TITLE : B3 HT215F01-100
Preliminary Product Specification
Rev. P0

HEFEI BOE OPTOELECTRONICS TECHNOLOGY
REVISION HISTORY

<table>
<thead>
<tr>
<th>REV.</th>
<th>ECN No.</th>
<th>DESCRIPTION OF CHANGES</th>
<th>DATE</th>
<th>PREPARED</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td></td>
<td>Initial Release</td>
<td>2010.10.18</td>
<td>涂志中</td>
</tr>
</tbody>
</table>

SPEC. NUMBER

SPEC. TITLE

B3 HT215F01-100 Preliminary Product Specification_ Rev.P0

PAGE

2 OF 28
Contents

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>General Description</td>
<td>4</td>
</tr>
<tr>
<td>2.0</td>
<td>Absolute Maximum Ratings</td>
<td>6</td>
</tr>
<tr>
<td>3.0</td>
<td>Electrical Specifications</td>
<td>7</td>
</tr>
<tr>
<td>4.0</td>
<td>Optical Specifications</td>
<td>8</td>
</tr>
<tr>
<td>5.0</td>
<td>Interface Connection</td>
<td>10</td>
</tr>
<tr>
<td>6.0</td>
<td>Signal Timing Specifications</td>
<td>13</td>
</tr>
<tr>
<td>7.0</td>
<td>Signal Timing Waveforms of Interface Signal</td>
<td>15</td>
</tr>
<tr>
<td>8.0</td>
<td>Input Signals, Display Colors & Gray Scale of Colors</td>
<td>17</td>
</tr>
<tr>
<td>9.0</td>
<td>Power Sequence</td>
<td>18</td>
</tr>
<tr>
<td>10.0</td>
<td>Mechanical Characteristics</td>
<td>19</td>
</tr>
<tr>
<td>11.0</td>
<td>Reliability Test</td>
<td>20</td>
</tr>
<tr>
<td>12.0</td>
<td>Handling & Cautions</td>
<td>21</td>
</tr>
<tr>
<td>13.0</td>
<td>Product Serial Number</td>
<td>22</td>
</tr>
<tr>
<td>14.0</td>
<td>Packing</td>
<td>23</td>
</tr>
<tr>
<td>15.0</td>
<td>Appendix</td>
<td>25</td>
</tr>
</tbody>
</table>
1.0 GENERAL DESCRIPTION

1.1 Introduction

HT215F01-100 is a color active matrix TFT LCD module using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This module has a 21.5 inch diagonally measured active area with WXGA resolutions (1920 horizontal by 1080 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display 16.7M colors. The TFT-LCD panel used for this module is adapted for a low reflection and higher color type.

1.2 Features

- LVDS Interface with 2 pixel / clock
- High-speed response
- 6-bit (Hi-FRC) color depth, display 16.7M colors
- Incorporated edge type back-light (One Light Bar)
- High luminance and contrast ratio, low reflection and wide viewing angle
- DE (Data Enable) only
- RoHS / TCO 5.0 Compliant
1.3 Application

- Desktop Type of PC & Workstation Use
- Slim-Size Display for Stand-alone Monitor
- Display Terminals for Control System
- Monitors for Process Controller

1.4 General Specification

The followings are general specifications at the model HT215F01-100.

<Table 1. General Specifications>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active area</td>
<td>476.64(H) × 268.11(V)</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Number of pixels</td>
<td>1920(H) × 1080(V)</td>
<td>pixels</td>
<td></td>
</tr>
<tr>
<td>Pixel pitch</td>
<td>0.24825(H) × 0.24825(V)</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Pixel arrangement</td>
<td>RGB Vertical stripe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display colors</td>
<td>16.7M</td>
<td>colors</td>
<td></td>
</tr>
<tr>
<td>Display mode</td>
<td>Normally White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensional outline</td>
<td>495.6(H) × 292.2(V) × 10.2(D) typ.</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>(1600) (max.)</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>Surface Treatment</td>
<td>Haze 25%, 3H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back-light</td>
<td>Lower side 1-LED Light bar Type</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.0 ABSOLUTE MAXIMUM RATINGS

The followings are maximum values which, if exceeded, may cause faulty operation or damage to the unit. The operational and non-operational maximum voltage and current values are listed in Table 2.

<Table 2. Absolute Maximum Ratings>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage</td>
<td>V_{DD}</td>
<td>-0.5</td>
<td>5.5</td>
<td>V</td>
<td>$Ta = 25,^\circ C$</td>
</tr>
<tr>
<td>Logic Supply Voltage</td>
<td>V_{IN}</td>
<td>VSS-0.3</td>
<td>$V_{DD}+0.3$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Back-light Lamp Current</td>
<td>I_{BL}</td>
<td>3</td>
<td>8.0</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Back-light Lamp frequency</td>
<td>F_{L}</td>
<td>40</td>
<td>80</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{OP}</td>
<td>0</td>
<td>+50</td>
<td>°C</td>
<td>1)</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{ST}</td>
<td>-20</td>
<td>+60</td>
<td>°C</td>
<td>1)</td>
</tr>
</tbody>
</table>

Note: 1) Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 °C max. and no condensation of water.

