

Doc. Number :

Tentative Specification

Preliminary Specification

Approval Specification

MODEL NO.: G150XGE SUFFIX: L04

Customer:	
APPROVED BY	SIGNATURE
<u>Name / Title</u> Note	
Please return 1 copy for signature and comments.	your confirmation with your

Approved By	Checked By	Prepared By

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	 4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT	 6
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT	 8
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE	 10
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 COLOR DATA INPUT ASSIGNMENT	 11
 6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE 6.3 THE INPUT DATA FORMAT 6.4 SCANNING DIRECTION 	 13
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 16
8. RELIABILITY TEST CRITERIA	 20
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD	 21
10. DEFINITION OF LABELS	 22
11. PRECAUTIONS 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 11.2 SAFETY PRECAUTIONS	 23
12. MECHANICAL CHARACTERISTICS	 24

21 February 2011

REVISION HISTORY

Version	Date	Section	Description
Ver. 0.0	Feb 21, 2011	All	Tentative Specification was first issued.

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G150XGE-L04 is a 15.0" TFT Liquid Crystal Display module with LED Backlight units and 20 pins LVDS interface. This module supports 1024 x 768 XGA mode and can display 16.2M/262k colors.

The PSWG is to establish a set of displays with standard mechanical dimensions and select electrical interface requirements for an industry standard 15.0" XGA LCD panel and the LED driving device for Backlight is built in PCBA.

1.2 FEATURES

- XGA (1024 x 768 pixels) resolution
- DE (Data Enable) only mode
- LVDS Interface with 1pixel/clock
- PSWG (Panel Standardization Working Group)
- Wide operating temperature.
- RoHS compliance

1.3 APPLICATION

- -TFT LCD Monitor
- Factory Application
- Amusement
- Vehicle

Item Specification Unit Note 304.1 (H) x 228.1(V) (15.0" diagonal) Active Area mm (1) Bezel Opening Area 307.4(H) x 231.3(V) mm Driver Element a-Si TFT active matrix --Pixel Number 1024 x R.G.B x 768 pixel -Pixel Pitch 0.297(H) x 0.297(W) mm Pixel Arrangement **RGB** vertical Stripe _ **Display Colors** 16,194,277 / 262,144 color _ Display Mode Normally White Surface Treatment Hard Coating (3H), Anti-Glare (Haze 25) Module Power Consumption 10 (Black pattern) W Typical

1.4 GENERAL SPECIFICATIONS

Version 0.0

1.5 MECHANICAL SPECIFICATIONS

lt	em	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	326.0	326.5	327.0	mm	(1)
Module Size	Vertical(V)	253.0	253.5	254.0	mm	(1)
	Depth(D)	-	11.5	12.0	mm	(1)(2)
We	eight	-	890	-	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) The depth is without connector.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Unit	
Operating Ambient Temperature	T _{OP}	-30	+80	°C	
Storage Temperature	T _{ST}	-40	+85	°C	

Note (1) Temperature and relative humidity range is shown in the figure below.

(2) 90 %RH Max. (Ta \leq 40 $^{\circ}$ C).

(3) Wet-bulb temperature should be 39 $^{\circ}$ C Max. (Ta > 40 $^{\circ}$ C).

(4) No condensation.

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

ltom	Item Symbol		Value		Note	
item	Symbol	/mbol Min. Max. Unit		Onit	Note	
Power Supply Voltage	VCC	-0.3	4	V	(1)	

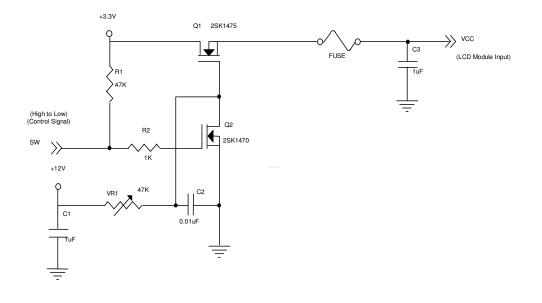
2.2.2 BACKLIGHT UNIT

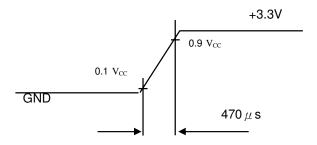
Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Unit	Note
Converter Voltage	Vi	-0.3	18	V	(1) , (2)
Enable Voltage	EN		5.5	V	
Backlight Adjust	ADJ		5.5	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to 3.2 for further information).

