

MODEL NO.	: <u> </u>	M190MDS	<u>01</u>									
ISSUED DAT	E:	2011/08/2	8									
VERSION	:	1.2										
□ Preliminary Specification												
■Final Product Specification												
Customer:												
Approved by			Notes									
SHANGHAI AVIC Confirmed :												
SHANGHAI AVIC COMMINEC .												
Prepared by	Chec	ked by	Approved by									

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

This technical specification is subjected to change without notice

TABLE OF CONTENTS

TABLE OF CONTENTS	2
RECORD OF REVISION	3
1. OUTLINE	4
1.1 STRUCTURE AND PRINCIPLE	4
1.2 APPLICATIONS	4
1.3 FEATURES	4
2. GENERAL SPECIFICATIONS	5
3. ABSOLUTE MAXIMUM RATINGS	6
4. BLOCK DIAGRAM	7
5. MECHANICAL SPECIFICATIONS	8
6. ELECTRICAL CHARACTERISTICS	9
6.1 DRIVING FOR LCD	9
6.2 DRIVING FOR BACKLIGHT	10
7. CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS	11
7.1 LVDS	11
7.2 BACKLIGHT	
7.3 POSITION OF PLUGS AND A SOCKET	12
7.4 CONNECTION BETWEEN RECEIVER AND TRANSMITTER FOR LVDS	13
8. DISPLAY COLORS AND INPUT DATA SIGNALS	14
9. INTERFACE TIMING	16
9.1 TIMING CHARACTERISTICS	16
9.2 INPUT SIGNAL TIMING CHART	17
9.3 PIXEL DATA ALIGNMENT OF DISPLAY IMAGE	18
9.4. POWER SUPPLY VOLTAGE SEQUENCE	19
10. OPTICS	21
11. RELIABILITY TESTS	25
12. MARKINGS	27
12.1 PRODUCT LABEL	27
12.2 INDICATION LOCATIONS	28
13. PACKING, TRANSPORTATION AND DELIVERY	29
14. PRECAUTIONS	31
15.OUTDRAWING	34

RECORD OF REVISION

Rev	Issued Date	Description	Editor
1.0	2010-9-20	Preliminary Release	Stephen Sun
1.1	2011-03-07	Final Spec. Release	wei zhang
1.2	2011-08-28	LED Connecter 2Pin-6Pin; Light bar operation voltage change; Add Reliability test	Chunjie xiao

1. OUTLINE

1.1 STRUCTURE AND PRINCIPLE

TM190MDS01-00 module is composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array and a backlight. The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a color-filter glass substrate.

Color (Red, Green, Blue) data signals from a host system (e.g. PC, signal generator, etc.) are modulated into best form for active matrix system by a signal processing board, and sent to the driver LSIs which drive the individual TFT arrays. The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Color images are created by regulating the amount of transmitted light through the TFT array of red, green and blue dots.

1.2 APPLICATIONS

Monitor for PC

1.3 FEATURES

- a-Si TFT active matrix
- LVDS interface
- R.G.B input 8bit, 16.7 millions colors (6bit+Hi-FRC)
- Resolution WXGA+ (1,440× 900 pixels)
- Wide viewing angle 85°/85° (L/R); 80°/80° (U/D)
- High contrast ratio 1000 :1
- Module size 428.0 (H) ×278.0 (V) ×9.8 (D) mm
- Fast response time (Ton+ Toff= 5 ms)
- · High gamut (68%)
- Edge light type backlight (White-LED)
- Inverter less
- RoHS compliance
- TCO5.0 compliance

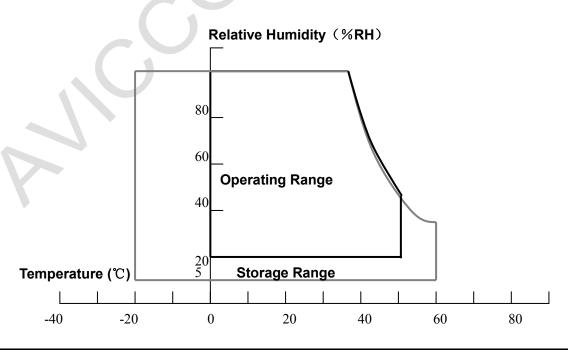
2. GENERAL SPECIFICATIONS

Display area	408.24 (H) × 255.15 (V) mm (typ.)
Diagonal size of display	48.1 cm
Drive system	a-Si TFT active matrix
Display color	16.7 M colors (6bit+ Hi-FRC)
Pixel	1,440 (H) × 900(V) pixels
Pixel arrangement	RGB vertical stripe
Dot pitch	0.0945 (H) × 0.2835(V) mm
Pixel pitch	0.2835 (H) × 0.2835 (V) mm
Module size	428.0 (H) ×278.0 (V) ×9.8 (D) mm
Weight	1700 g (max.)
Contrast ratio	1000 :1 (typ.)
Viewing angle	170°/ 160° (typ.)
Color gamut	68 % (typ.)
Response time	5 ms (typ.)
Luminance	250 cd/m ² (typ.)
Transmissive Mode	Normally White
Surface Treatment	Anti Glare
Signal system	LVDS 2port
Power supply voltage	LCD panel signal processing board: 5.0V
Backlight	White-LED
Power consumption	13W (Typ.)

