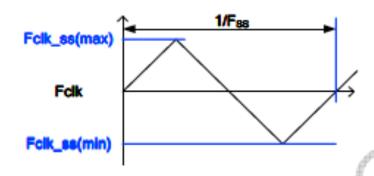

3.1.2 AC Characteristics

	Parameter			Value	Unit	Note	
	r di diffetei	Symbol	Min.	Тур.	Max	Oill	Note
1	Receiver Clock : Spread Spectrum Modulation range	Fclk_ss	Fclk -3%	1	Fclk +3%	MHz	9
LVDS Interface	Receiver Clock : Spread Spectrum Modulation frequency	Fss	30	1	200	KHz	9
	Receiver Data Input Margin Fclk = 85 MHz Fclk = 65 MHz	tRMG	-0.4 -0.5	1 1	0.4 0.5	ns	10

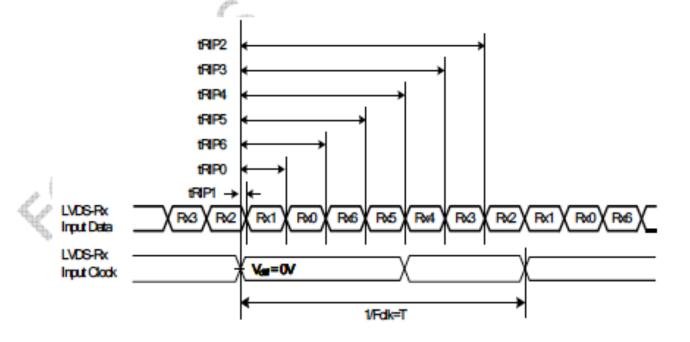


Note:

- Test Condition:
 - (1) V_{DD} = 12.0V
 - (2) Fv = Type Timing, 60Hz, 120Hz or Other
 - (3) F_{CLK} = Max freq.
 - (4) Temperature = 25 ℃
 - (5) Test Pattern : White Pattern
- 2. Measurement condition: Rising time = 400us


- 3. Test Condition:
 - The measure point of V_{RP} is in LCM side after connecting the System Board and LCM.
 - (2) Under Max. Input current spec. condition.
- V_{ICM} = 1.25V

- 5. Do not attach a conducting tape to lamp connecting wire. If the lamp wire attach to conducting tape, TFT-LCD Module have a low luminance and the inverter has abnormal action because leakage current occurs between lamp wire and conducting tape.
- 6. The relative humidity must not exceed 80% non-condensing at temperatures of 40°C or less. At temperatures greater than 40°C, the wet bulb temperature must not exceed 39°C. When operate at low temperatures, the brightness of LED will drop and the life time of LED will be reduced.



- The measure points of V_H and V_L are in LCM side after connecting the System Board and LCM.
- The lifetime (MTTF) is defined as the time which luminance of the LED is 50% compared to its original value. [Operating condition: Continuous operating at Ta = 25±2]
 - 9. LVDS Receiver Clock SSCG (Spread spectrum clock generator) is defined as below figures

Receiver Data Input Margin

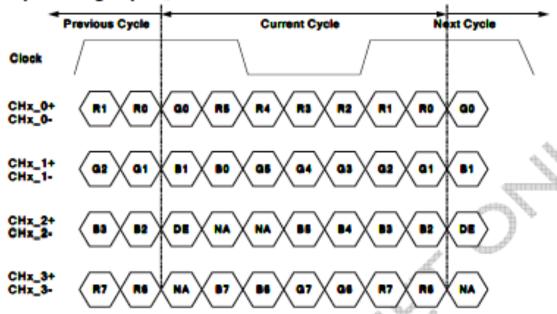
	_									
Parameter	Symbol		Rating							
Parameter	Symbol	Min	Type 4	Max	Unit	Note				
Input Clock Frequency	Fclk	Folk (min)	- 9	Fclk (max)	MHz	T=1/Fclk				
Input Data Position0	tRIP1	- tRMG	. 0	tRMG	ns					
Input Data Position1	tRIP0	T/7- tRMG	T/7	T/7+ tRMG	ns					
Input Data Position2	tRIP6	2T/7- tRMG	2T/7	2T/7+ tRMG	ns					
Input Data Position3	tRIP5	3T/7- tRMG	3T/7	3T/7+ tRMG	ns					
Input Data Position4	tRIP4	4T/7- tRMG	4T/7	4T/7+ tRMG	ns					
Input Data Position5	tRIP3	5T/7- tRMG	5T/7	5T/7+ tRMG	ns					
Input Data Position6	tRIP2	6T/7- tRMG	6T/7	6T/7+ tRMG	ns					
	_									

