Specifications for

Blanview TFT-LCD Monitor

Version 1.0

MODEL COM35H3M74UTC

Customer's Approval
Signature:
Name:
Section:
Title:
Date:

ORTHUSTECH

ORTUS TECHNOLOGY CO., LTD.
Sales Headquarters
2951-5 Ishikawa-cho, Hachioji-city, Tokyo
192-8556,Japan
TEL 81-42-639-5121
FAX 81-42-639-5034

Approved by

ORTUS TECHNOLOGY CO., LTD.
Product Quality Assurance
2951-5 Ishikawa-cho, Hachioji-city, Tokyo
192-8556,Japan
TEL 81-42-639-5138
FAX 81-42-639-5037

Checked by

Approved by

ORTUS TECHNOLOGY CO., LTD.

Checked by

Approved by

Prepared by
## Version History

<table>
<thead>
<tr>
<th>Ver.</th>
<th>Date</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Nov. 30, 2010</td>
<td>-</td>
<td>First issue</td>
</tr>
</tbody>
</table>
Contents

1. Application ........................................... 4
2. Outline Specifications ................................. 5
   2.1 Features of the Product ......................... 5
   2.2 Display Method ................................ 5
3. Dimensions and Shape ................................ 6
   3.1 Dimensions ...................................... 7
   3.2 Outward Form ................................... 8
   3.3 Serial No print (S-print) ....................... 10
4. Pin Assignment ....................................... 11
5. Block Diagram ....................................... 12
6. Absolute Maximum Rating ......................... 13
7. Recommended Operating Conditions ................ 13
8. Characteristics ...................................... 14
   8.1 DC Characteristics .............................. 14
   8.2 AC Characteristics .............................. 15
   8.3 Input Timing Characteristics .................. 17
   8.4 Driving Timing Chart ......................... 18
   8.5 Example of Driving Timing Chart ............... 19
9. Power-ON/Power-OFF Sequence ..................... 20
10. Characteristics ...................................... 21
   10.1 Optical Characteristics ....................... 21
   10.2 Temperature Characteristics .................. 22
11. Criteria of Judgement .............................. 23
   11.1 Defective Display and Screen Quality .......... 23
   11.2 Screen and Other Appearance ................. 24
12. Reliability Test .................................... 25
13. Packing Specifications ............................. 27
14. Handling Instruction ............................... 28
   14.1 Cautions for Handling LCD panels ............ 28
   14.2 Precautions for Handling ..................... 29
   14.3 Precautions for Operation .................... 29
   14.4 Storage Condition for Shipping Cartons ...... 30
   14.5 Precautions for Peeling off the Protective film 30
APPENDIX .............................................. 31
1. Application

This Specification is applicable to 8.88cm (3.5 inch) Blanview TFT-LCD monitor for non-military use.

- ORTUS TECHNOLOGY makes no warranty or assume no liability that use of this Product and/or any information including drawings in this Specification by Purchaser is not infringing any patent or other intellectual property rights owned by third parties, and ORTUS TECHNOLOGY shall not grant to Purchaser any right to use any patent or other intellectual property rights owned by third parties. Since this Specification contains ORTUS TECHNOLOGY’s confidential information and copy right, Purchaser shall use them with high degree of care to prevent any unauthorized use, disclosure, duplication, publication or dissemination of ORTUS TECHNOLOGY’S confidential information and copy right.

- If Purchaser intends to use this Products for an application which requires higher level of reliability and/or safety in functionality and/or accuracy such as transport equipment (aircraft, train, automobile, etc.), disaster-prevention/security equipment or various safety equipment, Purchaser shall consult ORTUS TECHNOLOGY on such use in advance.

- This Product shall not be used for application which requires extremely higher level of reliability and/or safety such as aerospace equipment, telecommunication equipment for trunk lines, control equipment for nuclear facilities or life-support medical equipment.

- ORTUS TECHNOLOGY assumes no liability for any damage resulting from misuse, abuse, and/or miss-operation of the Product deviating from the operating conditions and precautions described in the Specification.

- If any issue arises as to information provided in this Specification or any other information, ORTUS TECHNOLOGY and Purchaser shall discuss them in good faith and seek solution.

- ORTUS TECHNOLOGY assumes no liability for defects such as electrostatic discharge failure occurred during peeling off the protective film or Purchaser's assembly process.

- This Product is compatible for RoHS directive.

<table>
<thead>
<tr>
<th>Object substance</th>
<th>Maximum content [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium and its compound</td>
<td>100</td>
</tr>
<tr>
<td>Hexavalent Chromium Compound</td>
<td>1000</td>
</tr>
<tr>
<td>Lead &amp; Lead compound</td>
<td>1000</td>
</tr>
<tr>
<td>Mercury &amp; Mercury compound</td>
<td>1000</td>
</tr>
<tr>
<td>Polybrominated biphenyl series (PBB series)</td>
<td>1000</td>
</tr>
<tr>
<td>Polybrominated biphenyl ether series (PBDE series)</td>
<td>1000</td>
</tr>
</tbody>
</table>
2. Outline Specifications

2.1 Features of the Product

- 3.5 inch diagonal display, 1440 [H] x 640 [V] dots.
- 6-bit / 262,144 colors.
- Timing generator [TG], Counter-electrode driving circuitry, Built-in power supply circuit.
- Power save (Standby) mode capable.
- Long life & High bright white LED back-light.
- Blanview TFT-LCD, improved outdoor readability.

<table>
<thead>
<tr>
<th>Transmissive</th>
<th>Readability</th>
<th>Power Efficiency (Battery Life)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transflective</td>
<td>Fair</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Blanview</td>
<td>Good</td>
<td>Good</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indoor</th>
<th>Outdoor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Readability</td>
<td>Power Efficiency (Battery Life)</td>
</tr>
<tr>
<td>Indoor</td>
<td>Good</td>
</tr>
<tr>
<td>Outdoor</td>
<td>Poor</td>
</tr>
</tbody>
</table>

2.2 Display Method

<table>
<thead>
<tr>
<th>Items</th>
<th>Specifications</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display type</td>
<td>262,144 colors. Blanview, Normally black.</td>
<td></td>
</tr>
<tr>
<td>Driving method</td>
<td>a-Si TFT Active matrix. Line-scanning, Non-interface.</td>
<td></td>
</tr>
<tr>
<td>Dot arrangement</td>
<td>RGB stripe arrangement. Refer to &quot;Dot arrangement&quot;</td>
<td></td>
</tr>
<tr>
<td>Signal input method</td>
<td>6-bit RGB, parallel input.</td>
<td></td>
</tr>
<tr>
<td>Backlight type</td>
<td>Long life &amp; High bright white LED.</td>
<td></td>
</tr>
<tr>
<td>Touch panel</td>
<td>Resistance type, transmissive analog tablet</td>
<td>Surface finishing: Clear</td>
</tr>
</tbody>
</table>

Active area

Dot arrangement (FPC cable placed leftside)
<Features of Blanview>

- Backlight power consumption required to assure visibility. (equivalent to 3.5”QVGA)

- Contrast characteristics under 100,000lx. (same condition as direct sunlight.)