3. ABSOLUTE MAXIMUM RATINGS

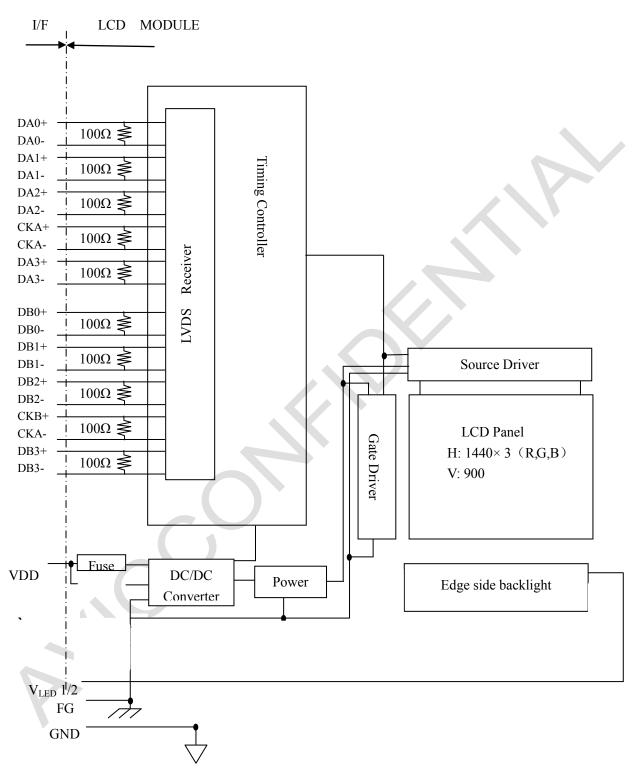
	Parameter	Symbol	Rating	Unit	Remarks			
Power	Power voltage	VDD	-0.3 ~ +6.0	V	Ta = 25°C			
supply voltage	Light bar voltage	V LED	≤ 43.2	Vrms	Ta = 25°C			
Input	voltage for signals	Vi	-0.3 ~ +3.3	V	Ta = 25°C			
Light ba	r peak forward current	l _F	≤ 400	mArms	Note 3			
Sto	rage temperature	Tst	-20 ~ +60	°C	Note 4			
Ope	rating temperature	Тор	0 ~ +50	°C	Note 4, 5			
At	osolute humidity	АН	≤ 70	g/m ³	Ta > 50°C			
O	perating altitude	-	≤ 4,850	m	0°C≤ Ta≤ 50°C			
S	Storage altitude	-	≤ 13,600	m	-20°C≤ Ta≤ 60°C			

Note1: Display signals are DA0+/-, DA1+/-, DA2+/-, DA3+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/-, and CKB+/-.


Note2: Function signal is MSL.

Note3: Pulse width≤ 10msec, and duty≤ 1/10.

Note4: Temperature and relative humidity range is shown in the figure below.


- (a) 90%RH Max. (Ta≤ 40°C)
- (b) Wet-bulb temperature should be39°C Max. (Ta> 40°C)
- (c) No condensation.

Note5: The temperature of panel display surface area should be 0°C Min and 60°C Max.

4. BLOCK DIAGRAM

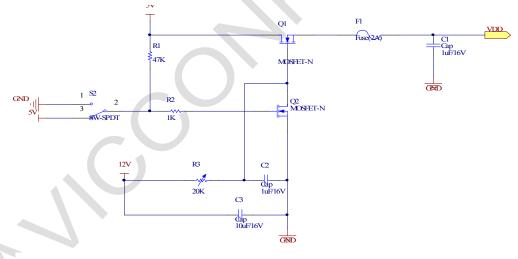
Note: System ground (GND), FG (Frame ground) in the product should be connected together in customer equipment.

5. MECHANICAL SPECIFICATIONS

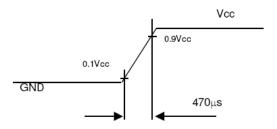
Parameter	Specification	Unit
Module size	428.0± 0.5 (W) × 278.0 ± 0.5 (H) × 9.8 ± 0.5 (D)	mm
Display area	408.24(H) × 255.15(V) mm (typ.), [48.1 cm]	mm
Weight	1700 (max.)	g

6. ELECTRICAL CHARACTERISTICS

6.1 DRIVING FOR LCD


Parameter		Symbol	min.	typ.	max.	Unit	Remarks
Power supply voltage		VDD	4.5	5.0	5.5	V	-
Power supply current		IDD	-	700 Note1	1000 Note 2	mA	at VDD = 5.0V
Permissible ripple voltage		VRP	-	-	200	mV	VDD
Differential input voltage	Vid	200		600	mV		
Differential input threshold	Low	VTL	-100	ı	-	mV	at VCM = 1.2V
voltage for LVDS receiver	High	VTH	-	-	100	mV	Note3
Input voltage width for receiver	LVDS	Vi	0	-	3.3	٧	-
Terminating resistor		RT	-	100	-	Ω	-
Rush current		I _{rush}	-	-	3.0	Α	Note4

Note 1: Black pattern


Note 2: 1H1V dot inverse pattern

Note 3: Common mode voltage for LVDS receiver

Note4: Measurement Conditions:

Vcc rising time is 470μs

co-Q/S1011-2011

6.2 DRIVING FOR BACKLIGHT

(Ta=25°C) Note1

Parameter	Symbo	min.	typ.	max.	Unit	Remarks
Light bar operation voltage (for reference)	V _{LED}	28	31	35	Vrms	Operating with fixed driving current
Light bar operation current	I _{LED}	1	240	-	mArms	Pin No1; Pin No2; Pin No5;Pin No6; for 60mArms
Light bar operating lifetime	Hr	-	30000	-	Hour	I LED =240mA,Note3

Note1: The backlight of this product is made up of 1 light bar, LED to be 4014, 40pieces, 10 serials and 4 parallels.

Note2: The light bar can work normally if the PWM dimming ratio range is from 0% to 100% and the operation current is 240mA.