3. ELECTRICAL CHARACTERISTICS


3.1 TFT LCD MODULE(1)


奇美電子

Baramatar	Parameter			Value	Unit	Note	
Falameter	Parameter			Тур.	Max.	Unit	NOLE
Power Supply Voltage		V _{CC}	3.0	3.3	3.6	V	-
Ripple Voltage		V _{RP}	-	-	100	mVp-p	
Rush Current		I _{RUSH}	-	-	2.0	Α	(2)
Power Supply Current	White	lcc	-	500		mA	(3)a
Fower Supply Current	Black	100	-	750		mA	(3)b
Differential Input Voltage for	"H" Level	VIH	-	-	100	mV	-
LVDS Receiver Threshold "L" Level		V _{IL}	-100	-	-	mV	-
Terminating Resistor		R _T		100	-	Ohm	-

Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:

Varaian	$\land \land$	
Version	U.U	

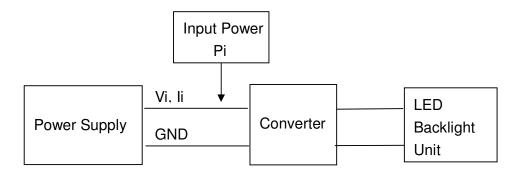
Note (3) The specified power supply current is under the conditions at V_{DD} =3.3V, Ta = 25 ± 2 °C, DC Current and f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

a. White Pattern

Active Area

b. Black Pattern

Active Area

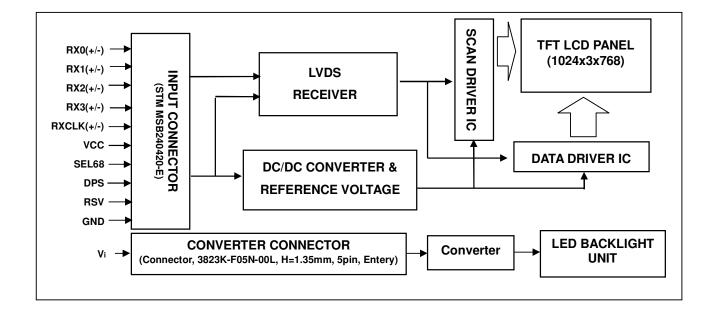

3.2 BACKLIGHT UNIT

Ta = 25 ± 2 ºC

Parameter		Symbol		Value			Note
1 alameter		Symbol	Min.	Тур.	Max.	Unit	NOLE
Converter Power Supply	Voltage	Vi	10.8	12.0	13.2	V	
Converter Power Supply	Current	l _i	_	0.625	0.75	Α	@ Vi = 12V
Converter i ower cappiy	ourient	"		0.020	0.70	~	(Duty 100%)
LED Power Consumption		P_{LED}	_	7.5	9	w	@ Vi = 12V
				7.0	5	**	(Duty 100%)
EN Control Level	Backlight on		2.0	3.3	5.0	V	
	Backlight off	_	0		0.8	V	
PWM Control Level	PWM High Level	_	2.0	3.3	5.0	V	
	PWM Low Level	_	0	-	0.15	V	
PWM Control Duty Ratio		-	10	-	100	%	
PWM Control Frequency		f _{PWM}	190	200	210	Hz	
LED Life Time		LL	50,000	-	-	Hrs	(2)

Note (1) LED current is measured by utilizing a high frequency current meter as shown below:

Note (2) The lifetime of LED is defined as the time when it continues to operate under the conditions at $Ta = 25 \pm 2$ °C and Duty 100% until the brightness becomes $\leq 50\%$ of its original value. Operating LED under high temperature environment will reduce life time and lead to color shift.



4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin No.	Symbol	Function	Polarity	Note
1	VCC	Power Supply +3.3V(typical)	· · · · · · · · · · · · · · · · · · ·	
2	VCC	Power Supply +3.3V(typical)		
3	GND	Ground		
4	NC	No Connection		
5	RX0-	LVDS Differential Data Input	Negative	
6	RX0+	LVDS Differential Data Input	Positive	
7	GND	Ground		
8	RX1-	LVDS Differential Data Input	Negative	
9	RX1+	LVDS Differential Data Input	Positive	
10	GND	Ground		
11	RX2-	LVDS Differential Data Input	Negative	
12	RX2+	LVDS Differential Data Input	Positive	
13	GND	Ground		
14	RXCLK-	LVDS Differential Data Input	Negative	
15	RXCLK+	LVDS Differential Data Input	Positive	
16	GND	Ground		
17	RX3-	LVDS Differential Data Input	Negative	
18	RX3+	LVDS Differential Data Input	Positive	
19	GND	Ground		
20	SEL68	LVDS 6/8 bit select function control,		Note (3)
		High → 6bit Input Mode		
		Low or NC \rightarrow 8bit Input Mode		

Note (1) Connector Part No.: STM MSB240420-E, Entery 3804K-F20N-10L or equivalent.