With better contrast (higher contrast ratio), Blanview TFT-LCD has the best outdoor readability in three different types of TFT-LCD.

Below chart shows contrast value against panel surface brightness. (Horizontal: Panel surface brightness/Vertical: Contrast value) LCD panel has enough outdoor readability above our Standard line.
3. Dimensions and Shape

3.1 Dimensions

<table>
<thead>
<tr>
<th>Items</th>
<th>Specifications</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outline dimensions</td>
<td>63.50[H] × 85.00[V] × 4.33[D]</td>
<td>mm</td>
<td>Exclude FPC cable and parts on FPC.</td>
</tr>
<tr>
<td>Active area</td>
<td>53.28[H] × 71.04[V]</td>
<td>mm</td>
<td>8.88cm diagonal</td>
</tr>
<tr>
<td>Number of dots</td>
<td>1440[H] × 640[V]</td>
<td>dot</td>
<td></td>
</tr>
<tr>
<td>Dot pitch</td>
<td>37.00[H] × 111.00[V]</td>
<td>um</td>
<td></td>
</tr>
<tr>
<td>Hardness of Touch Panel surface</td>
<td>3[H]</td>
<td></td>
<td>Reference judgment standard: JIS-K5600</td>
</tr>
<tr>
<td>Weight</td>
<td>42.3[g]</td>
<td></td>
<td>Include FPC cable</td>
</tr>
</tbody>
</table>
Note 1. Angular deviation of LCD cell from the TiF-LCD monitor's reference axis shall be less than ±40°.

Note 2. Recommended FPC connector:
For PC: HONDA, part number FH2-305-0.35M-0.5.

Note 3. Protective film is affixed on front surface of the screen. Location tolerance of the protective film shall be ±1.5 mm to the TOUCH PANEL.

Note 4. Keep a gap, for example 0.3 to 1.0 mm between the bezel edge and TiF surface to avoid the bezel edge from making contact with the TiF surface that may cause a "false touch" with the bottom layer.

Note 5. Bezel Opening design:
It is recommended to design based on LCD Active area and LCD Active area center.

Please place the bezel opening to maintain the operation by a stylus pen or finger at the TiF response area. (Refer to "Example of housing design").

The dimensions shown indicate in drawing are the example of the bezel design.

Note 6. Linearity is guaranteed in the area surrounded by 3mm inside lines from TOUCH PANEL Active Area.

Note 7. In case TiF-LCD monitor is fixed to the case of your product, it's recommended that monitor is fixed in to the area.

Note 8. Refer to "CRITERIA OF JUDGMENT" about the appearance specification of a polarizer.
Example of Housing Design

Design guidance for the upper case & the cushion

Note 1: Upper case opening
a. Please place the upper case opening to maintain the operation by a stylus pen inside the TP response area
b. The only areas in the area between TP response area and TP viewing area is prohibited.
c. Please use the appropriate material (PMMA, PC, etc.) for the upper case.

Note 2: Cushion design
a. Please put the cushion on the upper case.
b. Do not use an adhesive tape to stick on the TP surface.
c. Please position the cushion over the cushion area to avoid a short.
3.3 Serial No. print (S-print)

1) Display Items
S-print indicates the least significant digit of manufacture year (1digit), manufacture month with below alphabet (1letter), model code (5characters), serial number (6digits).

* Contents of Display

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>The least significant digit of manufacture year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>Manufacture month</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jan-A</td>
<td>May-E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb-B</td>
<td>Jun-F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mar-C</td>
<td>Jul-G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr-D</td>
<td>Aug-H</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Model code</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35JCC (Made in Japan)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35JDC (Made in Malaysia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35JEC (Made in China)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Serial number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2) Location of Serial No. print (S-print)
Refer to 3.2 "Outward Form".

3) Others
Please note that it is likely to disappear with an organic solvent about the Serial print.
4. Pin Assignment

<table>
<thead>
<tr>
<th>No.</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VSS</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>VSS</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>VDD</td>
<td>Power supply input.</td>
</tr>
<tr>
<td>4</td>
<td>VCCIO</td>
<td>Logic Interface Power supply input.</td>
</tr>
<tr>
<td>5</td>
<td>VSS</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>RESETB</td>
<td>System reset signal input. (Lo: active)</td>
</tr>
<tr>
<td>7</td>
<td>HSYNC</td>
<td>Horizontal sync signal input. (Negative polarity)</td>
</tr>
<tr>
<td>8</td>
<td>VSYNC</td>
<td>Vertical sync signal input. (Negative polarity)</td>
</tr>
<tr>
<td>9</td>
<td>CLK</td>
<td>Clock input for display. (Data Input on the falling edge)</td>
</tr>
<tr>
<td>10</td>
<td>VSS</td>
<td>Ground</td>
</tr>
<tr>
<td>11</td>
<td>D00</td>
<td>Display data input for (B).</td>
</tr>
<tr>
<td>12</td>
<td>D01</td>
<td>00h for black display</td>
</tr>
<tr>
<td>13</td>
<td>D02</td>
<td>D00: LSB \quad D05: MSB</td>
</tr>
<tr>
<td>14</td>
<td>D03</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>D04</td>
<td>Driver IC carries out gamma conversion internally.</td>
</tr>
<tr>
<td>16</td>
<td>D05</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>D10</td>
<td>Display data input for (G).</td>
</tr>
<tr>
<td>18</td>
<td>D11</td>
<td>00h for black display</td>
</tr>
<tr>
<td>19</td>
<td>D12</td>
<td>D10: LSB \quad D15: MSB</td>
</tr>
<tr>
<td>20</td>
<td>D13</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>D14</td>
<td>Driver IC carries out gamma conversion internally.</td>
</tr>
<tr>
<td>22</td>
<td>D15</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>D20</td>
<td>Display data input for (R).</td>
</tr>
<tr>
<td>24</td>
<td>D21</td>
<td>00h for black display</td>
</tr>
<tr>
<td>25</td>
<td>D22</td>
<td>D20: LSB \quad D25: MSB</td>
</tr>
<tr>
<td>26</td>
<td>D23</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>D24</td>
<td>Driver IC carries out gamma conversion internally.</td>
</tr>
<tr>
<td>28</td>
<td>D25</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>VSS</td>
<td>Ground</td>
</tr>
<tr>
<td>30</td>
<td>DE</td>
<td>Input data effective signal. (It is effective for the period of &quot;H&quot;)</td>
</tr>
<tr>
<td>31</td>
<td>STBYB</td>
<td>Standby signal (Lo: Standby operation, Hi: Normal operation)</td>
</tr>
<tr>
<td>32</td>
<td>TEST1</td>
<td>Connect to Ground.</td>
</tr>
<tr>
<td>33</td>
<td>XL</td>
<td>X-axis left terminal</td>
</tr>
<tr>
<td>34</td>
<td>YD</td>
<td>Y-axis downside terminal</td>
</tr>
<tr>
<td>35</td>
<td>XR</td>
<td>X-axis right terminal</td>
</tr>
<tr>
<td>36</td>
<td>YU</td>
<td>Y-axis upside terminal</td>
</tr>
<tr>
<td>37</td>
<td>TEST2</td>
<td>Connect to Ground.</td>
</tr>
<tr>
<td>38</td>
<td>BLH</td>
<td>LED drive power source. (Anode side)</td>
</tr>
<tr>
<td>39</td>
<td>BLL</td>
<td>LED drive power source. (Cathode side)</td>
</tr>
</tbody>
</table>