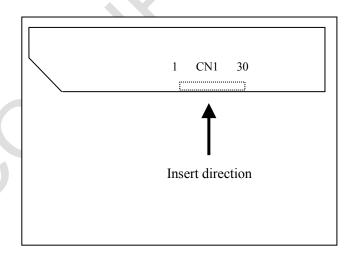
Note3: The operating lifetime is mean time to half-luminance. In case the product works under room temperature environment.

7. CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS

7.1 LVDS

CN1: FI-XB30SSRLA-HF16 (Produced by JAE) or equivalent.

Pin	Name	Description
1	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
2	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
3	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
4	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
5	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
6	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
7	GND	Ground
8	RXOC-	Negative LVDS differential clock input. (odd)
9	RXOC+	Positive LVDS differential clock input. (odd)
10	RXO3-	Negative LVDS differential data input. Channel O3(odd)
11	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
12	RXE0-	Negative LVDS differential data input. Channel E0 (even)
13	RXE0+	Positive LVDS differential data input. Channel E0 (even)
14	GND	Ground
15	RXE1-	Negative LVDS differential data input. Channel E1 (even)
16	RXE1+	Positive LVDS differential data input. Channel E1 (even)
17	GND	Ground
18	RXE2-	Negative LVDS differential data input. Channel E2 (even)
19	RXE2+	Positive LVDS differential data input. Channel E2 (even)
20	RXEC-	Negative LVDS differential clock input. (even)
21	RXEC+	Positive LVDS differential clock input. (even)
22	RXE3-	Negative LVDS differential data input. Channel E3 (even)
23	RXE3+	Positive LVDS differential data input. Channel E3 (even)
24	GND	Ground
25	GND	Ground
26	NC	Not connection.
27	GND	Ground
28	VCC	+5.0V power supply
29	VCC	+5.0V power supply
30	VCC	+5.0V power supply


7.2 BACKLIGHT

CN2: CI1406M1HRL-NH (Produced by hanquan) or equivalent.

Pin No.	Signal name	Function	
1	VL	Low voltage input terminal for LED	
2	VL	Low voltage input terminal for LED	
3	VH	High voltage input terminal for LED	
4	VH	High voltage input terminal for LED	
5	VL	Low voltage input terminal for LED	
6	VL	Low voltage input terminal for LED	

Note1: The ports of VDD and GND should be all used. As for the input of LVDS, please use the twisted pair wire of the transmission impedance 100Ω .

7.3 POSITION OF PLUGS AND A SOCKET

7.4 CONNECTION BETWEEN RECEIVER AND TRANSMITTER FOR LVDS

				Transı	mitter]		
T	DATA		:-	DS90CF38	33,C385 or]		CNI
Input	DATA		pin	equivalent				CN1
	RA0	→	51	TXIN0			pin	Symbol
	RA1	\rightarrow	52	TXIN1	TA1-	→	1	DA0-
	RA2	\rightarrow	54	TXIN2	TA1+	\rightarrow	2	DA0+
	RA3	\rightarrow	55	TXIN3				
	RA4	\rightarrow	56	TXIN4	TB1-	\rightarrow	3	DA1-
	RA5	\rightarrow	3	TXIN6	TB1+	→	4	DA1+
	GA0	\rightarrow	4	TXIN7				
S	GA1	\rightarrow	6	TXIN8	TC1-	\rightarrow	5	DA2-
nal	GA2	\rightarrow	7	TXIN9	TC1+	→	6	DA2+
. <u>ig</u>	GA3	\rightarrow	11	TXIN12			7	GND
10	GA4	→	12	TXIN13	TCLK1-	→	8	CKA-
ıtı	GA5	→	14	TXIN14	TCLK1+	→	9	CKA+
201	BA0	→	15	TXIN15				
p	BA1	\rightarrow	19	TXIN18	TD1-	\rightarrow	10	DA3-
an	BA2	→	20	TXIN19	1'ST TD1+		11	DA3+
ata	BA3	→	22	TXIN20				
ďβ	BA4	→	23	TXIN21			\vdash	
xe]	BA5	\rightarrow	24	TXIN22				
Odd pixel data and control signals	RSVD		27	TXIN24			\vdash	
pp	RSVD	→	28	TXIN25 TXIN26				
0	DE RA6		30 50	TXIN26 TXIN27				
	RA7	_	2	TXIN27				
	GA6	_	8	TXIN10				
	GA0	$\overline{}$	10	TXIN10				
	BA6	_	16	TXIN16				
	BA7	→	18	TXIN17				
	RSVD	→	25	TXIN23				
	CLK	→	31	CLKIN				
	RB0	→	51	TXIN0		t I		
	RB1	→	52	TXIN1	TA2-	→	12	DB0-
	RB2	→	54	TXIN2	TA2+	→	13	DB0+
	RB3	\rightarrow	55	TXIN3			14	GND
	RB4	\rightarrow	56	TXIN4	TB2-	→	15	DB1-
	RB5	\rightarrow	3	TXIN6	TB2+	→	16	DB1+
	GB0	\rightarrow	4	TXIN7			17	GND
	GB1	\rightarrow	6	TXIN8	TC2-	\rightarrow	18	DB2-
	GB2	\rightarrow	7	TXIN9	TC2+	\rightarrow	19	DB2+
	GB3	\rightarrow	11	TXIN12				
	GB4	\rightarrow	12	TXIN13	TCLK2-	→	20	CKB-
ıta	GB5	\rightarrow	14	TXIN14	TCLK2+	\rightarrow	21	CKB+
da	BB0	\rightarrow	15	TXIN15				
kel	BB1	→	19	TXIN18	TD2-	→	22	DB3-
Even pixel data	BB2	→	20	TXIN19	2'nd TD2+	→	23	DB3+
en	BB3	→	22	TXIN20			24	GND
EV	BB4	\rightarrow	23	TXIN21			25	GND
	BB5	→	24	TXIN22			26	NC
	RSVD	→	27	TXIN24			27	GND
	RSVD	<i>→</i>	28	TXIN25 TXIN26			28	VDD
	RSVD RB6		30 50	TXIN20			29 30	VDD VDD
	RB7	\rightarrow	2	TXIN27			30	VDD
	GB6	_	8	TXIN3		l		
	GB7	<i>→</i>	10	TXIN11		l		
	BB6		16	TXIN16		l		
	BB7	<i>→</i>	18	TXIN17		l		
	RSVD	→	25	TXIN23				
	CLK	→	31	CLKIN		l		
		1				1		