![Diagram of temperature and relative humidity range]
3.0 ELECTRICAL SPECIFICATIONS

3.1 Electrical Specifications

<Table 3. Electrical specifications>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage V<sub>DD</sub></td>
<td>4.5</td>
<td>5.0</td>
<td>5.5</td>
<td>V</td>
<td>Note 1</td>
</tr>
<tr>
<td>Power Supply Current I<sub>DD</sub></td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>In-Rush Current I<sub>RUSH</sub></td>
<td>TBD</td>
<td>TBD</td>
<td>A</td>
<td></td>
<td>Note 2</td>
</tr>
<tr>
<td>Permissible Input Ripple Voltage V<sub>RF</sub></td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>mV</td>
<td>V<sub>DD</sub> = 5.0V</td>
</tr>
<tr>
<td>High Level Differential Input Threshold Voltage V<sub>HI</sub></td>
<td>-</td>
<td>-</td>
<td>+100</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Low Level Differential Input Threshold Voltage V<sub>IL</sub></td>
<td>-100</td>
<td>-</td>
<td>-</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Differential input voltage</td>
<td>200</td>
<td>-</td>
<td>600</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Differential input common mode voltage V<sub>cm</sub></td>
<td>1.0</td>
<td>1.2</td>
<td>1.5</td>
<td></td>
<td>V<sub>HI</sub>=100mV, V<sub>IL</sub>=-100mV</td>
</tr>
<tr>
<td>LED Channel Voltage V<sub>L</sub></td>
<td>-</td>
<td>54.4</td>
<td>(57.8)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>LED Channel Current I<sub>L</sub></td>
<td>-</td>
<td>60</td>
<td>-</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>LED Lifetime</td>
<td>30,000</td>
<td>-</td>
<td>-</td>
<td>Hrs</td>
<td>1</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>-</td>
<td>4.9</td>
<td>-</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>P<sub>BL</sub></td>
<td>-</td>
<td>13.06</td>
<td>-</td>
<td>W</td>
<td>I<sub>L</sub>=60 mA, Note 5</td>
</tr>
<tr>
<td>P<sub>total</sub></td>
<td>-</td>
<td>17.96</td>
<td>-</td>
<td>W</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. The supply voltage is measured and specified at the interface connector of LCM.
 The current draw and power consumption specified is for VDD=5.0V, Frame rate=75Hz and
 Clock frequency = TBD. Test Pattern of power supply current
 a) Typ : Color Bar pattern
 b) Max : Skip Sub Pixel Pattern

2. Duration of rush current is about 2 ms and rising time of VDD is 520 μs ± 20 %
3. The lamp frequency should be selected as different as possible from the horizontal
 synchronous frequency and its harmonics to avoid interference, which may cause line flow on the display
4. The voltage above this value should be applied to the lamps for more than 1 second to start-up. Otherwise the
 lamps may not be turned on.
5. Calculated value for reference (V_L × I_L) × 4(channel) excluding driver loss. (LED Light bar: 13S4P)
4.0 OPTICAL SPECIFICATION

4.1 Overview

The test of Optical specifications shall be measured in a dark room (ambient luminance ≤ 1 lux and temperature = 25±2°C) with the equipment of Luminance meter system (Goniometer system and TOPCONE BM-5) and test unit shall be located at an approximate distance 50cm from the LCD surface at a viewing angle of θ and Φ equal to 0°. We refer to θ=0° (=θ₁) as the 3 o’clock direction (the “right”), θ=90° (=θ₁₂) as the 12 o’clock direction (“upward”), θ=180° (=θ₆) as the 9 o’clock direction (“left”) and θ=270°(= θ₉) as the 6 o’clock direction (“bottom”). While scanning θ and/or Φ, the center of the measuring spot on the Display surface shall stay fixed. The measurement shall be executed after 30 minutes warm-up period. VDD shall be 5.0V +/-10% at 25°C. Optimum viewing angle direction is 6 ’clock.