- Recommended connector: HIROSE ELECTRIC FH23 series [FH23-39S-0.3SHW(05)]
- Please make sure to check a consistency between pin assignment in "3.2 Outward Form" and your connector pin assignment when designing your circuit. Inconsistency in input signal assignment may cause a malfunction.
- Since FPC cable has gold plated terminals, gilt finish contact shoe connector is recommended.
5. Block Diagram

- BLH
- BLL
- Dn[5:0]
- VSYNC
- HSYNC
- CLK
- DE
- VDD
- VCCIO
- GND
- TEST
- RESETB
- STBYB
- RGB I/F
- Timing Generator
- Data latch
- Gamma control
- Driver Block
- SPI I/F
- L/S
- Control circuit (register setting)
- EPROM
- Generate circuit of LCD drive level
- TFT-LCD 480*3*640 dots
- Transmissive Tablet
- Up
- Left
- YU
- Right
- XL
- XR
- YD
- Down

ORTUS TECHNOLOGY CO., LTD.
### 6. Absolute Maximum Rating

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>MIN</th>
<th>MAX</th>
<th>Unit</th>
<th>Applicable terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>VDD</td>
<td>Ta=25°C</td>
<td>-0.3</td>
<td>4.6</td>
<td>V</td>
<td>VDD</td>
</tr>
<tr>
<td>Logic interface voltage</td>
<td>VCCIO</td>
<td></td>
<td>-0.3</td>
<td>VCCIO</td>
<td>V</td>
<td>CLK, VSYNC, HSYNC, DE D[05:00], D[15:10], D[25:20], STBYB, RESETB</td>
</tr>
<tr>
<td>Input voltage for logic</td>
<td>VI</td>
<td></td>
<td>-0.3</td>
<td>VCCIO+0.3</td>
<td>V</td>
<td>CLK, VSYNC, HSYNC, D[05:00], D[15:10], D[25:20], STBYB, RESETB</td>
</tr>
<tr>
<td>Forward current</td>
<td>IL</td>
<td>Ta = 25°C</td>
<td>--</td>
<td>35</td>
<td>mA</td>
<td>BLH-BLL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ta = 70°C</td>
<td>--</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>Tstg</td>
<td></td>
<td>-30</td>
<td>80</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage humidity range</td>
<td>Hstg</td>
<td></td>
<td>Non condensing in an environmental moisture at or less than 40°C90%RH.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 7. Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>Unit</th>
<th>Applicable terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>VDD</td>
<td></td>
<td>2.7</td>
<td>3.0</td>
<td>3.6</td>
<td>V</td>
<td>VDD</td>
</tr>
<tr>
<td>Logic interface voltage</td>
<td>VCCIO</td>
<td></td>
<td>1.7</td>
<td>1.8</td>
<td>2.5</td>
<td>V</td>
<td>VCCIO</td>
</tr>
<tr>
<td>Input voltage for logic</td>
<td>VI</td>
<td></td>
<td>0</td>
<td>--</td>
<td>VCCIO</td>
<td>V</td>
<td>CLK, VSYNC, HSYNC, DE D[05:00], D[15:10], D[25:20], STBYB, RESETB</td>
</tr>
<tr>
<td>Operational temperature range</td>
<td>Top</td>
<td>Note1,2</td>
<td>-20</td>
<td>+25</td>
<td>+70</td>
<td>°C</td>
<td>Touch Panel surface temperature</td>
</tr>
<tr>
<td>Operating humidity range</td>
<td>Hop</td>
<td></td>
<td>Ta ≤30°C</td>
<td>20</td>
<td>--</td>
<td>80</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ta &gt;30°C</td>
<td>Non condensing in an environmental moisture at or less than 30°C80%RH.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: This monitor is operatable in this temperature range. With regard to optical characteristics, refer to Item 10."CHARACTERISTICS".

Note 2: Acceptable Forward Current to LED is up to 15mA, when Ta=+70°C.
Do not exceed Allowable Forward Current shown on the chart below.