co-Q/S1011-2011

Note1: The lowest bit (RA0, GA0, BA0, RB0, GB0, BB0), the most upper bit (RA7, GA7, BA7, RB7, GB7, BB7)

Note2:Connecting cable between LCD panel's connector and transmitter should use 100Ω twisted line.

Note3: If only Hsync and Vsync, the product don't work. Make sure DE signal has been input.

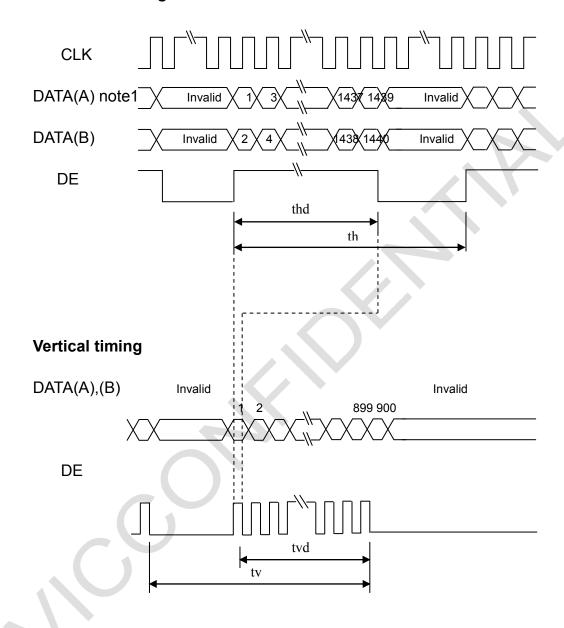
8. DISPLAY COLORS AND INPUT DATA SIGNALS

This product can display in equivalent to 16,777,216 colors in 256 scales. Also the relation between display colors and input data signals is as the following table.

Dian	lov coloro						С	ata	sig	nal	((0:Lo	ow l	leve	el,	1:H	ligh	Lev	el)						
Dispi	lay colors	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	B4	В3	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
or	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sol	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Basic Color	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Ba	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
cale	Dark •	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red grayscale					:									:								:			
g p	 				:																	:			
Rec	Bright	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>e</u>		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
sca	Dark ∳	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Green grayscale					:									:								:			
eu ĉ	↓ Bright				:									:								:			
Gre	Bright	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
υ	Davida	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
scal	Dark ∱	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
rays					:									:								:			
Blue grayscale	↓ Bright	_	•	•	:	•	•	_	•	•	•	•	•	:	_	_	^					:	,	^	
BIL	29.11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

9. INTERFACE TIMING

9.1 TIMING CHARACTERISTICS


Pa	arameter	Symbol	min.	typ.	max.	Unit	Remarks
		1/tc	37.04	44.45	55.56	MHz	LVDS
	Frequency	tc	27.0	22.50	18.0	ns	transmitter input
Clock	Rise time, Fall time	-		er to the tire teristics o	•	ns	
	Duty	-	1	transmitte	r	-	Note 1
	Cyclo	th	14.8	18.0	26.5	μs	EE Eld I=(type)
Horizontal signals	Cycle	uı	754	800	900	CLK	55.5kHz(typ.)
Signais	Display period	thd		720		CLK	-
Vertical	Cyclo	4.4	13.3	16.67	20	ms	60 0H=(typ)
Vertical signals	Cycle	tv	912	926	1100	Н	60.0Hz(typ.)
Signais	Display period	tvd		900		Н	-
	Setup time		Pofe	er to the tir	mina	ns	
DE/Data	Hold time	-		teristics o	•	ns	Note 1
DL/Data	Rise time, Fall time	-		transmitte		ns	14010-1

Note1: See the data sheet of LVDS transmitter.

9.2 INPUT SIGNAL TIMING CHART

Horizontal timing

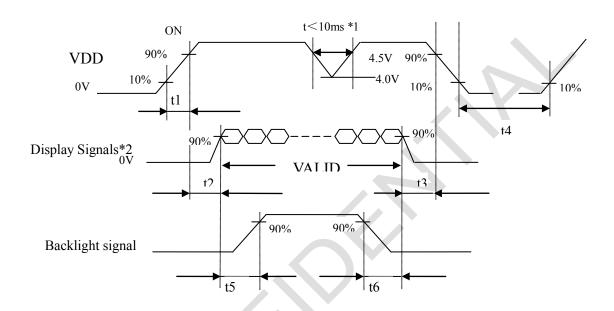
Note 1:

DATA(A)=RA0-RA7,GA0-GA7,BA0-BA7 DATA(B)=RB0-RB7,GB0-GB7,BB0-BB7

9.3 PIXEL DATA ALIGNMENT OF DISPLAY IMAGE

The following chart is the coordinates of per pixel

GA= G DATA GB=G DATA


BA= B DATA BB=B DATA

D(1,1	1)		D(2,1	1)				
RA	GA	ВА	RB	GB	BB			
			1					
D((1,1)		D(2,1)		D(3,	1)	•••	D(1440,1)
D((1,2)		D(2,2)		D(3,	2)	•••	D(1440,2)
D((1,3)		D(2,3)		D(3,	3)	•••	D(1440,3)
	•		•				•••	•
	•		•		•		•••	•
	•		•				•••	•
D(1	,900)		0(2,900)	D(2,9	00)	•••	D(1440,900)

9.4. POWER SUPPLY VOLTAGE SEQUENCE

9.4.1 The sequence of backlight and power

Timing Specifications:

t1 0.47ms<t1 <10ms

t2 0.5 ms<t2 <50ms

t3 0ms<t3 <50ms

t4 >1000ms

t5 >200ms

t6 >200ms

- *1. When VDD is on, but the value is lower than 4.5V, a protection circuit may work, then the module may not display.
- *2 The signal line is not connected with the module, at the end of cable the terminal resistor of 100 should be added.

Note1: Display signals (D0+/-, D1+/-, D2+/-, D3+/- and CK+/-) must be "0" voltage, exclude the VALID period (See above sequence diagram). If these signals are higher than 0.3 V, the internal circuit is damaged.

If some of display signals of this product are cut while this product is working, even if the signal input to it once again, it might not work normally. If customer stops the display signals, they should cut VDD.

Note2: When VDD is on, it should be set above 4.0V.

Note3: The backlight power supply voltage should be inputted within the valid period of display and function signals, in order to avoid unstable data display.

9.4.2 Power supply voltage ripple

When the power supply is designed, the next form can give the reference. If the voltage ripple is over the value in next form, the noise should be seen in display area.

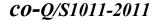
Ripple (Measured at input terminal of power supply)

	VDD (5V to drive the panel)
Ripple voltage	≤150mVP-P (Including spike noise)

9.4.3 Fuse

Parameter	Fuse	;	Rating	Fusing current	Remarks
Farameter	Туре	Supplier	Raulig	r using current	Nemains
VDD	F0603FA2000V032T	AEM	2A 32V	_	

Note1: There are different power supply systems from the power input terminal. The power supply capacity should be less than the fusing current. If the power supply capacity is above the fusing current, the fuse may blow in a short time, and then nasty smell, smoking and so on may occur.

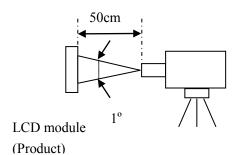


10. OPTICS

10.1 Optical characteristics

Note1, Note2

Parameter	Note1	Condition	Symbol	min.	typ.	max.	Unit	Remarks
Luminan	ice	White at center θR=0°, θL=0°, θU=0°, θD=0°	L	(200)	250	-	cd/ m ²	-
Contrast ratio		White/Black at center θR=0°, θL=0°, θU=0°, θD=0°	CR	(700)	1000		_	Note3
Luminance ur	niformity	White θR=0°, θL=0°, θU=0°, θD=0	LU		1.25	(1.33)	-	Note4
	White	X coordinate	Wx	0.283	0.313	0.343	-	
	VVIIIC	Y coordinate	Wy	0.299	0.329	0.359	-	
Chromaticity	Red	X coordinate	Rx	0.610	0.640	0.670	-	
	Neu	Y coordinate	Ry	0.318	0.348	0.378	-	
	Green	X coordinate	Gx	0.302	0.332	0.362	-	
Green		Y coordinate	Gy	0.577	0.607	0.637	-	Note5
	Blue	X coordinate	Bx	0.120	0.150	0.180	-	
	Blue	Y coordinate	Ву	0.027	0.057	0.087	-	
Color gar	mut	θR=0°, θL=0°, θU=0°, θD=0 At center,against NTSC	С	-	68	-	%	
		White to black	Ton	-	1.3	(2.6)	ms	Note6
Response time		Black to white	Toff	-	3.7	(7.4)	ms	Note6
		Ton+ Toff	-	-	5	(10)	ms	NOLE
	Right	θU=0°, θD=0°, CR≥10	θR	(75)	85	-	0	
Viewing	Left	θU=0°, θD=0°, CR≥10	θL	(75)	85	-	0	Note8
angle	Up	θR=0°, θL=0°, CR≥10	θU	(70)	80	-	0	INULEO
	Down	θR=0°, θL=0°, CR≥10	θD	(70)	80	-	0	


Note1: The values in upper table are only initial characteristics.

Note2: Measurement conditions are as follows.

Ta= 25°C, VDD= 5.0V, IBL= 6.5mArms/lamp, Display mode: WXGA+,

Horizontal cycle=55.56KHz, Vertical cycle=60.0Hz

Optical characteristics are measured at luminance saturation after 30minutes from working the product in the dark room. Also measurement method for luminance is as follows.

Luminance Meter (TOPCON BM-5A) Spectroradiometer (TOPCON SR-3)

Note 3: See"10.2 Definition of contrast ratio".

Note 4: See"10.3 Definition of luminance uniformity".

Note 5: CIE 1931 Chromaticity Diagram Standard.

Note 6: Product surface temperature: TopF = 33.0 °C

Note 7: See "10.4 Definition of response time".

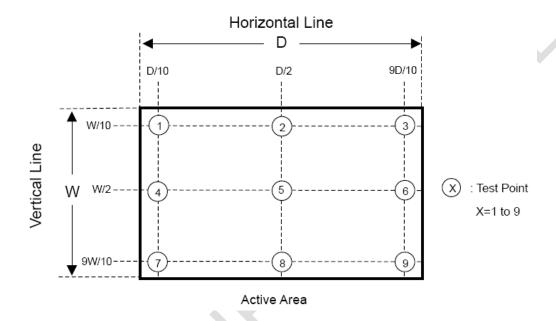
Note 8: See "10.5 Definition of viewing angle".