3.2 Interface Connections

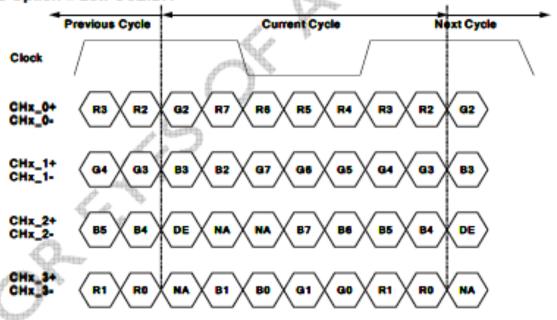
LCD connector : JAE FI-RE51S-HF (JAE)

PIN	Symbol	Description	PIN	Symbol	Description
1	Open	No connection (Internal Open)	26	GND	Ground
2	N.C.	AUO Internal Use Only	27	GND	Ground
3	N.C.	AUO Internal Use Only	28	CH2_0-	LVDS Channel 2, Signal 0-
4	N.C.	AUO Internal Use Only	29	CH2_0+	LVDS Channel 2, Signal 0+
5	N.C.	AUO Internal Use Only	30	CH2_1-	LVDS Channel 2, Signal 1-
6	N.C.	AUO Internal Use Only	31	CH2_1+	LVDS Channel 2, Signal 1+
7	LVDS_SEL	Open/High(3.3V) for NS, Low(GND) for JEIDA	32	CH2_2-	LVDS Channel 2, Signal 2-
8	N.C.	No connection	33	CH2_2+	LVDS Channel 2, Signal 2+
9	N.C.	No connection	34	GND	Ground
10	GND	Ground	35	CH2_CLK-	LVDS Channel 2, Clock -
11	GND	Ground	36	CH2_CLK+	LVDS Channel 2, Clock +
12	CH1_0-	LVDS Channel 1, Signal 0-	37	GND	Ground
13	CH1_0+	LVDS Channel 1, Signal 0+	38	CH2_3-	LVDS Channel 2, Signal 3-
14	CH1_1-	LVDS Channel 1, Signal 1-	39	CH2_3+	LVDS Channel 2, Signal 3+
15	CH1_1+	LVDS Channel 1, Signal 1+	40	N.C.	AUO Internal Use Only
16	CH1_2-	LVDS Channel 1, Signal 2-	41	N.C.	AUO Internal Use Only
17	CH1_2+	LVDS Channel 1, Signal 2+	42	GND	Ground
18	GND	Ground	43	GND	Ground
19	CH1_CLK-	LVDS Channel 1, Clock -	44	GND	Ground
20	CH1_CLK+	LVDS Channel 1, Clock +	45	GND	Ground
21	GND	Ground	46	GND	Ground
22	CH1_3-	LVDS Channel 1, Signal 3-	47	N.C.	No connection
23	CH1_3+	LVDS Channel 1, Signal 3+	48	V _{DD}	Power Supply, +12V DC Regulated
24	N.C.	AUO Internal Use Only	49	V _{DD}	Power Supply, +12V DC Regulated
25	N.C.	AUO Internal Use Only	50	V _{DD}	Power Supply, +12V DC Regulated
		-	51	V _{DD}	Power Supply, +12V DC Regulated

Note 1: All GND (ground) pins should be connected together and should also be connected to the LCD's metal frame.


Note 2: All V_{BD} (power input) pins should be connected together.

Note 3: All NC (no connection) pins please leave this pin unoccupied. It can not be connected by any signal (Low/GND/High).