Note (2) User's connector Part No.: STM P240420, Entery H204K-D20N-02B or equivalent.

Note (3) "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connection".

5.2 BACKLIGHT UNIT(Converter connector pin)

Pin	Symbol	Description	Remark
1	Vi	Converter input voltage	12V
2	V _{GND}	Converter ground	Ground
3	EN	Enable pin	3.3V
4	ADJ	Backlight Adjust	PWM Dimming (Hi: 3.3V _{DC} , Lo: 0V _{DC})
5	NC	Not Connect	

Note (1) Connector Part No.: 3808K-F05N-03L (Entery) or equivalent.

Note (2) User's connector Part No.: H208K-P05N-02B (Entery) or equivalent.

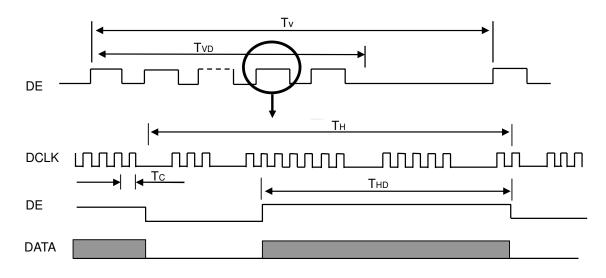
5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

Color			Data Signal																						
					Re					Green				Blue											
		R7	R6	R5	R4	R3	R2	R1	R0	R7	R6	G5	G4	G3	G2		G0	R7	R6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
L .	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	- ,	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(252)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
neu	Red(252)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(252)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(252)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(252)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(252)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(252)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Diue	Blue(252)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(252)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

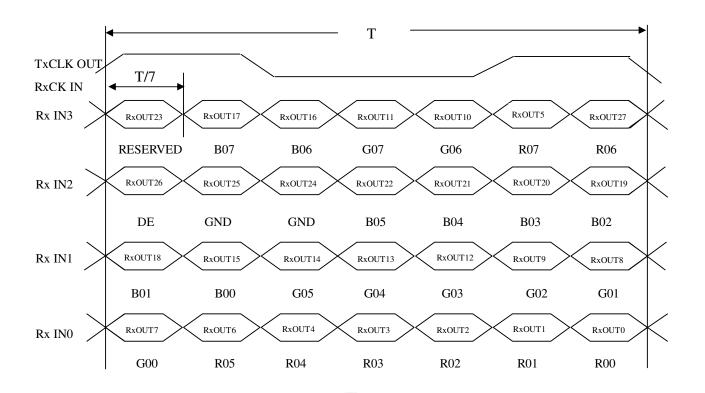
6. INTERFACE TIMING

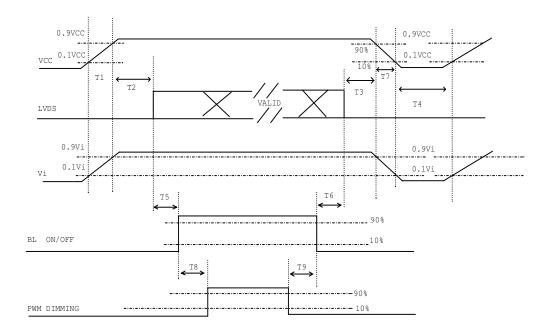

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Pixel Clock	1/T _C	-	65	80	MHz	-
	Vertical Total Time	Τv	780	806	1200	Т _н	-
DE	Vertical Address Time	T _{VD}	768	768	768	Т _н	-
	Horizontal Total Time	Т _Н	1140	1344	1600	Tc	-
	Horizontal Address Time	T _{HD}	1024	1024	1024	Tc	-

Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.