![Allowable Forward Current Chart](chart.png)
8. Characteristics

8.1 DC Characteristics

8.1.1 Display Module

(Unless otherwise noted, Ta=25°C, VDD=3.0V, VCCIO=1.8V, VSS=0V)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
<th>Applicable terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Signal Voltage</td>
<td>VIH</td>
<td>VCCIO=1.7-2.5V</td>
<td>0.7×VCCIO</td>
<td>--</td>
<td>VCCIO</td>
</tr>
<tr>
<td></td>
<td>VIL</td>
<td></td>
<td>0</td>
<td>--</td>
<td>0.3×VCCIO</td>
</tr>
<tr>
<td>Operating Current</td>
<td>IDD</td>
<td>fCLK=19.8MHz</td>
<td>--</td>
<td>12.0</td>
<td>24.0 mA VDD</td>
</tr>
<tr>
<td></td>
<td>ICCIO</td>
<td>Color bar display</td>
<td>--</td>
<td>66.0</td>
<td>132.0 mA VCCIO</td>
</tr>
<tr>
<td>Stand-by Current</td>
<td>IDDS</td>
<td>Other input with constant voltage</td>
<td>--</td>
<td>5.0</td>
<td>15.0 µA VDD</td>
</tr>
<tr>
<td></td>
<td>ICCIOS</td>
<td>Constant voltage</td>
<td>--</td>
<td>--</td>
<td>1.0 µA VCCIO</td>
</tr>
</tbody>
</table>

8.1.2 Backlight

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
<th>Applicable terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward current</td>
<td>IL25</td>
<td>Ta=25 °C</td>
<td>--</td>
<td>10.0</td>
<td>35.0 mA BLH — BLL</td>
</tr>
<tr>
<td></td>
<td>IL70</td>
<td>Ta=70 °C</td>
<td>--</td>
<td>--</td>
<td>15.0 mA</td>
</tr>
<tr>
<td>Forward voltage</td>
<td>VL</td>
<td>Ta=25 °C, IL=10.0mA</td>
<td>--</td>
<td>18.0</td>
<td>19.8 V</td>
</tr>
<tr>
<td>Estimated Life of LED</td>
<td>LL</td>
<td>Ta=25 °C, IL=10.0mA</td>
<td>-- (50,000)</td>
<td>--</td>
<td>hr</td>
</tr>
</tbody>
</table>

Note: - The lifetime of the LED is defined as a period till the brightness of the LED decreases to the half of its initial value.
- This figure is given as a reference purpose only, and not as a guarantee.
- This figure is estimated for an LED operating alone. As the performance of an LED may differ when assembled as a monitor together with a TFT panel due to different environmental temperature.
- Estimated lifetime could vary on a different temperature and usually higher temperature could reduce the life significantly.
### 8.1.3 Touch Panel

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
<th>Applicable terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity</td>
<td>LE</td>
<td>3mm in surroundings Note is excluded</td>
<td>-1.5</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>RI</td>
<td>DC 25V</td>
<td>20</td>
<td>MΩ</td>
<td>XL,XR – YD,YU</td>
</tr>
<tr>
<td>Terminal resistance</td>
<td>X</td>
<td>200</td>
<td>900</td>
<td>Ω</td>
<td>XL,XR</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>200</td>
<td>900</td>
<td>Ω</td>
<td>YD,YU</td>
</tr>
<tr>
<td>Rated voltage</td>
<td>DC</td>
<td>—</td>
<td>5</td>
<td>V</td>
<td>XL,YD,XR,YU</td>
</tr>
<tr>
<td>on/off chattering</td>
<td>R 0.8mm Polyacetal pen</td>
<td>—</td>
<td>—</td>
<td>10 ms</td>
<td>XL,YD,XR,YU</td>
</tr>
</tbody>
</table>

**Note:** Linearity Measurement: Refer to the APPENDIX of "Reference Method for Measuring Optical Characteristics". Load: 2.45N

#### Mechanical Reliability

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
<th>Unit</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detectable activation force</td>
<td>0.05 – 0.80 N</td>
<td></td>
<td>R0.8mm Polyacetal pen or finger Resistance between X and Y axis must be equal or lower than 2KΩ.</td>
</tr>
<tr>
<td>Keystroke durability</td>
<td>1,000,000</td>
<td>times</td>
<td>key the same part by silicon rubber (Touch Panel Active area only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Rubber tip part: R8mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Load: 2.50N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• speed: 2 times/second</td>
</tr>
</tbody>
</table>

### 8.2 AC Characteristics

(Unless otherwise noted, Ta=25°C, VDD=3.0V, VCCIO=1.8V, VSS=0V)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
<th>Applicable terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK frequency</td>
<td>fCLK</td>
<td>18 – 19.8 – 27 MHz</td>
<td>CLK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLK Low period</td>
<td>tw1L</td>
<td>0.3 × VCCIO or less</td>
<td>10 – – – ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLK High period</td>
<td>tw1H</td>
<td>0.7 × VCCIO or more</td>
<td>10 – – – ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setup time</td>
<td>tsp</td>
<td>10 – – – ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hold time</td>
<td>thd</td>
<td>10 – – – ns</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Switching Waveform Characteristics

CLK

VSYNC

HSYNC

CLK

DE


*:INVALID

ORTUS TECHNOLOGY CO., LTD.

SPECIFICATIONS No. 10TLM074
Issue: Nov. 30, 2010
### 8.3 Input Timing Characteristics

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>Unit</th>
<th>Applicable terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK Frequency</td>
<td>fCLK</td>
<td>18</td>
<td>19.8</td>
<td>27</td>
<td>MHz</td>
<td>CLK</td>
</tr>
<tr>
<td>VSYNC Frequency</td>
<td>fVSYNC</td>
<td>54</td>
<td>60</td>
<td>66</td>
<td>Hz</td>
<td>VSYNC</td>
</tr>
<tr>
<td>VSYNC Cycle</td>
<td>tv</td>
<td>646</td>
<td>650</td>
<td>700</td>
<td>H</td>
<td>VSYNC, HSYNC</td>
</tr>
<tr>
<td>VSYNC Pulse Width</td>
<td>tw4H</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Vertical Back Porch</td>
<td>tvb</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>H</td>
<td>VSYNC, HSYNC, DE,</td>
</tr>
<tr>
<td>Vertical Front Porch</td>
<td>tvf</td>
<td>2</td>
<td>4</td>
<td>50</td>
<td>H</td>
<td>D[05:00], D[15:10], D[25:20]</td>
</tr>
<tr>
<td>Vertical Display Period</td>
<td>tdp</td>
<td>--</td>
<td>640</td>
<td>--</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>HSYNC frequency</td>
<td>fHSYNC</td>
<td>--</td>
<td>39.0</td>
<td>50.0</td>
<td>kHz</td>
<td>HSYNC</td>
</tr>
<tr>
<td>HSYNC Cycle</td>
<td>th</td>
<td>504</td>
<td>508</td>
<td>630</td>
<td>CLK</td>
<td>CLK, HSYNC</td>
</tr>
<tr>
<td>Horizontal Back Porch</td>
<td>thb</td>
<td>5</td>
<td>10</td>
<td>140</td>
<td>CLK</td>
<td>CLK, HSYNC, DE,</td>
</tr>
<tr>
<td>Horizontal Front Porch</td>
<td>thf</td>
<td>5</td>
<td>8</td>
<td>140</td>
<td>CLK</td>
<td>D[05:00], D[15:10], D[25:20]</td>
</tr>
<tr>
<td>Horizontal data start Point</td>
<td>tw5H+thb</td>
<td>19</td>
<td>--</td>
<td>145</td>
<td>CLK</td>
<td></td>
</tr>
<tr>
<td>Horizontal Blanking Period</td>
<td>tw5H+thb+thf</td>
<td>24</td>
<td>--</td>
<td>150</td>
<td>CLK</td>
<td></td>
</tr>
<tr>
<td>DE Pulse Width</td>
<td>tw6H</td>
<td>--</td>
<td>480</td>
<td>--</td>
<td>CLK</td>
<td>CLK, DE</td>
</tr>
<tr>
<td>Horizontal Display Period</td>
<td>thdp</td>
<td>--</td>
<td>480</td>
<td>--</td>
<td>CLK</td>
<td>CLK, DE, D[05:00], D[15:10], D[25:20]</td>
</tr>
</tbody>
</table>