LVDS Option for 8bit

LVDS Option = High/Open→NS

Note: x = 1, 2, 3, 4...

LVDS Option = Low->JEIDA

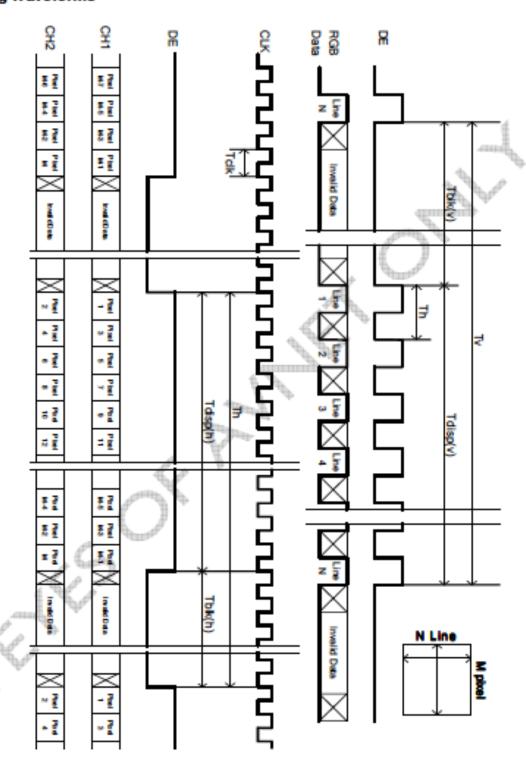
Note: x = 1, 2, 3, 4...

3.3 Signal Timing Specification

This is the signal timing required at the input of the user connector. All of the interface signal timing should be satisfied with the following specifications for its proper operation.

Timing Table (DE only Mode)

Vertical Frequency Range (60Hz)


Signal	Item	Symbol	Min.	Тур.	Max	Unit			
	Period	Tv	1096	1125	1480	Th ,			
Vertical Section	Active	Tdisp (v)		1080					
	Blanking	Tblk (v)	16	45	400	Į,			
	Period	Th	1030 1100		1325	Tclk			
Horizontal Section	Active	Tdisp (h)		960		Tclk			
	Blanking	Tblk (h)	70	140	368	Tclk			
Clock	Frequency	Fdk=1/Tdk	50	74.25	82	MHz			
Vertical Frequency	Frequency	Fv	47 💠	60	63	Hz			
Horizontal Frequency	Frequency	Fh	60	67.5	73	KHz			

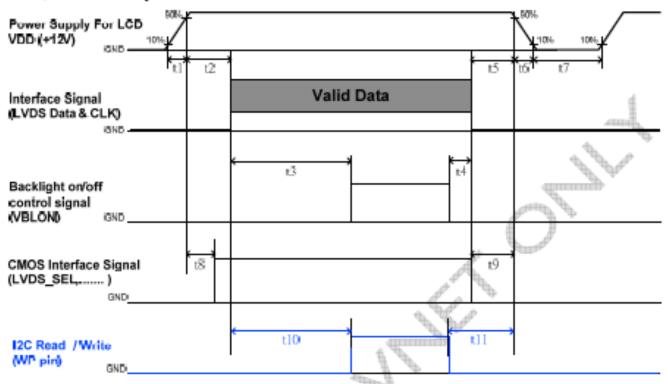
Notes:

- (1) Display position is specific by the rise of DE signal only.
 Horizontal display position is specified by the rising edge of 1st DCLK after the rise of 1st DE, is displayed on the left edge of the screen.
- (2)Vertical display position is specified by the rise of DE after a "Low" level period equivalent to eight times of horizontal period. The 1st data corresponding to one horizontal line after the rise of 1st DE is displayed at the top line of screen.
- (3)If a period of DE "High" is less than 1920 DCLK or less than 1080 lines, the rest of the screen displays black.
- (4) The display position does not fit to the screen if a period of DE "High" and the effective data period do not synchronize with each other.

3.4 Signal Timing Waveforms

3.5 Color Input Data Reference

The brightness of each primary color (red, green and blue) is based on the 10 bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.


