\square Preliminary Specification
Approval Specification

MODEL NO．：V320HJ2

 SUFFIX：PE2
Customer：

APPROVED BY
SIGNATURE

Name／Title
Note

Please return 1 copy for your confirmation with your signature and comments．
Refer to＂V320HJ2－PE2＂Incoming Inspection Spec

Approved By	Checked By	Prepared By
Chao－Chun Chung	Perry Lin	Ching－Hung Lin

CONTENTS

CONTENTS 2
REVISION HISTORY 4
1．GENERAL DESCRIPTION 5
1．1 OVERVIEW 5
1．2 FEATURES 5
1．3 MECHANICAL SPECIFICATIONS． 6
2．ABSOLUTE MAXIMUM RATINGS 7
2．1 ABSOLUTE RATINGS OF ENVIRONMENT 7
2．2 PACKAGE STORAGE 8
2．3 ELECTRICAL ABSOLUTE RATINGS 8
2．3．1 TFT LCD MODULE． 8
3．ELECTRICAL CHARACTERISTICS 9
3．1 TFT LCD MODULE 9
4．BLOCK DIAGRAM OF INTERFACE 11
4．1 TFT LCD MODULE 11
5．INPUT TERMINAL PIN ASSIGNMENT 12
5．1 TFT LCD MODULE INPUT． 12
5．2 COLOR DATA INPUT ASSIGNMENT 15
5．3 FLICKER（Vcom）ADJUSTMENT 17
6．INTERFACE TIMING 18
6．1 INPUT SIGNAL TIMING SPECIFICATIONS 18
6．2 POWER ON／OFF SEQUENCE 21
7．OPTICAL CHARACTERISTICS． 22
7．1 TEST CONDITIONS 22
7．2 OPTICAL SPECIFICATIONS 23
8．PRECAUTIONS 26
8．1 ASSEMBLY AND HANDLING PRECAUTIONS 26
Version 2.0
奇美電子
8．2 SAFETY PRECAUTIONS 27
9．DEFINITION OF LABELS． 28
9．1 OPEN CELL LABEL 28
10．PACKAGING 30
10．1 PACKAGING SPECIFICATIONS 30
10．2 PACKAGING METHOD 30
11．MECHANICAL CHARACTERISTIC． 32

REVISION HISTORY

Version	Date	Page（New）	Section	Description
Ver．2．0	Nov．22，2012	All	All	Approval specification was first issued．

1．GENERAL DESCRIPTION

1．1 OVERVIEW

V320HJ2－PE2 is a 31．5＂TFT Liquid Crystal Display product with driver ICs and 2ch－LVDS interface．This product supports 1920×1080 Full HDTV format and can display true 16．7M colors（8－bit／color）．The backlight unit is not built in．

1．2 FEATURES

CHARACTERISTICS ITEMS	SPECIFICATIONS
Screen Diagonal［in］	31.51
Pixels［lines］	1920×1080
Active Area［mm］	$698.4(\mathrm{H}) \times 392.85$（V）（31．51＂diagonal）
Sub－Pixel Pitch［mm］	0.12125 （H）x 0.36375 （V）
Pixel Arrangement	RGB vertical stripe
Weight［g］	868
Physical Size［mm］	716．1（H）X445．25（V）\times 1．35／2．8（Panel／Connector）（D）Typ．
Display Mode	Transmissive mode／Normallly black
Contrast Ratio	Typ．5000：1 （Typical value measure at CMI＇s module）
Glass thickness（Array／CF）［mm］	0.5 ／ 0.5
Viewing Angle（CR＞20）	$+88 /-88(\mathrm{H}),+88 /-88(\mathrm{~V}) \text { Typ. }(\mathrm{CR} \geqq 20)$ （Typical value measure at CMI＇s module）
Color Chromaticity	$\begin{aligned} & R=(0.659,0.324) \\ & G=(0.275,0.591) \\ & B=(0.134,0.117) \\ & W=(0.302,0.356) \\ & \text { Standard light source "C" } \end{aligned}$
Cell Transparency［\％］	5.0\%Тур.. （Typical value measured at CMI＇s module）
Polarizer Surface Treatment	Anti－Glare coating（Haze＜3．5\％）
Rotation Function	Unachievable
Display Orientation	Signal input with＂CMI＂