Note: This is recommended spec to get high quality picture on display. It is customer's risk to use out of this frequency.
8.4 Driving Timing Chart

-Vertical Timing

VSYNC

HSYNC

DE


-Y638  Y639  Y640


-Horizontal Timing

HSYNC

CLK

DE


ORTUS TECHNOLOGY CO., LTD.
8.5 Example of Driving Timing Chart (fCLK=19.8MHz)

- Vertical Timing

- Horizontal Timing
9 Power ON/OFF sequence

*1 Please start up VDD and VCCIO at the same time or in order of VDD --> VCCIO.

*2 CLK is used for Gate array CLK on FPC.
   VSYNC is used for Gate array's inside counter.
   It becomes the operation after CLK, VSYNC input.

*3 After the power supply, Please execute RESETB.

*4 There is no regulations at time until each signal is supplied from RESETB “H”
   But meanwhile, It is necessary to fix each signal to "H" or "L".

*5 It is necessary to supply VSYNC and CLK for 15 frames or more from STBYB "L" to
   turning off the power supply without leaving the afterimage.
10. Characteristics

10.1 Optical Characteristics

- **Measurement Condition**
  - Measuring instruments: CS1000 (KONICA MINOLTA), LCD7000 (OTSUKA ELECTRONICS), EZcontrast160D (ELDIM)

- **Driving condition**: Refer to typical rating of the section "Recommended Operating Conditions"
  - Optimized VCOM DC
    - VLCD = \( \frac{|V_{sigpp} + V_{compp}|}{2} \)

- **Backlight**: \( IL = 10.0 \text{mA} \)

- **Measured temperature**: \( Ta = 25^\circ \text{C} \)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>Unit</th>
<th>Note No.</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Response time</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>TON</td>
<td>VLCD=0.32V → 4.37V</td>
<td></td>
<td></td>
<td>40</td>
<td>ms</td>
<td>1</td>
<td>⋆</td>
</tr>
<tr>
<td>Fall time</td>
<td>TOFF</td>
<td>VLCD=4.37V → 0.32V</td>
<td></td>
<td></td>
<td>60</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Contrast ratio</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backlight ON</td>
<td>CR</td>
<td>VLCD=4.73V/0.32V</td>
<td>360</td>
<td>600</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Backlight OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Viewing angle</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>9L</td>
<td>VLCD=4.73V/0.32V</td>
<td>80</td>
<td></td>
<td></td>
<td>deg</td>
<td>3</td>
<td>⋆</td>
</tr>
<tr>
<td>Right</td>
<td>9R</td>
<td>CR ≥ 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up</td>
<td>9U</td>
<td>CR ≥ 10</td>
<td>80</td>
<td></td>
<td></td>
<td>deg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Down</td>
<td>9D</td>
<td>CR ≥ 10</td>
<td>80</td>
<td></td>
<td></td>
<td>deg</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>V-T threshold voltage</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V90</td>
<td></td>
<td></td>
<td>3.8</td>
<td>4.1</td>
<td>4.4</td>
<td>V</td>
<td>4</td>
<td>⋆</td>
</tr>
<tr>
<td>V50</td>
<td></td>
<td></td>
<td>2.9</td>
<td>3.2</td>
<td>3.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V10</td>
<td></td>
<td></td>
<td>2.3</td>
<td>2.6</td>
<td>2.9</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>White V-T Curve</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White V-T Curve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reference</td>
</tr>
<tr>
<td><strong>White Chromaticity</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>VLCD=4.73V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
<td>White chromaticity range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Burn-in</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Center brightness</td>
<td></td>
<td>VLCD=4.73V</td>
<td>125</td>
<td>200</td>
<td></td>
<td>cd/m²</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Brightness distribution</td>
<td></td>
<td>VLCD=4.73V</td>
<td>70</td>
<td></td>
<td></td>
<td>%</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

* Note number 1 to 8: Refer to the APPENDIX of "Reference Method for Measuring Optical Characteristics".

※ Measured in the form of LCD module.
10.2 Temperature Characteristics

< Measurement Condition >
- Measuring instruments: CS1000 (KONICA MINOLTA), LCD7000 (OTSUKA ELECTRONICS)
- Driving condition: Refer to typical rating of the section "Recommended Operating Conditions"
- Optimized VCOMDC
- VLCD = | Vsigpp ± Vcompp | /2
- Backlight: IL=10.0mA

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ta =−10°C</td>
<td>Ta =70°C</td>
</tr>
<tr>
<td>Contrast ratio (CR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise time TON</td>
<td>200 msec or less</td>
<td>30 msec or less</td>
</tr>
<tr>
<td>Fall time TOFF</td>
<td>300 msec or less</td>
<td>50 msec or less</td>
</tr>
<tr>
<td>Display Quality</td>
<td>No noticeable display defect or ununiformity should be observed</td>
<td>Use the criteria for judgment specified in the section 11.</td>
</tr>
</tbody>
</table>