10.2 Definition of contrast ratio

The contrast ratio is calculated by using the following formula.

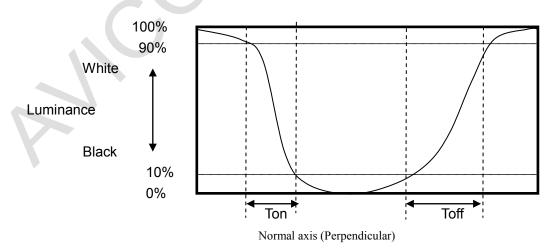
Contrast ratio (CR) = <u>Luminance of white screen</u>

Luminance of black screen

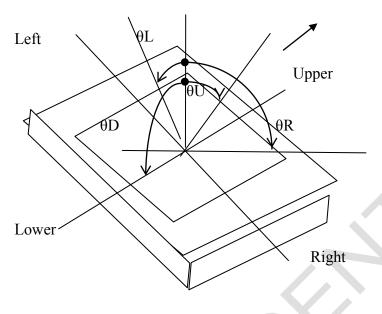

10.3 Definition of luminance uniformity

The luminance uniformity is calculated by using the following formula.

Luminance uniformity (LU) = Maximum luminance from ① to ⑨


Minimum luminance from ① to ⑨

The luminance is measured at near the 9 points shown below.



10.4 Definition of response times

Response time is measured, the luminance changes from "white" to "black", or "black" to "white" on the same screen point, by photo-detector. Ton is the time it takes the luminance change from 90% down to 10%. Also Toff is the time it takes the luminance change from 10% up to 90%. (See the following diagram.)

10.5 Definition of viewing angles

12 o'clock

11. RELIABILITY TESTS

Test items	Condition
High temperature and	① 50±2°C,RH=85%,240hours
humidity(Operation)	②Display data is black Note1
High /Low temperature (Operation)	① 55±3°C1hours ② 0±3°C1hours High temperature Low temperature 3 50cycles ④ Display data is black
Thermal shock (Non operation)	1 -20±3°C30minutes 60±3°C30minutes 2 100cycles,1hour/cycle 3 Temperature transition time is within 5 minutes.
ESD (operation)	 150Pf,150Ω,±2,4;6;8kV (contact) 150Pf,150Ω,±2,4;8;15kV (non contact) 7 places on a panel surface(contact) 10 times each place at 1 sec interval Note2
Vibration (Non operation)	 5-100-5Hz , Sine wave , acceleration of 11.76m/sP2P 50 cycle X,Y,Z direction 1 time each direction
Mechanical shock (Non operation)	① 294 m/sP2P, 11ms ② ±X, ±Y, ±Z direction ③ 3 times each direction
Dirt experiment	①Type: JIS Z—8901,15 types ②Cycle: 1Hour ③Times:15s every time ④ Light on by BL
Lattice chessboard	①room tempetature (SFT Series) 55±5°C (TN Series) ②chessboard and top left corner black pattern ③inspection time: occur: 0.5, 1, 2, 4, 7, 24 (0.5, 1, 4, 7, 24,

SHANGHAI AVIC OPTOELECTRONICS

co-O/S1011-2011

	BEECTION	CO 2/51011 2011
		48)
		resume: 0.5, 2, 4, 7, 24, 48 (0.5, 2, 7, 24,
		48)
		() time specially for TN series
		① room tempetature
Imaging stick	k	② chessboard pattern
		3 12Hours(ertra),30minutes judge
Low pressur	e	① 15Kpa (Equivalent to altitude 13,600m)
(Non operation	on)	② -20°C, 60°C, 24hours
		①53.3kPa (Equivalent to altitude 5,100m)
Low pressure	operation	②0℃, 55℃,24hours
		3

Note1: Display and appearance are checked under environmental conditions equivalent to the inspection conditions of defect criteria.

Note2: See the following figure for discharge points.

12. MARKINGS

The various markings are attached to this product. See "11.2 INDECATION LOCATIONS" for attachment positions.

Note1: The meaning of OEM number, Example: S190M50A12SA1SA109A0001

S190M50A

12

SA1SA1

09A

0001

Module Number

Source & Gate Driver IC Code Location Line#

Date code

Serial Number

Date code:

1st Character Year Codes

Month	2010	2011	2012	2013	2014	2015	2016	2017	2018	So on
Code	0	1	2	3	4	5	6	7	8	

2nd Character Month Codes

Month	January	February	March	April	May	June	July	August	September	October	November	December
Code	1	2	3	4	5	6	7	8	9	Α	В	С

3rd Character Day Codes

Day	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11st	12nd
Code	1	2	3	4	5	6	7	8	9	A	В	C

13rd	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th
D	Е	F	G	Н	J	K	L	M	N	P	Q

25th	26th	27th	28th	29th	30th	31st
R	S	T	U	V	W	X

Note2: Do not attach anything such as label and so on, on the product label! In case repair the product, AVIC needs the contents of product label such as the lot number, inspection date and so on, to identify the warranty period with individual product. If AVIC cannot decipher the contents of product label, such repair shall be entitled to charge. Also AVIC may give a new lot number to reconditioned products.

12.2 INDICATION LOCATIONS

Product rear side				
Disposal method	marking	Barcode label	Product label	

13. PACKING, TRANSPORTATION AND DELIVERY

AVIC will pack products to deliver to customer in accordance with AVIC packing specifications, and will deliver products to customer in such a state that products will not suffer from a damage during transportation .The delivery conditions are as follows.