Back Side
C Board

Front Side

1．3 MECHANICAL SPECIFICATIONS

Item	Min．	Typ．	Max．	Unit	Note
Weight		868	g	-	
I／F connector mounting position	The mounting inclination of the connector makes the screen center within $\pm 0.5 \mathrm{~mm}$ as the horizontal．		(2)		

Note（1）Please refer to the attached drawings for more information of front and back outline dimensions．
Note（2）Connector mounting position

2．ABSOLUTE MAXIMUM RATINGS

2．1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Value		Unit	Note
		Max．			（1） With CMI Module
Storage Temperature	T_{ST}	-20	+60	+50	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	T_{OP}	0	$(1),(2)$ With CMI Module		

Note（1）Temperature and relative humidity range is shown in the figure below．
（a） $90 \% \mathrm{RH}$ Max．$\left(\mathrm{Ta} \leqq 40^{\circ} \mathrm{C}\right)$ ．
（b）Wet－bulb temperature should be $39^{\circ} \mathrm{C}$ Max．$\left(\mathrm{Ta}>40^{\circ} \mathrm{C}\right)$ ．
（c）No condensation．
Note（2）The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to $65^{\circ} \mathrm{C}$ with LCD module alone in a temperature controlled chamber． Thermal management should be considered in final product design to prevent the surface temperature of display area from being over $65^{\circ} \mathrm{C}$ ．The range of operating temperature may degrade in case of improper thermal management in final product design．

2．2 PACKAGE STORAGE

Recommended Storage Condition：With shipping package．
Recommended Storage temperature range： $25 \pm 5{ }^{\circ} \mathrm{C}$
Recommended Storage humidity range： $50 \pm 10 \%$ RH
Recommended Shelf life：a month

2．3 ELECTRICAL ABSOLUTE RATINGS

2．3．1 TFT LCD MODULE

Item	Symbol	Value		Unit	Note
		Min．	Max．		
Power Supply Voltage	VCC	-0.3	13.5	V	V
Logic Input Voltage		-0.3	3.6		

Note（1）Permanent damage to the device may occur if maximum values are exceeded．Function operation should be restricted to the conditions described under Normal Operating Conditions．

3．ELECTRICAL CHARACTERISTICS

3．1 TFT LCD MODULE

$\left(\mathrm{Ta}=25 \pm 2^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Value			Unit	Note	
		Min．	Typ．	Max．				
Power Supply Voltage			V_{CC}	10.8	12	13.2	V	（1）
Rush Current		$\mathrm{I}_{\text {RUSH }}$	－	－	2.652	A	（2）	
Power consumption	White Pattern	$\mathrm{P}_{\text {t }}$	－	4.464	5.304	W	（3）	
	Black Pattern	P_{T}	－	4.32	5.148			
	Horizontal Stripe	P_{T}	－	6.912	8.268			
Power Supply Current	White Pattern	P_{T}	－	0.372	0.442	A		
	Black Pattern	P_{T}	－	0.36	0.429			
	Horizontal Stripe	P_{t}	－	0.576	0.689			
LVDS interface	Differential Input High Threshold Voltage	$\mathrm{V}_{\text {LVTH }}$	＋100	－	＋300	mV	（4）	
	Differential Input Low Threshold Voltage	$\mathrm{V}_{\text {LVTL }}$	－300	－	－100	mV		
	Common Input Voltage	V_{CM}	1.0	1.2	1.4	V		
	Differential input voltage （single－end）	$\mid V_{\text {ID }}$｜	200	－	600	mV		
	Terminating Resistor	R_{T}	－	100	－	ohm		
CMOS interface	Input High Threshold Voltage	$\mathrm{V}_{\text {IH }}$	2.7	－	3.3	V		
	Input Low Threshold Voltage	$\mathrm{V}_{\text {IL }}$	0	－	0.7			

Note（1）The module should be always operated within the above ranges．The ripple voltage should be controlled under 10\％of Vcc（Typ．）

Note（2）Measurement condition：

Note（3）The specified power consumption and power supply current is under the conditions at $\mathrm{Vcc}=12 \mathrm{~V}, \mathrm{Ta}=25 \pm 2^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{V}}=$ 60 Hz ，whereas a power dissipation check pattern below is displayed．