※ Measured in the form of LCD module.
11. Criteria of Judgment

11.1 Defective Display and Screen Quality

Test Condition: Observed TFT-LCD monitor from front during operation with the following conditions
Driving Signal Raster Pattern (RGB in monochrome, white, black)
Signal condition 4.73V, 3.19V, 0.32V (3steps)
Observation distance 30 cm
Illuminance 200 to 350 lx
Backlight IL=10.0mA

<table>
<thead>
<tr>
<th>Defect item</th>
<th>Defect content</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line defect</td>
<td>Black, white or color line, 3 or more neighboring defective dots</td>
<td>Not exists</td>
</tr>
<tr>
<td>Dot defect</td>
<td>Uneven brightness on dot-by-dot base due to defective TFT or CF, or dust is counted as dot defect (brighter dot, darker dot)</td>
<td>Refer to table 1</td>
</tr>
<tr>
<td></td>
<td>High bright dot: Visible through 2% ND filter at V_LCD=0.32V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low bright dot: Visible through 5% ND filter at V_LCD=0.32V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dark dot: Appear dark through white display at V_LCD=3.19V</td>
<td></td>
</tr>
<tr>
<td>Dirt</td>
<td>Point-like uneven brightness (white stain, black stain etc)</td>
<td>Invisible through 1% ND filter</td>
</tr>
<tr>
<td>Foreign particle</td>
<td>Point-like 0.25mm&lt;φ</td>
<td>N=0</td>
</tr>
<tr>
<td></td>
<td>0.20&lt;φ≤0.25mm</td>
<td>N≤2</td>
</tr>
<tr>
<td></td>
<td>φ≤0.20mm</td>
<td>Ignored</td>
</tr>
<tr>
<td>Liner</td>
<td>3.0mm&lt;length and 0.08mm&lt;width</td>
<td>N=0</td>
</tr>
<tr>
<td></td>
<td>length≤3.0mm or width≤0.08mm</td>
<td>ignored</td>
</tr>
<tr>
<td>Flaw</td>
<td>Flaw on the surface of the Touch panel 0.05mm&lt;W</td>
<td>Conform to the criteria of point-like foreign particles.</td>
</tr>
<tr>
<td></td>
<td>0.03&lt;W≤0.05mm</td>
<td>N≤5</td>
</tr>
<tr>
<td></td>
<td>2&lt;L≤5mm</td>
<td>Ignored</td>
</tr>
<tr>
<td></td>
<td>L≤2mm</td>
<td>Ignored</td>
</tr>
<tr>
<td></td>
<td>W≤0.03mm</td>
<td>Ignored</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td>Use boundary sample for judgment when necessary</td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>Area</th>
<th>High bright dot</th>
<th>Low bright dot</th>
<th>Dark dot</th>
<th>Total</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>Permissible distance between same color bright dots (includes neighboring dots): 3 mm or more</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>Permissible distance between same color high bright dots (includes neighboring dots): 5 mm or more</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

<Portrait model>

Division of A and B areas
B area: Active area
Dimensional ratio between A and B areas: 1: 4: 1 (Refer to the left figure)
11.2 Screen and Other Appearance

Testing conditions
Observation distance 30cm
Illuminance 1200~2000 lx

Flaw
Ignore invisible defect when the backlight is on.
Applicable area: Stain Active area only
Bubble
Dust
3.2 "Outward form"

Corner area
Unit:mm

\( a \)
3

\( b \)
3

\( c \)

\( t \): glass thickness

\( t: 0.5 \) is ignored

Others
Unit:mm

\( a \)
5

\( b \)
1

\( c \)

\( t \): glass thickness

Maximum permissible number of chipping off on a side is 5.

Concentric interference fringe
Test method
Observe the Panel surface from 60 degrees angle to the surface under white fluorescent lamp (Triple wavelength lamp)

Interference fringe
(Refer to the section "Appearance Criteria"

Item Criteria
Progressive crack
Maximum permissible number of chipping off on a side is 5.

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks
Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.

Darkness: comply with the boundary sample

Non-film

FPC cable

Remarks

Average diameter \( d \leq 8mm \) is acceptable.
12. Reliability Test

<table>
<thead>
<tr>
<th>Test item</th>
<th>Test condition</th>
<th>number of failures /number of examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>High temperature storage</td>
<td>Ta=80°C 240H</td>
<td>0/3</td>
</tr>
<tr>
<td>Low temperature storage</td>
<td>Ta=-30°C 240H</td>
<td>0/3</td>
</tr>
<tr>
<td>High temperature &amp; high humidity storage</td>
<td>Ta=60°C, RH=90% non condensing 240H</td>
<td>0/3</td>
</tr>
<tr>
<td>High temperature operation</td>
<td>Tp=70°C 240H</td>
<td>0/3</td>
</tr>
<tr>
<td>Low temperature operation</td>
<td>Tp=-20°C 240H</td>
<td>0/3</td>
</tr>
<tr>
<td>High temp &amp; humid operation</td>
<td>Tp=40°C, RH=90% non condensing 240H</td>
<td>0/3</td>
</tr>
<tr>
<td>Thermal shock storage</td>
<td>-30→→80°C(30min/30min) 100 cycles</td>
<td>0/3</td>
</tr>
<tr>
<td>Electrostatic discharge test (Non operation)</td>
<td>Confirms to EIAJ ED-4701/300 C=200pF, R=0Ω, V=±200V Each 3 times of discharge on and power supply and other terminals.</td>
<td>0/3</td>
</tr>
<tr>
<td>Surface discharge test (Non operation)</td>
<td>C=250pF, R=100Ω, V=±12kV Each 5 times of discharge in both polarities on the center of screen with the case and Touch Panel terminal grounded.</td>
<td>0/3</td>
</tr>
<tr>
<td>Vibration test</td>
<td>Total amplitude 1.5mm, f=10~55Hz, X,Y,Z directions for each 2 hours</td>
<td>0/3</td>
</tr>
<tr>
<td>Impact test</td>
<td>Use ORTUS TECHNOLOGY original jig (see next page) and make an impact with peak acceleration of 1000m/s² for 6 msec with half sine-curve at 3 times to each X, Y, Z directions in conformance with JIS 60068-2-27-1995.</td>
<td>0/3</td>
</tr>
<tr>
<td>Packing vibration-proof test</td>
<td>Acceleration of 19.6m/s² with frequency of 10→55→10Hz, X,Y, Zdirection for each 30 minutes</td>
<td>0/1 Packing</td>
</tr>
<tr>
<td>Packing drop test</td>
<td>Drop from 75cm high. 1 time to each 6 surfaces, 3 edges, 1 corner</td>
<td>0/1 Packing</td>
</tr>
</tbody>
</table>

Note: Ta=ambient temperature  Tp=Panel temperature

※ The profile of high temperature/humidity storage and High Temperature/humidity operation
(Pure water of over 10MO-cm shall be used.)