INPUT SIGNAL TIMING DIAGRAM


TIMING DIAGRAM of LVDS

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Power ON/OFF sequence

- Note (1) Please avoid floating state of interface signal at invalid period.
- Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.
- Note (3) The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.

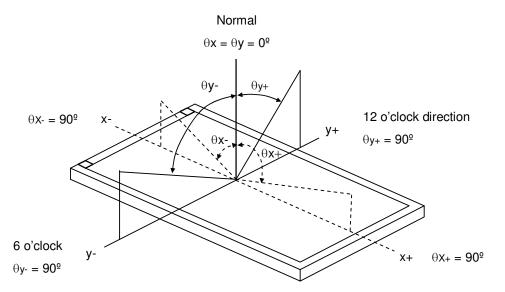
Parameter		Units		
Farameter	Min	Тур	Max	Units
T1	0.5	-	10	ms
T2	0	-	50	ms
Т3	0	-	50	ms
T4	500	-	-	ms
T5	200	-	-	ms
Т6	200	-	-	ms
Τ7	5	-	300	ms
Т8	10	-	-	ms
Т9	10	-	-	ms

Version 0.0

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

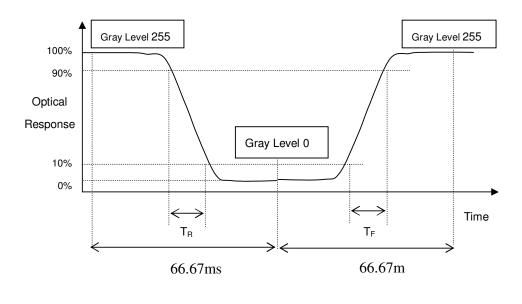
Item	Symbol	Value	Unit				
Ambient Temperature	Ta	25±2	°C				
Ambient Humidity	На	50±10	%RH				
Supply Voltage	V _{CC}	3.3	V				
Input Signal	According to typical v	According to typical value in "3. ELECTRICAL CHARACTERISTICS"					
Converter Voltage	Vi	12	V				
Converter Duty		100%					


7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Ded	Rx			0.613			
	Red	Ry			0.344			
	Green	Gx			0.302			
Color	Green	Gy		Тур -	0.567	Тур+		(1) (6)
Chromaticity	Blue	Bx	θ _x =0°, θ _Y =0°	0.05	0.144	0.05	-	(1), (6)
	Diue	Ву	CS-1000T		0.102			
	White	Wx			0.313			
		Wy			0.329			
Center Luminance of White		L _c		300	400		cd/m ²	(4), (6)
Contrast Ratio		CR		450	700		-	(2), (6)
Response Time		T _R	θ _x =0°, θ _Y =0°	-	8	13	me	(3)
nesponse nine		T _F	$\Theta_{\rm X}=0^{-1}, \Theta_{\rm Y}=0^{-1}$	-	17	22	ms	
White Variation	White Variation		θ _x =0°, θ _Y =0°	-	1.25	1.4	-	(6), (7)
Cross Talk		СТ	USB2000			5.0	%	(5), (6)
	Horizontal	θ_{x} +		70	80	-		
Viewing Angle	nonzonial	θ _x -	$CR\geq10$	70	80	-	Deg.	(1),(6),
viewing Angle	Vertical	θ_{Y} +	USB2000	60	70	-	Dey.	(8)
	vertical	θγ-		60	70	-		

Note (1) Definition of Viewing Angle ($\theta x, \theta y$):


Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

- Contrast Ratio (CR) = L255 / L0
- L255: Luminance of gray level 255
- L 0: Luminance of gray level 0
- CR = CR(1)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (5).

Note (3) Definition of Response Time (T_R, T_F) :

Version 0.0	
-------------	--

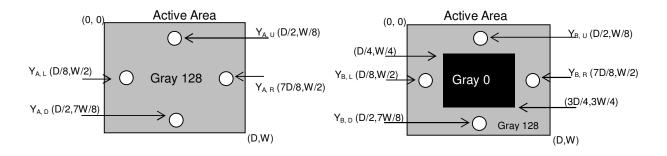
21 February 2011

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point

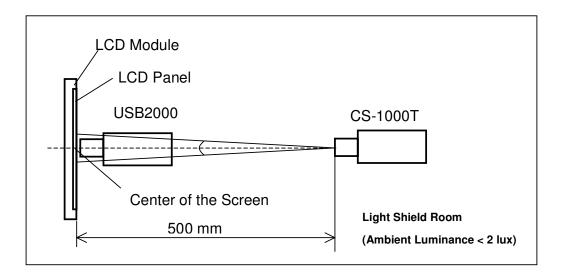
 $L_{\rm C} = L(5)$

L (x) is corresponding to the luminance of the point X at Figure in Note (7).