COLOR DATA REFERENCE

											1		t Co	lor	Data	1									
					RE	ED							GRE	EEN							BL	UE			
	Color	MS	В					LS	В	MS	В					LS	В	MS	В					LS	ŝВ
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	В4	ВЗ	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0,	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	Ń	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1,	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	V	Ť	1	1	1	1	1	1	1	1	1	1	1	1
	RED(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(001)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R							4	2		P															П
	RED(254)	1	1	1	1	Je.	4	'n,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
G		ď	K	ď	300																				
	GREEN(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
В	4-4																								Ш
A	BLUE(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
K	BLUE(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

3.6 Power Sequence

Power Sequence of LCD

Danamatan		Values									
Parameter	Min.	Type.	Max.	Unit							
t1	0.4		30	ms							
t2	0.1	-	50	ms							
t3	450	1	-	ms							
t4	01	1		ms							
t5	0	-		ms							
t6	-	-	2	ms							
t7	500	1		ms							
t8	10 ³		50	ms							
t9.	0	-		ms							
t10	450			ms							
t11	150			ms							

Note:

- (1) t4=0 : concern for residual pattern before BLU turn off.
- (2) t6 : voltage of VDD must decay smoothly after power-off. (customer system decide this value)
- (3) When CMOS Interface signal is N.C. (no connection), opened in Transmitted end, t8 timing spec can be negligible.

3.7 Backlight Specification

The backlight unit contains 80pcs LED.

3.7.1 Electrical specification

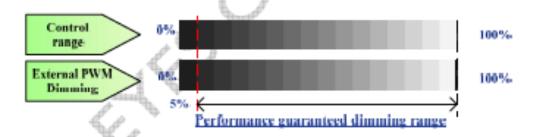
	Item	Symbol		Condition	Spec			Unit	Note
	nem	Syn	iboi	Condition	Min	Тур	Max	Unit	Note
1	Input Voltage	VDDB		-		24	26.4	VDC	de la
2	Input Current	I _{DDB}		VDDB-24V		1.63	1.84	ADC	1
3	Input Power	P _{DDB}		VDDB-24V		39.0	44.1	W	1
4	Inrush Current	I _{RUSH}		VDDB-24V			10	Apeak	2
5	Control signal voltage	V _{Signal}	Hi	VDDB=24V	2	3.3	5.0	VDC	-
5			Low		0	9 - P	0.8	VDC	3
6	Control signal current	ls	grai	VDDB-24V	dag.	USS.	1.5	mA	-
7	External PWM Duty ratio (input duty ratio)	D_EPWM		VDDB-24V	5		100	%	4
8	External PWM Frequency	F_EF	PWM	VDDB-24V	150	160	170	Hz	4
9	DET status signal	DET HL		VDDB-24V	Ope	en Colle	ctor	VDC	5
ð	DET Status organia	DET	Lo	¥000=24¥	0	-	0.8	VDC	5
10	Input Impedance	R	in)	VDDB-24V	300			Kohm	-

Note 1: Dimming ratio= 100%, (Ta=25±5 C, Turn on for 45minutes)

Note 2: MAX input current at all operating mode, measurement condition Rising time = 20ms (VDDB: 10%~90%)

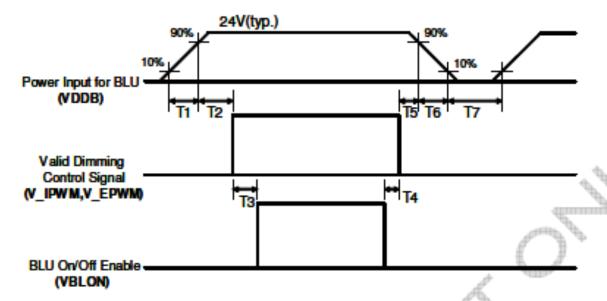
Note 3: When BLU off (VDDB = 24V, VBLON = 0V), IDDB (max) = 0.1A