Table 2. Reliability Criteria

Measure the parameters after leaving the monitor at the ordinary temperature for 2 hours or more after the test completion.

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display quality</td>
<td>No visible abnormality shall be seen.</td>
<td>As criteria of &quot;11 Criteria of Judgment&quot;.</td>
</tr>
<tr>
<td>Contrast ratio</td>
<td>40 or more</td>
<td>Backlight ON</td>
</tr>
</tbody>
</table>

ORTUS TECHNOLOGY CO., LTD.
ORTUS TECHNOLOGY Original Jig

- LCD Monitor
- Original jig
- Screw
13. Packing Specifications

Step 1. Each product is to be placed in one of the cut-outs of the tray with the display surface facing upward. (10 products × 1 decker = 10 products per tray)

Step 2. Each tray is to be piled up in same orientation and the trays be in a stack of 10. One empty tray is to be put on the top of stack of 10 trays.

Step 3. 2 packs of moisture absorbers are to be placed on the top tray as shown in the drawing. Put piled trays into a sealing bag. Vacuum and seal the sealing bag with the vacuum sealing machine.

Step 4. The stack of trays in the plastic back is to be inserted into an inner carton.

Step 5. A corrugated board is to be placed on the top and on the bottom of the inner carton. The two corrugated boards and the inner carton is to be inserted into an outer carton.

Step 6. The outer carton needs to sealed with packing tape as shown in the drawing. The model number, quantity of products, and shipping date are to be printed on the outer carton. If necessary, shipping labels or impression markings are to be put on the outer carton.

Step 7. The outer carton is to be inserted into an extra outer carton with same direction. The extra outer carton needs to sealed with packing tape as shown in the drawing.

Step 8. The model number, quantity of products, and shipping date are to be printed on the extra outer carton. If necessary, shipping labels or impression markings are to be put on the extra outer carton.

Remark: The return of packing materials is not required.

<table>
<thead>
<tr>
<th>Packing item name</th>
<th>Specs.,Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAY</td>
<td>A-PET</td>
</tr>
<tr>
<td>INNER CARTON</td>
<td>Corrugated cardboard</td>
</tr>
<tr>
<td>INNER BOARD</td>
<td>Corrugated cardboard</td>
</tr>
<tr>
<td>OUTER CARTON</td>
<td>Corrugated cardboard</td>
</tr>
<tr>
<td>Drier</td>
<td>Moisture absorber</td>
</tr>
<tr>
<td>EXTRA OUTER CARTON</td>
<td>Corrugated cardboard</td>
</tr>
<tr>
<td>SEALING BAG</td>
<td></td>
</tr>
<tr>
<td>Packing tape</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimension of extra outer carton</th>
</tr>
</thead>
<tbody>
<tr>
<td>D : Approx.</td>
</tr>
<tr>
<td>W : Approx.</td>
</tr>
<tr>
<td>H : Approx.</td>
</tr>
</tbody>
</table>

Quantity of products packed in one cart: 100
Gross weight: Approx. 8.4kg
## 14. Handling Instruction
### 14.1 Cautions for Handling LCD panels

<table>
<thead>
<tr>
<th>Caution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Do not make an impact on the LCD panel glass because it may break and you may get injured from it.</td>
</tr>
<tr>
<td>(2) If the glass breaks, do not touch it with bare hands.</td>
</tr>
<tr>
<td>(3) If you get injured, receive adequate first aid and consult a medical doctor.</td>
</tr>
<tr>
<td>(4) Do not let liquid crystal get into your mouth.</td>
</tr>
<tr>
<td>(5) If liquid crystal adheres, rinse it out thoroughly.</td>
</tr>
<tr>
<td>(6) If you scrap this product, follow a disposal standard of industrial waste that is legally valid in the community, country or territory where you reside.</td>
</tr>
<tr>
<td>(7) Do not connect or disconnect this product while its application products is powered on.</td>
</tr>
<tr>
<td>(8) Do not attempt to disassemble or modify this product as it is precision component.</td>
</tr>
<tr>
<td>(9) If a part of soldering part has been exposed, and avoid contact (short-circuit) with a metallic part of the case etc. about FPC of this model, please.</td>
</tr>
<tr>
<td>(10) Since excess current protection circuit is not built in this TFT module, there is the possibility that LCD module or peripheral circuit become feverish and burned in case abnormal operation is generated. We recommend you to add excess current protection circuit to power supply.</td>
</tr>
<tr>
<td>(11) The end part of glass and film of touch panel has conductivity, and avoid contact (short-circuit) with electro conductive case etc.. There is a possibility of setting up a defective touch panel, and insulate it for the case suppression (cushion etc.) if necessary, please.</td>
</tr>
<tr>
<td>(12) The devices on the FPC are damageable to electrostatic discharge, because the terminals of the devices are exposed.</td>
</tr>
</tbody>
</table>

*This mark is used to indicate a precaution or an instruction which, if not correctly observed, may result in bodily injury, or material damages alone.*
14.2 Precautions for Handling

1) Wear finger tips at incoming inspection and for handling the TFT monitors to keep display quality and keep the working area clean. Do not touch the surface of the monitor as it is easily scratched.

2) Wear grounded wrist- straps and use electrostatic neutralization blowers to prevent static charge and discharge when handling the TFT monitors as the LED in this TFT monitors is damageable to electrostatic discharge. Designate an appropriate operating area, and set equipment, tools, and machines properly when handling this product.

3) Avoid strong mechanical shock including knocking, hitting or dropping to the TFT monitors for protecting their glass parts. Do not use the TFT monitors that have been experienced dropping or strong mechanical shock.

4) Do not use or storage the TFT monitors at high temperature and high humidity environment. Particularly, never use or storage the TFT monitors at a location where condensation builds up.

5) Avoid using and storing TFT monitors at a location where they are exposed to direct sunlight or ultraviolet rays to prevent the LCD panels from deterioration by ultraviolet rays.

6) Do not stain or damage the contacts of the FPC cable. FPC cable needs to be inserted until it can reach to the end of connector slot. During insertion, make sure to keep the cable in a horizontal position to avoid an oblique insertion. Otherwise, it may cause poor contact or deteriorate reliability of the FPC cable.