4.2 Optical Specifications

[VDD = 5.0V, Frame rate = 60Hz, Clock = 78MHz, Iᵢ₀ = 7.5mA, Ta =25 ± 2°C]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viewing Angle range (Horizontal)</td>
<td>θ₁</td>
<td>CR > 10</td>
<td>70</td>
<td>85</td>
<td>-</td>
<td>Deg.</td>
<td>Note 1</td>
</tr>
<tr>
<td></td>
<td>θ₉</td>
<td></td>
<td>70</td>
<td>85</td>
<td>-</td>
<td>Deg.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ₁₂</td>
<td></td>
<td>70</td>
<td>80</td>
<td>-</td>
<td>Deg.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ₆</td>
<td></td>
<td>70</td>
<td>80</td>
<td>-</td>
<td>Deg.</td>
<td></td>
</tr>
<tr>
<td>Viewing Angle range (Vertical)</td>
<td>θ₁</td>
<td>CR > 10</td>
<td>85</td>
<td>-</td>
<td>-</td>
<td>Deg.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ₉</td>
<td></td>
<td>85</td>
<td>-</td>
<td>-</td>
<td>Deg.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ₁₂</td>
<td></td>
<td>85</td>
<td>-</td>
<td>-</td>
<td>Deg.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ₆</td>
<td></td>
<td>85</td>
<td>-</td>
<td>-</td>
<td>Deg.</td>
<td></td>
</tr>
<tr>
<td>Luminance Contrast ratio</td>
<td>CR</td>
<td></td>
<td>700</td>
<td>1000</td>
<td></td>
<td></td>
<td>Note 2</td>
</tr>
<tr>
<td>Luminance of White</td>
<td>Y_w</td>
<td></td>
<td>200</td>
<td>250</td>
<td></td>
<td>cd/m²</td>
<td>Note 3</td>
</tr>
<tr>
<td>White luminance uniformity</td>
<td>ΔY</td>
<td></td>
<td>75</td>
<td>80</td>
<td></td>
<td>%</td>
<td>Note 4</td>
</tr>
</tbody>
</table>

Reproduction of color	White	(Center)	Θ = 0°	W₁	0.283	0.313	0.343	Note 5
	W₉			0.299	0.329	0.359		
	R₁	TBD	TBD	TBD	TBD	TBD		
	R₉	TBD	TBD	TBD	TBD	TBD		
	G₁	TBD	TBD	TBD	TBD	TBD		
	G₉	TBD	TBD	TBD	TBD	TBD		
	B₁	TBD	TBD	TBD	TBD	TBD		
	B₉	TBD	TBD	TBD	TBD	TBD		
Response Time	Rising	Tᵣ	1.5	2.5		ms	Note 6	
	Falling	Tᵣ	3.5	5.5		ms		
Cross Talk	CT		-	-	2.0	%	Note 7	
Note:

1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing are determined for the horizontal or 3, 9 o’clock direction and the vertical or 6, 12 o’clock direction with respect to the optical axis which is normal to the LCD surface.

2. Contrast measurements shall be made at viewing angle of \(\theta = 0^\circ \) and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. (See FIGURE 1 shown in Appendix) Luminance Contrast Ratio (CR) is defined mathematically:

\[
CR = \frac{\text{Luminance when displaying a white raster}}{\text{Luminance when displaying a black raster}}
\]

3. Center Luminance of white is defined as the LCD surface. Luminance shall be measured with all pixels in the view field set first to white. This measurement shall be taken at the locations shown in FIGURE 2 for a total of the measurements per display.

4. The White luminance uniformity on LCD surface is then expressed as:

\[
\Delta Y = (\frac{\text{Minimum Luminance of 9points}}{\text{Maximum Luminance of 9points}}) \times 100
\]

(See FIGURE 2 shown in Appendix).

5. The color chromaticity coordinates specified in Table 4. shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.

6. The electro-optical response time measurements shall be made as FIGURE 3 shown in Appendix by switching the “data” input signal ON and OFF. The times needed for the luminance to change from 10% to 90% is \(T_d \), and 90% to 10% is \(T_r \).

7. Cross-Talk of one area of the LCD surface by another shall be measured by comparing the luminance \(Y_A \) of a 25mm diameter area, with all display pixels set to a gray level, to the luminance \(Y_B \) of that same area when any adjacent area is driven dark. (See FIGURE 4 shown in Appendix).
5.0 INTERFACE CONNECTION.

5.1 Electrical Interface Connection

- **CN1**
 Module Side Connector: UJU IS100-L300-C23 or Equivalent
 User Side Connector: JAE FI-X30H or Equivalent