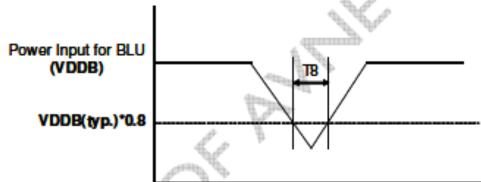
Note 4: Less than 5% dimming control is functional well and no backlight shutdown happened


Note 5: Normal: 0~0.8V ; Abnormal : Open collector

3.7.2 Input Pin Assignment

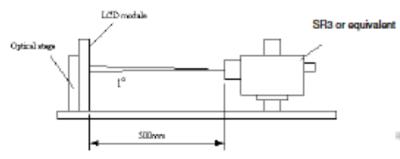
LED driver board connector: CI0114M1HR0-LF (Cvilux)


Pin	Symbol	Description
1	VDDB	Operating Voltage Supply, +24V DC regulated
2	VDDB	Operating Voltage Supply, +24V DC regulated
3	VDDB	Operating Voltage Supply, +24V DC regulated
4	VDDB	Operating Voltage Supply, +24V DC regulated
5	VDDB	Operating Voltage Supply, +24V DC regulated
6	BLGND	Ground and Current Return
7	BLGND	Ground and Current Return
8	BLGND	Ground and Current Return
9	BLGND	Ground and Current Return
10	BLGND	Ground and Current Return
11	N.C.	N o Connection
12	VBLON	BLU On-Off control: BL On : High/Open (2V~5.0V); BL off : Low (0~0.8W/GND)
13	NC	NC .
14	PDIM	External PWM (5%~10% Duty)


- IF External PWM function less than 5% dimming ratio, Judge condition as below:
- (1)Backlight module must be lighted ON normally.
- (2)All protection function must work normally.
- (3)Uniformity and flicker could not be guaranteed

3.7.3 Power Sequence for Backlight (LED)

Dip condition



December		Units		
Parameter	Min	Тур	Max	
T1 🔏	20	-	•	ms*1
T2 (Normal)	500	-	•	ms
T3 (Normal)	250	-	-	ms
T4.	0	-	•	ms
T5	1	-	•	ms
Т6		-	-	ms
™ T8	-	-	10	Ms

4. Optical Specification

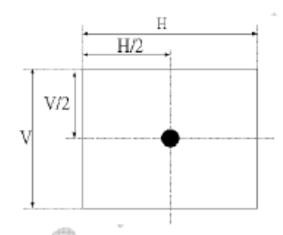
Optical characteristics are determined after the unit has been 'ON' and stable for approximately 45 minutes in a dark environment at 25 °C while panel is placed in the default position. The default position is T-con side as the up side of panel. The value specified is at an approximate distance 50cm from the LCD surface at a viewing angle of φ and θ equal to 0°.

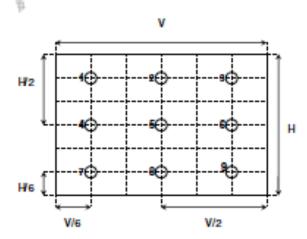
B	0-1-1	Values				
Parameter	Symbol	Min.	Тур.	Max	Unit	Notes
Contrast Ratio	CR	2400	3000	g ²²		1
Surface Luminance (White)	Lwn	480	600	-	cd/m²	2
Luminance Variation	Т ₩НПЕ(эР)	- 400	7	1.33		3
Response Time (G to G)	Тү	g am.	6.5	10	Ms	4
Color Gamut	NTSC	68	72		%	
Color Coordinates	<	d ^a				
Red	R _X	4	0.63			
	Ry		0.33			
Green	G _X		0.32			
100	Gy	Typ0.03	0.62	Typ.+0.03		
Blue	Bx	тур0.03	0.15	Тур. то. оз		
ATTION OF THE PERSON OF THE PE	B _Y		0.04			
White	Wx		0.28]		
- W	W _Y		0.29			
Viewing Angle						5
x axis, right(φ=0°)	θ,		89	-	degree	
x axis, left(φ=180°)	0 1	-	89	-	degree	
y axis, up(φ=90°)	θu	-	89	-	degree	
y axis, down (φ=270°)	θ _d		89	-	degree	

Note:

1. Contrast Ratio (CR) is defined mathematically as:

Contrast Ratio= Surface Luminance of Lon5
Surface Luminance of Loff5

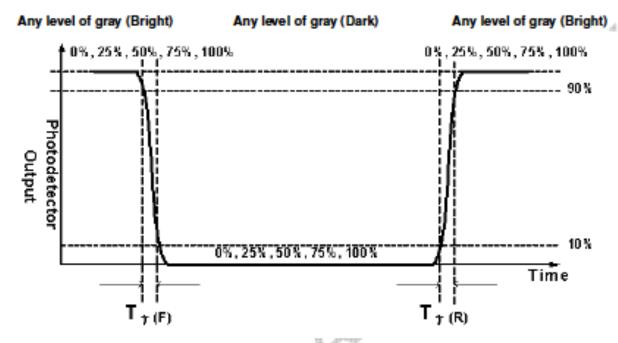



- Surface luminance is luminance value at point 5 across the LCD surface 50cm from the surface with all pixels
 displaying white. From more information see FIG 2. L_{WH}=Lon5 where Lon5 is the luminance with all pixels
 displaying white at center 5 location.
- The variation in surface luminance, δWHITE is defined (center of Screen) as:
 - δ_{WHTE(sP)}= Maximum(L_{on1}, L_{on2},...,L_{on9})/ Minimum(L_{on1}, L_{on2},...L_{on9})
- Response time T_T is the average time required for display transition by switching the input signal for five luminance ratio (0%,25%,50%,75%,100% brightness matrix) and is based on F_V=60Hz to optimize.

Measured		Target					
Response Time		0%	25%	50%	75%	100%	
	0%		0% to 25%	0% to 50%	0% to 75%	0% to 100%	
	25%	25% to 0%		25% to 50%	25% to 75%	25% to 100%	
Start	50%	50% to 0%	50% to 25%		50% to 75%	50% to 100%	
	75%	75% to 0%	75% to 25%	75% to 50%	April	75% to 100%	
	100%	100% to 0%	100% to 25%	100% to 50%	100% to 75%		

Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG4.

FIG. 2 Luminance



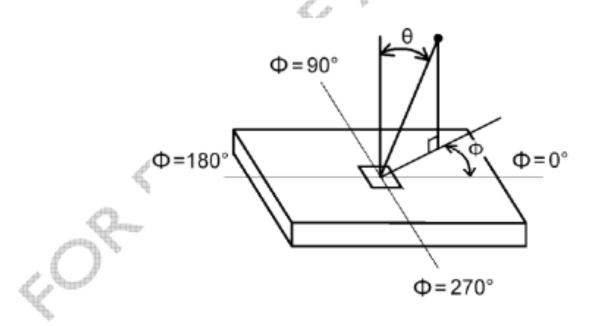
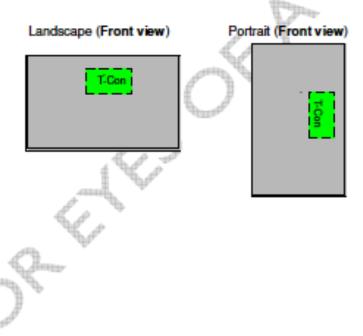


FIG.3 Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for "any level of gray (bright) " and "any level of gray (dark)".