7) The FPC cable is a design very weak to the bend and the pull as it is fixed with the tape. Do not bend or pull the FPC cable or carry the TFT monitor by holding the FPC cable.

8) Peel off the protective film on the TFT monitors during mounting process. Refer to the section 14.5 on how to peel off the protective film. We are not responsible for electrostatic discharge failures or other defects occur when peeling off the protective film.

14.3 Precautions for Operation

1) Since this TFT monitors are not equipped with light shielding for the driver IC, do not expose the driver IC to strong lights during operation as it may cause functional failures.

2) When turning off the power, turn off the input signal before or at the same timing of switching off the power.

3) Do not plug in or out the FPC cable while power supply is switch on. Plug the FPC cable in and out while power supply is switched off.

4) Do not operate the TFT monitors in the strong magnetic field. It may break the TFT monitors.

5) Do not display a fixed image on the screen for a long time. Use a screen-saver or other measures to avoid a fixed image displayed on the screen for a long time. Otherwise, it may cause burn-in image on the screen due the characteristics of liquid crystal.
14.4 Storage Condition for Shipping Cartons

Storage environment
- Temperature: 0 to 40 °C
- Humidity: 60%RH or less
  No-condensing occurs under low temperature with high humidity condition.
- Atmosphere: No poisonous gas that can erode electronic components and/or wiring materials should be detected.
- Time period: 3 months
- Unpacking: To prevent damages caused by static electricity, anti-static precautionary measures (e.g. earthing, anti-static mat) should be implemented.
- Maximum piling up: 7 cartons

14.5 Precautions for Peeling off the Protective film

The followings work environment and work method are recommended to prevent the TFT monitors from static damage or adhesion of dust when peeling off the protective films.

A) Work Environment
a) Humidity: 50 to 70 %RH, Temperature: 15 to 27 °C
b) Operators should wear conductive shoes, conductive clothes, conductive finger tips and grounded wrist-straps. Anti-static treatment should be implemented to work area's floor.
c) Use a room shielded against outside dust with sticky floor mat laid at the entrance to eliminate dirt.

B) Work Method
The following procedures should taken to prevent the driver ICs from charging and discharging.

a) Use an electrostatic neutralization blower to blow air on the TFT monitors to its lower left when the FPC cable facing to the leftside.
   Optimize direction of the blowing air and the distance between the TFT monitors and the electrostatic neutralization blower.
b) Put an adhesive tape (Scotch tape, etc) at the lower left corner area of the protective film to prevent scratch on surface of TFT monitors.
c) Peel off the adhesive tape slowly (spending more than 2 secs to complete) by pulling it to opposite direction.

Direction of blowing air
(Optimize air direction and the distance)
APPENDIX

Reference Method for Measuring Optical Characteristics and Performance

1. Measurement Condition (Backlight ON)
Measuring instruments: CS1000 (KONICA MINOLTA), LCD7000 (OTSUKA ELECTRONICS), EZcontrast160D (ELDIM)
Driving condition: Refer to typical rating of the section "Recommended Operating Conditions"
Measured temperature: 25\(^\circ\)C unless specified
Measurement system: See the chart below. The luminance meter is placed on the normal line of measurement system.
Measurement point: At the center of the screen unless otherwise specified

Dark box at constant temperature

![Diagram of measurement setup]

Measurement is made after 30 minutes of lighting of the backlight.

Measurement point: At the center point of the screen
Brightness distribution: 9 points shown in the following drawing.

!<Portrait model>!

Dimensional ratio of active area

Backlight IL=10.0mA
Measurement Condition (Contrast ratio Backlight OFF only)

Measuring instruments: LCD7000 (OTSUKA ELECTRONICS), Ring Light (40,000 lx, φ58)

Driving condition: Refer to typical rating of the section "Recommended Operating Conditions"

Measured temperature: 25°C unless specified

Measurement system: See the chart below.

Measurement point: At the center of the screen.
### 2. Test Method

<table>
<thead>
<tr>
<th>Notice</th>
<th>Item</th>
<th>Test method</th>
<th>Measuring instrument</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Response time</td>
<td>Measure output signal waveform by the luminance meter when raster of window pattern is changed from white to black and from black to white.</td>
<td>LCD7000</td>
<td>Black display VLCD=0.32V White display VLCD=4.73V TON Rise time TOFF Fall time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>White brightness</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Black White Black</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100% 90% 10% 0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Black brightness</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TON TOFF</td>
<td></td>
</tr>
</tbody>
</table>
| 2 | Contrast ratio | Measure maximum luminance Y1(VLCD=4.73V) and minimum luminance Y2(VLCD=0.32V) at the center of the screen by displaying raster or window pattern. Then calculate the ratio between these two values. Contrast ratio = Y1/Y2 Diameter of measuring point: 8mm

Contrast ratio = Y1/Y2
Diameter of measuring point: 8mm | CS1000 LCD7000 | Backlight ON Backlight OFF |
<p>| 3 | Viewing angle Horizontal Vertical | Move the luminance meter from right to left and up and down and determine the angles where contrast ratio is 10. | EZcontrast160D |
| 4 | V-T threshold value | Change VLCD by 0.1V step and plot the points where the luminance is 90% as V90, 50% as V50 and 10% as V10 of maximum luminance. | LCD7000 |
| 5 | White chromaticity | Measure chromaticity coordinates x and y of CIE1931 colorimetric system at VLCD = 4.73V Color matching factor: 2°view | CS1000 |</p>
<table>
<thead>
<tr>
<th>Notice</th>
<th>Item</th>
<th>Test method</th>
<th>Measuring instrument</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Burn-in</td>
<td>Visually check burn-in image on the screen after 2 hours of &quot;window display&quot; (VLCD=4.73V/0.32V).</td>
<td></td>
<td>At optimized VCOMDC</td>
</tr>
<tr>
<td>7</td>
<td>Center brightness</td>
<td>Measure the brightness at the center of the screen.</td>
<td>CS1000</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Brightness distribution</td>
<td>(Brightness distribution) = 100 x B/A % A : max. brightness of the 9 points</td>
<td>CS1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B : min. brightness of the 9 points</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Linearity Measurement of Touch Panel

\[
LE(\%) = \frac{\Delta V}{(V_{in} - V_{out})} \times 100
\]

\[
LE_{\text{max}}(\%) = \frac{\Delta V_{\text{max}}}{(V_{in} - V_{out})} \times 100
\]