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Symbol</th>
<th>Function</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RX00-</td>
<td>Negative Transmission data of Pixel 0 (ODD)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RX00+</td>
<td>Positive Transmission data of Pixel 0 (ODD)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RX01-</td>
<td>Negative Transmission data of Pixel 1 (ODD)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>RX01+</td>
<td>Positive Transmission data of Pixel 1 (ODD)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>RX02-</td>
<td>Negative Transmission data of Pixel 2 (ODD)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RX02+</td>
<td>Positive Transmission data of Pixel 2 (ODD)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>Power Ground</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>RXOC-</td>
<td>Negative Transmission Clock (ODD)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>RXOC+</td>
<td>Positive Transmission Clock (ODD)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>RX03-</td>
<td>Negative Transmission data of Pixel 3 (ODD)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>RX03+</td>
<td>Positive Transmission data of Pixel 3 (ODD)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>RXE0-</td>
<td>Negative Transmission data of Pixel 0 (EVEN)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>RXE0+</td>
<td>Positive Transmission data of Pixel 0 (EVEN)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td>Power Ground</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>RXE1-</td>
<td>Negative Transmission data of Pixel 1 (EVEN)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>RXE1+</td>
<td>Positive Transmission data of Pixel 1 (EVEN)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
<td>Power Ground</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>RXE2-</td>
<td>Negative Transmission data of Pixel 2 (EVEN)</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>RXE2+</td>
<td>Positive Transmission data of Pixel 2 (EVEN)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>RXEC-</td>
<td>Negative Transmission Clock (EVEN)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>RXEC+</td>
<td>Positive Transmission Clock (EVEN)</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>RXE3-</td>
<td>Negative Transmission data of Pixel 3 (EVEN)</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>RXE3+</td>
<td>Positive Transmission data of Pixel 3 (EVEN)</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>GND</td>
<td>Power Ground</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>NC</td>
<td>Not connection, this pin should be open</td>
<td>Note1</td>
</tr>
<tr>
<td>26</td>
<td>NC</td>
<td>Not connection, this pin should be open</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>NC</td>
<td>Not connection</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>VDD1</td>
<td>Power Supply: +5V</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>VDD2</td>
<td>Power Supply: +5V</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>VDD3</td>
<td>Power Supply: +5V</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: This pin should be connected with GND
5.2 LVDS Interface (Tx; THC63LVDF83A or Equivalent)
5.2.1 ODD LVDS Interface

<table>
<thead>
<tr>
<th>Input Signal</th>
<th>Transmitter</th>
<th>Interface</th>
<th>HT215F01-100 (CN11)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR0</td>
<td>51</td>
<td>OUT0-OUT0+</td>
<td>RX00-RX00+</td>
<td>1</td>
</tr>
<tr>
<td>OR1</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR2</td>
<td>54</td>
<td>48</td>
<td>RX00-RX00+</td>
<td>1</td>
</tr>
<tr>
<td>OR3</td>
<td>55</td>
<td>47</td>
<td>RX00-RX00+</td>
<td>2</td>
</tr>
<tr>
<td>OR4</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OG0</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OG1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OG2</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OG3</td>
<td>11</td>
<td>45</td>
<td>RX01-RX01+</td>
<td>3</td>
</tr>
<tr>
<td>OG4</td>
<td>12</td>
<td>46</td>
<td>RX01-RX01+</td>
<td>4</td>
</tr>
<tr>
<td>OG5</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OB0</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OB1</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OB2</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OB3</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OB4</td>
<td>23</td>
<td>41</td>
<td>RX02-RX02+</td>
<td>5</td>
</tr>
<tr>
<td>OB5</td>
<td>24</td>
<td>42</td>
<td>RX02-RX02+</td>
<td>6</td>
</tr>
<tr>
<td>Hsync</td>
<td></td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vsync</td>
<td></td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCLK</td>
<td>31</td>
<td>40</td>
<td>RX0 CLK-RX0 CLK+</td>
<td>8</td>
</tr>
<tr>
<td>OR6</td>
<td>50</td>
<td>39</td>
<td>RX0 CLK-RX0 CLK+</td>
<td>9</td>
</tr>
<tr>
<td>OR7</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OG6</td>
<td>8</td>
<td>38</td>
<td>RX03-RX03+</td>
<td>10</td>
</tr>
<tr>
<td>OG7</td>
<td>10</td>
<td>37</td>
<td>RX03-RX03+</td>
<td>11</td>
</tr>
<tr>
<td>OB6</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OB7</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSVD</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.2.2 EVEN LVDS Interface