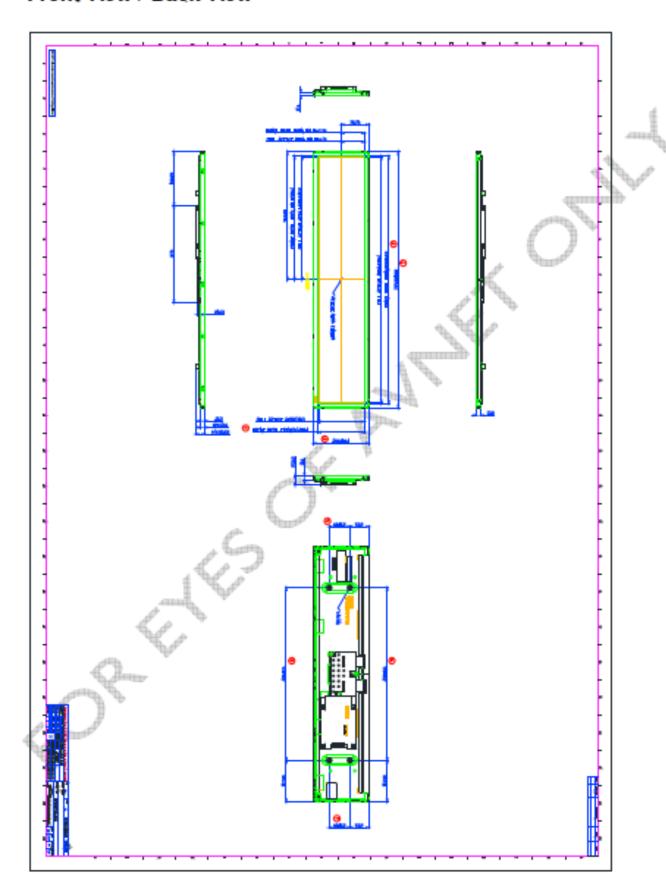
6. FIG.4 Viewing Angle

5. Mechanical Characteristics


The contents provide general mechanical characteristics for the model P280HVN01.0. In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal (typ.)	725.98 mm
Outline Dimension	Vertical (typ.)	158.90 mm
	Depth (typ.)	27.6 mm
Bezel Opening Area	Horizontal (typ.)	700.8 mm
Bezei Opening Area	Vertical (typ.)	134.7 mm
Active Display Area	Horizontal	698.3 mm
Active Display Area	Vertical	130.9 mm
Weight	Тур	1600g

5.1 Placement suggestions:


The Suggestion placement is as following:

- Landscape mode: The default placement is T-Con Side as the top side.
- Portrait mode: The default placement is T-Con side has to be placed in the right side via viewing from the front.

Front View / Back View

6. Reliability Test Items

	Test Item	Q'ty	Condition
1	High temperature storage test	3	60 ℃ , 300hrs
2	Low temperature storage test	3	-20 ℃ , 300hrs
3	High temperature operation test	3	50 ℃ , 300hrs
4	Low temperature operation test	3	-5℃, 300hrs
5	Vibration test (non-operation)	3	Wave form: random Vibration level: 1.0G RMS Bandwidth: 10-300Hz, Duration: X, Y, Z 10min per axes X,Y,Z: Horizontal, face up
6	Shock test (non-operation)	3	Shock level: 50G Waveform: half since wave, 11ms Direction: ±X, ±Y, ±Z, One time each direction
7	Vibration test (With carton)	1 (PKG)	Random wave (1.05G RMS, 10-200Hz) 10mins per each X,Y,Z axes
8	Drop test (With carton)	1 (PKG)	Drop Height: 30.5cm, (ASTMD4169-1) 1 comer, 3 edges, 6 surfaces.

7. International Standard

7.1 Safety

(1) UL60950-1,2nd Ed., Underwriters Laboratories, (AUO file number: E204356)

Standard for safety of information technology equipment including electrical business equipment

- (2) IEC 60950-1
- (3) EN60950-1

European Committee for Electro technical Standardization (CENELEC)

European Standard for safety of information technology equipment including electrical business equipment

7.2 EMC

- ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHz to 40GHz. "American National standards Institute(ANSI), 1992.
- (2) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special committee on Radio Interference.
- (3) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electro technical Standardization. (CENELEC), 1998.

8. Packing

8-1 DEFINITION OF LABEL:

A. Panel Label:

*xxxxxxxxxxxxxx+xxxxx**

Monufactured XX/XX
Model No: **P280HVN01.0**All Optronies XXXXX
NAUE IN XXXXXX

Green mark description

- (1) For Pb Free Product, AUO will add (b) for identification.
- (2) For RoHs compatible products, AUO will add RoHS for identification.
 Note: The green Mark will be present only when the green documents have been ready by AUO internal green team. (definition of green design follows the AUO green design checklist.)