13.1 PACKING

- (1) Packing box
- 8 products are packed up with the maximum in a packing box(See "12.5 OUTLINE FIGURE FOR PACKING").

Products are put into a plastic bag for prevention of moisture with cushion, and then the bag is sealed up with heat sealing.

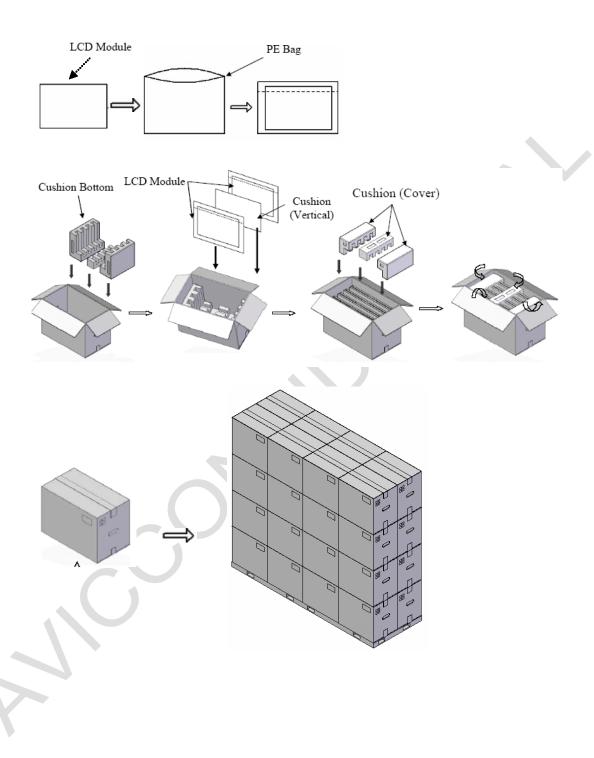
The type name and quality are shown on outside of the packing box, either labeling or printing.

- (2) Pallet Packing (See"12.5 OUTLINE FIGURE FOR PACKING ")
 - ① Packing boxes are tired on a cardboard pallet (8 boxes×4 tiers maximum)
 - ② Cardboard sleeve and top cap are attached to the packing boxes, then they are fixed by a band.

13.2 INSPECTION RECORD SHEET

Inspection record sheets are included in the packing box with delivery products to customer. It is summarized to a number of products for pass/fail assessment.

13.3 TRANSPORTATION


The product is transported by vehicle, aircraft or shipment in the state of pallet packing.

13.4 SIZE AND WEIGHT FOR PACKING BOX

Parameter	Packing box	
Size	485 (L) × 280 (W) × 330 (H) (typ.)	mm
Weight	Veight 1.70 (max.)	
Total weight	16.0 (max.)	kg

13.5 OUTLINE FIGURE FOR PACKING

14. PRECAUTIONS

14.1 MEANING OF CUTION SIGNS

The following caution signs have very important meaning .Be sure to read "9.2 CAUTIONS" and "9.3 ATTENTIONS", after understanding these contents!

This sign have the meaning that customer will be injured by himself or the product will sustain a damage, if customer has wrong operations.

This sign has the meaning that customer will get an electrical shock, if customer has wrong operations.

This sign has the meaning that customer will be injured by himself, if customer has wrong operations.

14.2 CAUTIONS

* Do not touch lamp cables while turn on .Customers will be in danger of an electric shock

- * Do not touch the working backlight and IC. Customers will be in danger of burn injury.
- * Do not shock and press the LCD panel and the backlight! There is a danger of breaking, because they are made of glass.(shock :To be not greater 294m/s² and to be not greater 11ms, Pressure: To be not greater 19.6N)

14.3 ATTENTIONS

13.3.1 Handling of the product

- ① Take hold of both ends without touch the circuit board when customer pulls out products (LCD modules) from inner packing box. If customer touches it, products may be broken down or out of adjustment, because of stress to mounting parts.
- ② Do not hook cables nor pull connection cables such as flexible cable and so on , for fear of damage.
- ③ If customer puts down the product temporarily, the product puts on flat subsoil as a display side turns down.
- Take the measures of electrostatic discharge such as earth band, ionic shower and so on, when customer deal with the product, because products may be damaged by electrostatic.

SHANGHAI AVIC OPTOELECTRONICS

co-Q/S1011-2011

- (5) The torque for mounting screws must never exceed 0.34N-m. Higher torque values might result in distortion of the bezel.
- 6 The product must be installed using mounting holes without undue stress such as bends or twist (See outline drawings). And do not add undue stress to any portion (such as bezel flat area) except mounting hole portion.
- The Bends or twist described above and undue stress to any portion except mounting hole portion may cause display un-uniformity.
- ® Do not press or rub on the sensitive display surface .lf customer clean on the panel surface, AVIC recommends using the cloth with ethanolic liquid such as screen cleaner for LCD.
- Do not push-pull the interface connectors while the product is working, because wrong power sequence may break down the product.
- ① Do not bend or unbend the lamp cable at the near part of the lamp holding rubber, to avoid the damage for high voltage side of the lamp. This damage may cause a lamp breaking and abnormal operation of high voltage circuit.