<table>
<thead>
<tr>
<th>Input Signal</th>
<th>Transmitter</th>
<th>Interface</th>
<th>HT215F01-100 (C N11)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin No.</td>
<td>Pin No.</td>
<td>System (Tx)</td>
<td>TFT-LCD (Rx)</td>
<td>Pin No.</td>
</tr>
<tr>
<td>ER0</td>
<td>51</td>
<td></td>
<td>RXE0-</td>
<td>12</td>
</tr>
<tr>
<td>ER1</td>
<td>52</td>
<td></td>
<td>RXE0+</td>
<td>13</td>
</tr>
<tr>
<td>ER2</td>
<td>54</td>
<td>OUT0-</td>
<td>OUT0+</td>
<td></td>
</tr>
<tr>
<td>ER3</td>
<td>55</td>
<td></td>
<td>RXE0-</td>
<td>12</td>
</tr>
<tr>
<td>ER4</td>
<td>56</td>
<td></td>
<td>RXE0+</td>
<td>13</td>
</tr>
<tr>
<td>ER5</td>
<td>3</td>
<td></td>
<td>RXE0-</td>
<td>12</td>
</tr>
<tr>
<td>EG0</td>
<td>4</td>
<td></td>
<td>RXE0+</td>
<td>13</td>
</tr>
<tr>
<td>EG1</td>
<td>6</td>
<td>OUT1-</td>
<td>OUT1+</td>
<td></td>
</tr>
<tr>
<td>EG2</td>
<td>7</td>
<td></td>
<td>RXE1-</td>
<td>15</td>
</tr>
<tr>
<td>EG3</td>
<td>11</td>
<td></td>
<td>RXE1+</td>
<td>16</td>
</tr>
<tr>
<td>EG4</td>
<td>12</td>
<td>OUT1-</td>
<td>OUT1+</td>
<td></td>
</tr>
<tr>
<td>EG5</td>
<td>14</td>
<td></td>
<td>RXE1-</td>
<td>15</td>
</tr>
<tr>
<td>EB0</td>
<td>15</td>
<td></td>
<td>RXE1+</td>
<td>16</td>
</tr>
<tr>
<td>EB1</td>
<td>19</td>
<td>OUT2-</td>
<td>OUT2+</td>
<td></td>
</tr>
<tr>
<td>EB2</td>
<td>20</td>
<td></td>
<td>RXE2-</td>
<td>18</td>
</tr>
<tr>
<td>EB3</td>
<td>22</td>
<td></td>
<td>RXE2+</td>
<td>19</td>
</tr>
<tr>
<td>EB4</td>
<td>23</td>
<td>OUT2-</td>
<td>OUT2+</td>
<td></td>
</tr>
<tr>
<td>EB5</td>
<td>24</td>
<td></td>
<td>RXE2-</td>
<td>18</td>
</tr>
<tr>
<td>Hsync</td>
<td>27</td>
<td></td>
<td>RXE2+</td>
<td>19</td>
</tr>
<tr>
<td>Vsync</td>
<td>28</td>
<td></td>
<td>RXE2+</td>
<td>19</td>
</tr>
<tr>
<td>DE</td>
<td>30</td>
<td>OUT3-</td>
<td>OUT3+</td>
<td></td>
</tr>
<tr>
<td>MCLK</td>
<td>31</td>
<td></td>
<td>RXE CLK-</td>
<td>20</td>
</tr>
<tr>
<td>ER6</td>
<td>50</td>
<td></td>
<td>RXE CLK+</td>
<td>21</td>
</tr>
<tr>
<td>ER7</td>
<td>2</td>
<td>Hsync</td>
<td>DE</td>
<td></td>
</tr>
<tr>
<td>EG6</td>
<td>8</td>
<td></td>
<td>DE</td>
<td></td>
</tr>
<tr>
<td>EG7</td>
<td>10</td>
<td>OUT3-</td>
<td>OUT3+</td>
<td></td>
</tr>
<tr>
<td>EB6</td>
<td>16</td>
<td></td>
<td>RXE3-</td>
<td>22</td>
</tr>
<tr>
<td>EB7</td>
<td>18</td>
<td></td>
<td>RXE3+</td>
<td>23</td>
</tr>
<tr>
<td>RSVD</td>
<td>25</td>
<td></td>
<td>RXE3+</td>
<td>23</td>
</tr>
</tbody>
</table>
5.3 Data Input Format

Display Position of Input Data (V-H)

1 Pixel = 3 Dots

5.4 Back-light Interface Connection

- CN 2
- LED LightBar Connector:C11406M1HRL-NH or equivalent

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Channel 1 Current Feedback</td>
</tr>
<tr>
<td>2</td>
<td>Channel 2 Current Feedback</td>
</tr>
<tr>
<td>3</td>
<td>LED Power Supply</td>
</tr>
<tr>
<td>4</td>
<td>LED Power Supply</td>
</tr>
<tr>
<td>5</td>
<td>Channel 3 Current Feedback</td>
</tr>
<tr>
<td>6</td>
<td>Channel 4 Current Feedback</td>
</tr>
</tbody>
</table>
6.0 SIGNAL TIMING SPECIFICATION
6.1 The HT215F01-100 is operated by the DE only.