Note (5) Definition of Cross Talk (CT):

 $CT = |Y_B - Y_A| / Y_A \times 100$ (%)

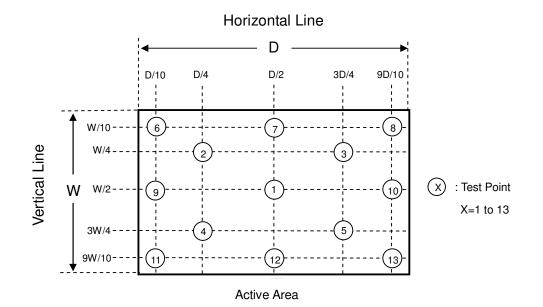
Where:


 Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

 Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.


Note (7) Definition of luminance measured points:

Measure the luminance of gray level 255 at point L(1)

Definition of White Variation (δ W):

Measure the luminance of gray level 255 at 9 points

$$\delta W = \frac{Maximum [L (1), L (6), L (7), L (8), L (9), L (10), L (11), L (12), L (13)]}{Minimum [L (1), L (6), L (7), L (8), L (9), L (10), L (11), L (12), L (13)]}$$

8. RELIABILITY TEST CRITERIA

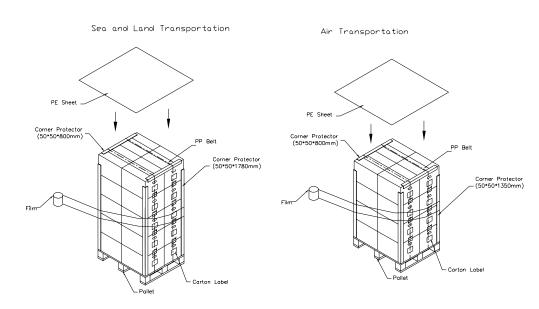
Test Item	Test Condition	Note
High Temperature Storage Test	85ºC, 240 hours	
Low Temperature Storage Test	-40ºC, 240 hours	
Thermal Shock Storage Test	-30ºC, 0.5hour ↔80°C, 0.5hour; 100cycles, 1hour/cycle	
High Temperature Operation Test	80ºC, 240 hours	(1), (2)
Low Temperature Operation Test	-30ºC, 240 hours	
High Temperature & High Humidity Operation Test	60ºC, RH 90%, 240hours	
	150pF, 330 Ω, 1sec/cycle	
ESD Test (Operation)	Condition 1 : panel contact, ±8KV	(2)
	Condition 2 : panel non-contact ±15KV	
Shock (Non-Operating)	50G, 11ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$ direction	(2), (3)
Vibration (Non-Operating)	1.5G, 10 ~ 500 Hz sine wave, 1.5mm Max, 30min/cycle, 1 cycles each X, Y, Z direction	(2), (3)

Note (1) No condensation of water.

Note (2) No display malfunction.

Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.


Note (4) Temperature of panel display surface area should be 85 °C Max.

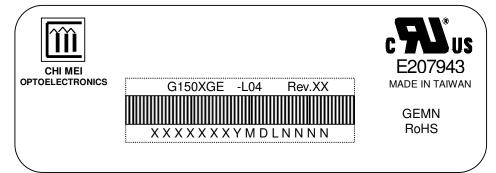


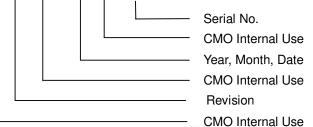
9. PACKAGING

9.1 PACKING SPECIFICATIONS

9.2 PACKING Method

Version	0.0	
101011	0.0	


21 February 2011


10. DEFINITION OF LABELS

10.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: G150XGE -L04
- (b) Revision: Rev. XX, for example: A1, ...C1, C2 ...etc.
- (c) Serial ID: X X X X X X X Y M D X N N N

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2001~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

(b) Revision Code: cover all the change

(c) Serial No.: Manufacturing sequence of product

11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.
- (11) Do not keep same pattern in a long period of time. It may cause image sticking on LCD.

11.2 SAFETY PRECAUTIONS

- (1) Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.