14.3.2 Environment

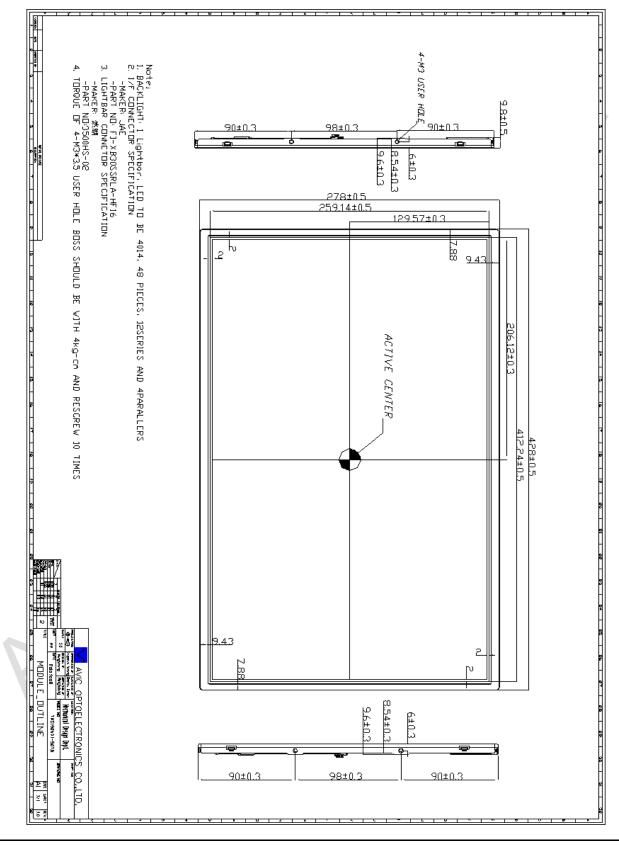
- ① Do not operate or store in high temperature, high humidity, dewdrop atmosphere or corrosive gases. Keep the product in antistatic pouch in room temperature, because of avoidance for dusts and sunlight, if customer stores the product.
- ② In order to prevent dew condensation occurring by temperature difference, the product packing box must be opened after leave under the environment of an unpacking room temperature enough. Because a situation of dew condensation occurring is changed by the environment temperature and humidity, evaluate the leaving time sufficiently. (Recommendation leaving time: 6 hour or more with packing state)
- ③ Do not operate in a high magnetic field .Circuit boards may be broken down by it.
- 4 This product is not designed as radiation hardened.
- ⑤ Use an original protection sheet on the product surface (polarizer). Adhesive type protection sheet should be avoided, because it may change color or properties of the polarizer.

14.3.3 Characteristics

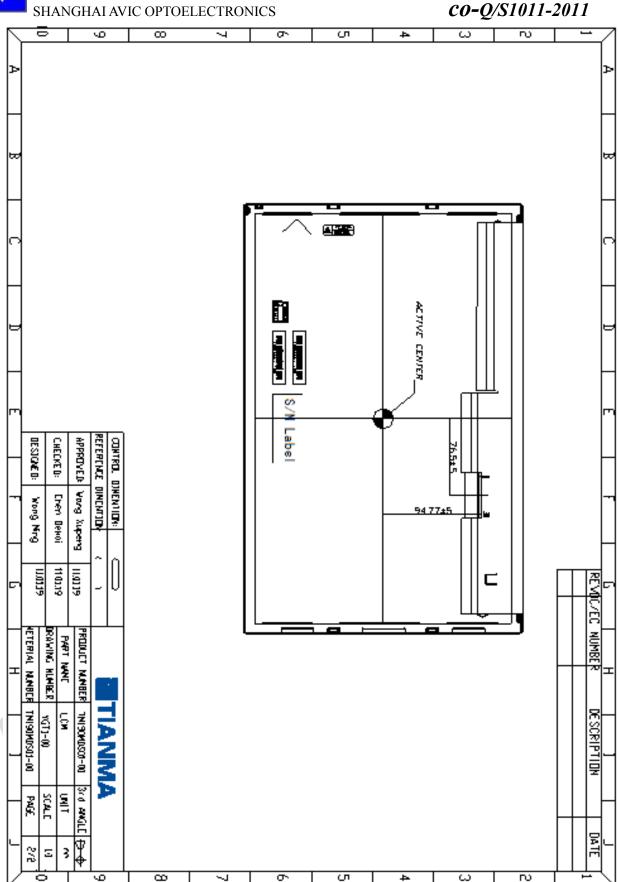
The following items are neither defects nor failures.

- 1 ambient temperature.
- ② The LCD may be seemed luminance non-uniformity, flicker, vertical seam or small spot by display patterns.
- ③ Optical characteristics (e.g. luminance, display uniformity, etc.) gradually is going to change depending on operating time ,and especially low temperature, because the LCD has cold cathode fluorescent lamps.
- ④ Do not display the fixed pattern for a long time because it may cause image sticking .Use a screen saver, if the fixed pattern is displayed on the screen.
- (5) The display color may be changed by viewing angle because of the use of condenser sheet in the backlight.
- 6 Optical characteristics may be changed by input signal timings.
- The interference noise of input signal frequency for this product and luminance control frequency

SHANGHAI AVIC OPTOELECTRONICS


co-Q/S1011-2011

of customer's backlight inverter may appear on a display. Set up luminance control frequency of backlight inverter so that the interference noise doses not appear.


14.4 Other

- (1) All GND and VCC terminals should be used without a non-connected line.
- 2 Do not disassemble a product or adjust volume without permission of AVIC.
- 3 Pay attention not to insert waste materials inside of products, if customer uses screw nails.
- 4 Pack the product with original shipping package, because of avoidance of some damages during transportation, when customer returns it to AVIC for repair and so on .
- (5) Not only the module but also the equipment should be packed and transported as the module. becomes vertical .Otherwise, there is the fear that a display dignity decreases by an impact or vibrations.

15.OUTDRAWING

9

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

4

ω

σ

S