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbols</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>1/Tc</td>
<td>68.94</td>
<td>74.25</td>
<td>80.95</td>
<td>MHz</td>
</tr>
<tr>
<td>High Time</td>
<td>Tch</td>
<td>6.17</td>
<td>6.73</td>
<td>7.24</td>
<td></td>
</tr>
<tr>
<td>Low Time</td>
<td>Tcl</td>
<td>6.17</td>
<td>6.73</td>
<td>7.24</td>
<td></td>
</tr>
<tr>
<td>Frame Period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame Period</td>
<td>Tv</td>
<td>1091</td>
<td>1125</td>
<td>1149</td>
<td>lines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>16.67</td>
<td>13.33</td>
<td>ms</td>
</tr>
<tr>
<td>Vertical Display Period</td>
<td>Tvd</td>
<td>-</td>
<td>1080</td>
<td>-</td>
<td>lines</td>
</tr>
<tr>
<td>One line Scanning Period</td>
<td>Th</td>
<td>1060</td>
<td>1100</td>
<td>1200</td>
<td>clocks</td>
</tr>
<tr>
<td>Horizontal Display Period</td>
<td>Thd</td>
<td>-</td>
<td>960</td>
<td>-</td>
<td>clocks</td>
</tr>
</tbody>
</table>
6.2 LVDS Rx Interface Timing Parameter

The specification of the LVDS Rx interface timing parameter is shown in Table 4.

<Table 4. LVDS Rx Interface Timing Specification>

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLKIN Period</td>
<td>tRCIP</td>
<td>10.60</td>
<td>13.25</td>
<td>20.00</td>
<td>nsec</td>
<td></td>
</tr>
<tr>
<td>Input Data 0</td>
<td>tRIP1</td>
<td>-0.4</td>
<td>0.0</td>
<td>+0.4</td>
<td>nsec</td>
<td></td>
</tr>
<tr>
<td>Input Data 1</td>
<td>tRIP0</td>
<td>tRCIP/7-0.4</td>
<td>tRCIP/7</td>
<td>tRCIP/7+0.4</td>
<td>nsec</td>
<td></td>
</tr>
<tr>
<td>Input Data 2</td>
<td>tRIP6</td>
<td>2 × tRCIP/7-0.4</td>
<td>2 × tRCIP/7</td>
<td>2 × tRCIP/7+0.4</td>
<td>nsec</td>
<td></td>
</tr>
<tr>
<td>Input Data 3</td>
<td>tRIP5</td>
<td>3 × tRCIP/7-0.4</td>
<td>3 × tRCIP/7</td>
<td>3 × tRCIP/7+0.4</td>
<td>nsec</td>
<td></td>
</tr>
<tr>
<td>Input Data 4</td>
<td>tRIP4</td>
<td>4 × tRCIP/7-0.4</td>
<td>4 × tRCIP/7</td>
<td>4 × tRCIP/7+0.4</td>
<td>nsec</td>
<td></td>
</tr>
<tr>
<td>Input Data 5</td>
<td>tRIP3</td>
<td>5 × tRCIP/7-0.4</td>
<td>5 × tRCIP/7</td>
<td>5 × tRCIP/7+0.4</td>
<td>nsec</td>
<td></td>
</tr>
<tr>
<td>Input Data 6</td>
<td>tRIP2</td>
<td>6 × tRCIP/7-0.4</td>
<td>6 × tRCIP/7</td>
<td>6 × tRCIP/7+0.4</td>
<td>nsec</td>
<td></td>
</tr>
</tbody>
</table>

* Vdiff = (RXz+)-(RXz-),…..,(RXCLK+)-(RXCLK-)

* Vdiff = 0[V]

* Z = 0, 1, 2, 3
7.0 SIGNAL TIMING WAVEFORMS OF INTERFACE SIGNAL

7.1 Sync Timing Waveforms

1) Need over 3 H-sync during V-Sync Low
2) Fix H-Sync width from V-Sync falling edge to first rising edge

7.2 Vertical Timing Waveforms
7.3 Horizontal Timing Waveforms

![Timing Waveform Diagram]

- **MCLK**: Timing signal for the master clock.
- **DE**: Data enable signal.
- **RA7~RA0, GA7~GA0, BA7~BA0**: Address lines for data transfer.
- **Tc**: Clock cycle.
- **Tcl**: Clock low time.
- **Tdh**: Data hold time.
- **Tds**: Data setup time.
- **Tch**: Clock high time.
- **Tes**: Data valid time.