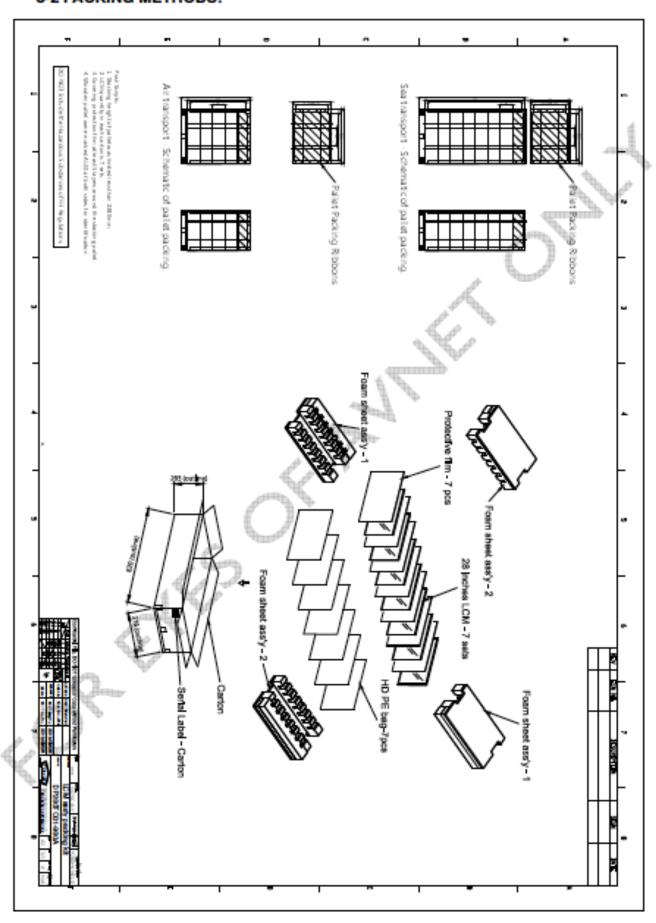
B. Carton Label:

AU Optronics

QTY:7

RoHS

MODEL NO: P280HVN01.0
PART NO: 97.28P01.xxx


CUSTOMER NO:

CARTON NO:

Made in XXXXXX

8-2 PACKING METHODS:

8-3 Pallet and Shipment Information

		Packing Remark			
Item	Qty.	Dimension	Total Weight (kg)	Qty.	
			Total Weight (kg)	Qty.	
				4pcs/box	
Packing BOX	4pcs/bax	1503(L)*375(W)*945(H)	Packing BOX	Cushion = 2.05kg	
acing box			acking box	(Includes bottom	
				cardboard)	
Pallet	1	1550(L)*1150(W)*150(H)	Pallet (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Boxes per Pallet		A. Carrier			
Panels per Pallet		12pcs/pallet		P	
Pallet after packing	28	1550(L)*1150(W)*1095(H)	Pallet after packing	28	
(40' container)	20	1330(L) 1130(W) 1095(H)	(40' container)	20	

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1 MOUNTING PRECAUTIONS

- You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. twisted stress) is not applied to module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter cause circuit broken by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizer with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front/ rear polarizer. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2 OPERATING PRECAUTIONS

- The spike noise causes the mis-operation of circuits. It should be lower than following voltage: V=±200mV(Over and under shoot voltage)
- (2) Response time depends on the temperature. (In lower temperature, it becomes longer..)
- (3) Brightness of LED depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interface.9-3 ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wristband etc. And don't touch interface pin directly.

9-4 PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5 STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5 and 35 at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6 HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

9-7 Operating Condition in PID Application

- If the continuous static display is required, periodically inserting a motion picture is strongly recommended.
- (2) Recommend to periodically change the background color and background image.
- (3) Recommend not to continuously operate over 20 hours a day.
- (4) Recommend to adopt one of the following actions after long time display.
 - Running the screen saver (motion picture or black pattern)
 - Power off the system for a while
- (5) Try not to run the LCD in a closed environment. Suitable venting on the system cover would be helpful for cooling.
- (6) It is better to adapt active cooling with fans for long time displaying, especially for high luminance LCD model.