Details:
- **MCLK**: 2.0V, 1.5V, 0.8V
- **Data**: 2.0V, 0.8V
- **DE**: 2.0V

Legend:
- **Th**: Timing high
- **Thd**: Timing high duration

Specifications:
- **Rev. P0**
- **Issue Date**: Oct. 18, 10'
8.0 Input Signals, Basic Display Colors & Gray Scale of Colors

<table>
<thead>
<tr>
<th>Color & Gray Scale</th>
<th>RED DATA</th>
<th>GREEN DATA</th>
<th>BLUE DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Colors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Blue</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Green</td>
<td>0 0 0 0 0 0 0 0</td>
<td>1 1 1 1 1 1 1 1</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Cyan</td>
<td>0 0 0 0 0 0 0 0</td>
<td>1 1 1 1 1 1 1 1</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Red</td>
<td>1 1 1 1 1 1 1 1</td>
<td>0 0 0 0 0 0 0 0</td>
<td>1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Magenta</td>
<td>1 1 1 1 1 1 1 1</td>
<td>0 0 0 0 0 0 0 0</td>
<td>1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Yellow</td>
<td>1 1 1 1 1 1 1 1</td>
<td>1 1 1 1 1 1 1 1</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>White</td>
<td>1 1 1 1 1 1 1 1</td>
<td>1 1 1 1 1 1 1 1</td>
<td>1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Gray Scale of RED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Darker</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Gray Scale of GREEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0 0 0 0 0 0 0 0</td>
<td>1 1 1 1 1 1 1 1</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Darker</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Gray Scale of BLUE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Darker</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Gray Scale of WHITE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>1 1 1 1 1 1 1 1</td>
<td>1 1 1 1 1 1 1 1</td>
<td>0 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Darker</td>
<td>1 1 1 1 1 1 1 1</td>
<td>0 1 1 1 1 1 1 1</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPEC. NUMBER</th>
<th>SPEC. TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3 HT215F01-100 Preliminary Product Specification _Rev.P0</td>
<td>18 OF 28</td>
<td>A4(210 X 297)</td>
</tr>
</tbody>
</table>
9.0 POWER SEQUENCE

To prevent a latch-up or DC operation of the LCD module, the power on/off sequence shall be as shown in below.

- $0.5\,\text{ms} \leq T1 \leq 10\,\text{ms}$
- $0 \leq T2 \leq 50\,\text{ms}$
- $0 \leq T3 \leq 50\,\text{ms}$
- $1\,\text{sec} \leq T4$
- $200\,\text{ms} \leq T5$
- $200\,\text{ms} \leq T6$

Notes:
1. When the power supply VDD is 0V, keep the level of input signals on the low or keep high impedance.
2. Do not keep the interface signal high impedance when power is on.
3. Back Light must be turn on after power for logic and interface signal are valid.
10.0 MECHANICAL CHARACTERISTICS

10.1 Dimensional Requirements

FIGURE 6 (located in Appendix) shows mechanical outlines for the model HT215F01-100. Other parameters are shown in Table 5.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensional outline</td>
<td>495.6 × 292.2 × 10.2</td>
<td>mm</td>
</tr>
<tr>
<td>Weight</td>
<td>(1600) (typ.)</td>
<td>gram</td>
</tr>
<tr>
<td>Active area</td>
<td>476.64(H) × 268.11(V)</td>
<td>mm</td>
</tr>
<tr>
<td>Pixel pitch</td>
<td>0.25(H) × 0.25(V)</td>
<td>mm</td>
</tr>
<tr>
<td>Number of pixels</td>
<td>1920(H) × 1080(V) (1 pixel = R + G + B dots)</td>
<td>pixels</td>
</tr>
<tr>
<td>Back-light</td>
<td>Lower side 1-LED Light bar Type</td>
<td></td>
</tr>
</tbody>
</table>

10.2 Mounting

See FIGURE 5. (shown in Appendix)

10.3 Anti-Glare and Polarizer Hardness.

The surface of the LCD has an anti-glare coating to minimize reflection and a coating to reduce scratching.

10.4 Light Leakage

There shall not be visible light from the back-lighting system around the edges of the screen as seen from a distance 50cm from the screen with an overhead light level of 350lux.
11.0 RELIABILITY TEST

The Reliability test items and its conditions are shown in below.

<Table 6. Reliability Test Parameters>

<table>
<thead>
<tr>
<th>No</th>
<th>Test Items</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High temperature storage test</td>
<td>(T_a = 60 , ^\circ C, 240 , \text{hrs})</td>
</tr>
<tr>
<td>2</td>
<td>Low temperature storage test</td>
<td>(T_a = -20 , ^\circ C, 240 , \text{hrs})</td>
</tr>
<tr>
<td>3</td>
<td>High temperature & high humidity operation test</td>
<td>(T_a = 50 , ^\circ C, 80% \text{RH}, 240, \text{hrs})</td>
</tr>
<tr>
<td>4</td>
<td>High temperature operation test</td>
<td>(T_a = 50 , ^\circ C, 240, \text{hrs})</td>
</tr>
<tr>
<td>5</td>
<td>Low temperature operation test</td>
<td>(T_a = 0 , ^\circ C, 240, \text{hrs})</td>
</tr>
<tr>
<td>6</td>
<td>Thermal shock</td>
<td>(T_a = -20 , ^\circ C \rightarrow 60 , ^\circ C (0.5 , \text{hr}), 100 , \text{cycle})</td>
</tr>
</tbody>
</table>
| 7 | Vibration test (non-operating) | \(\text{Frequency} \) 10 ~ 300 \, \text{Hz}, \text{Sweep rate} 30 \, \text{min} \)
\(\text{Gravity / AMP} \) 1.5 \, \text{G}
\(\text{Period} \) \(X, Y, Z \) 30 \, \text{min} |
| 8 | Shock test (non-operating) | \(\text{Gravity} \) 50\, \text{G}
\(\text{Pulse width} \) 11\, \text{msec}, \text{sine wave}
\(\text{Direction} \) \(\pm X, \pm Y, \pm Z \) \text{Once for each} |
| 9 | Electro-static discharge test (non-operating) | \(\text{Air} \) : 150 \, \text{pF}, 330\, \text{\Omega}, 15 \, \text{KV}
\(\text{Contact} \) : 150 \, \text{pF}, 330\, \text{\Omega}, 8 \, \text{KV} |
| 10 | Altitude test | Operating: 0 to 16400\, \text{ft}, 0 to 40\, \text{\degree}
Non Operating: 0 to 40000\, \text{ft}, -20 to 40\, \text{\degree} |
12.0 HANDLING & CAUTIONS

(1) Cautions when taking out the module
- Pick the pouch only, when taking out module from a shipping package.

(2) Cautions for handling the module
- As the electrostatic discharges may break the LCD module, handle the LCD module with care. Peel a protection sheet off from the LCD panel surface as slowly as possible.
- As the LCD panel and back-light element are made from fragile glass material, impulse and pressure to the LCD module should be avoided.
- As the surface of the polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning.
- Do not pull the interface connector in or out while the LCD module is operating.
- Put the module display side down on a flat horizontal plane.
- Handle connectors and cables with care.

(3) Cautions for the operation
- When the module is operating, do not lose CLK, ENAB signals. If any one of these signals is lost, the LCD panel would be damaged.
- Obey the supply voltage sequence. If wrong sequence is applied, the module would be damaged.

(4) Cautions for the atmosphere
- Dew drop atmosphere should be avoided.
- Do not store and/or operate the LCD module in a high temperature and/or humidity atmosphere. Storage in an electro-conductive polymer packing pouch and under relatively low temperature atmosphere is recommended.

(5) Cautions for the module characteristics
- Do not apply fixed pattern data signal to the LCD module at product aging.
- Applying fixed pattern for a long time may cause image sticking.

(6) Other cautions
- Do not disassemble and/or re-assemble LCD module.
- Do not re-adjust variable resistor or switch etc.
- When returning the module for repair or etc., Please pack the module not to be broken. We recommend to use the original shipping packages.
13.0 PRODUCT SERIAL NUMBER

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

1. Control Number
2. Rank / Grade
3. Line Classification
4. Year (2001 : 01, 2002 : 02, ...)
5. Month (1,2,3, ... , 9, X, Y, Z)
6. Internal Use
7. Serial Number
14.0 Packing

14.1 Packing Order

- Put Pad into the box.
- As shown in the figure, place the modules bundled by packing bag in the box.
- After sealing the box, attach Packing Label on the attach position sign area of the box.
- Place a cover on the top of the box.
14.2 Packing Note
- Box Dimension: 346mm(W) × 521mm(L) × 403mm(H)
- Package Quantity in one Box: 9pcs

14.3 Box label
- Label Size: 108 mm (L) × 56 mm (W)
- Contents
 Model: HT215F01-100
 Q’ty: Module Q’ty in one box
 Serial No.: Box Serial No. See next page for detail description.
 Date: Packing Date
 FG Code: FG Code of Product
15.0 APPENDIX

Figure 1. Measurement Set Up

Figure 2. White Luminance and Uniformity Measurement Locations (9 points)
Figure 3. Response Time Testing

<table>
<thead>
<tr>
<th>Display data</th>
<th>Black(TFT ON)</th>
<th>White(TFT OFF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White(TFT OFF)</td>
<td>T1</td>
<td>T2</td>
</tr>
<tr>
<td>100%</td>
<td>90%</td>
<td>10%</td>
</tr>
<tr>
<td>10%</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. Cross Modulation Test Description

Cross-Talk (%) = \[\left| \frac{Y_B - Y_A}{Y_A} \right| \times 100 \]

Where:
- \(Y_A \) = Initial luminance of measured area (cd/m²)
- \(Y_B \) = Subsequent luminance of measured area (cd/m²)

The location measured will be exactly the same in both patterns.
Figure 5. TFT-LCD Module Outline Dimensions (Front view)
Figure 6. TFT-LCD Module Outline Dimensions (Rear view)