Active Area

a．White Pattern
b．Black Pattern

Active Area
c．Horizontal Stripe

Note（4）The LVDS input characteristics are as follows：

4．BLOCK DIAGRAM OF INTERFACE
4．1 TFT LCD MODULE

5．INPUT TERMINAL PIN ASSIGNMENT

5．1 TFT LCD MODULE INPUT

CNF1 Connector Part No．：JAE Taiwan FI－RE51S－HF－CM－R1500

Pin	Name	Description	Note
1	VCC	＋12V power supply	
2	VCC	＋12V power supply	
3	VCC	＋12V power supply	
4	VCC	＋12V power supply	
5	VCC	＋12V power supply	
6	N．C．	No Connection	（2）
7	GND	Ground	
8	GND	Ground	
9	GND	Ground	
10	ORX0－	Odd pixel Negative LVDS differential data input．Channel 0	（1）
11	ORX0＋	Odd pixel Positive LVDS differential data input．Channel 0	
12	ORX1－	Odd pixel Negative LVDS differential data input．Channel 1	
13	ORX1＋	Odd pixel Positive LVDS differential data input．Channel 1	
14	ORX2－	Odd pixel Negative LVDS differential data input．Channel 2	
15	ORX2＋	Odd pixel Positive LVDS differential data input．Channel 2	
16	GND	Ground	
17	OCLK－	Odd pixel Negative LVDS differential clock input	
18	OCLK＋	Odd pixel Positive LVDS differential clock input．	
19	GND	Ground	
20	ORX3－	Odd pixel Negative LVDS differential data input．Channel 3	（1）
21	ORX3＋	Odd pixel Positive LVDS differential data input．Channel 3	
22	N．C．	No Connection	（2）
23	N．C．	No Connection	
24	GND	Ground	
25	ERX0－	Even pixel Negative LVDS differential data input．Channel 0	（1）
26	ERX0＋	Even pixel Positive LVDS differential data input．Channel 0	
27	ERX1－	Even pixel Negative LVDS differential data input．Channel 1	
28	ERX1＋	Even pixel Positive LVDS differential data input．Channel 1	
29	ERX2－	Even pixel Negative LVDS differential data input．Channel 2	
30	ERX2＋	Even pixel Positive LVDS differential data input．Channel 2	
31	GND	Ground	
32	ECLK－	Even pixel Negative LVDS differential clock input．	

33	ECLK＋	Even pixel Positive LVDS differential clock input．	
34	GND	Ground	Even pixel Negative LVDS differential data input．Channel 3
35	ERX3－	Even pixel Positive LVDS differential data input．Channel 3	(1)
36	ERX3＋	No Connection	(2)
37	N．C．	No Connection	
38	N．C．	Ground	
39	GND	I2C Bus of TCON	
40	SCL＿IN	No Connection	(4)
41	N．C．	No Connection	
42	N．C．	Bus Switch Enable	
43	TCON＿I2C＿EN	I2C Bus of TCON	(3)
44	SDA＿IN	LVDS data format selection	
45	SELLVDS	No Connection	
46	N．C．	No Connection	
47	N．C．	No Connection	
48	N．C．	No Connection	
49	N．C．	No Connection	
50	N．C．	N．C．	
51	Nonen		

Note（1）LVDS connector pin order defined as follows

Pin 1
Pin 51
LVDS connector
Note（2）Reserved for internal use．Please leave it open．
Note（3）Open or connect to GND：JEIDA Format，Connect to＋3．3V：VESA Format．

SELLVDS	Mode
H（default）	VESA
L／Open	JEIDA

Note（4）Interface optional pin has internal scheme as following diagram．Customer should keep the interface voltage level requirement which including Panel board loading as below

Note（5）LVDS connector mating dimension range request is $0.93 \mathrm{~mm} \sim 1.0 \mathrm{~mm}$ as below．

Note（6）The screw hole which is distant from the connector is merged with Ground

5．2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color（red，green and blue）is based on the 10－bit gray scale data input for the color．The higher the binary input，the brighter the color．The table below provides the assignment of the color versus data input．

	Blue（255）	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note（1）0：Low Level Voltage，1：High Level Voltage

CHIMEI INNOLUX

5.3 FLICKER (Vcom) ADJUSTMENT

(1) Adjustment Pattern:

Column-inversion pattern was shown as below. If customer need below pattern, please directly contact with Account FAE.

(2) Adjustment method: (Digital V-com)

Programmable memory IC is used for Digital V-com adjustment in this model. CMI provide Auto Vcom tools to adjust Digital V-com.The detail connection and setting instruction, please directly contact with Account FAE or refer CMI Auto V-com adjustment OI. Below items is suggested to be ready before Digital V-com adjustment in customer LCM line.
a. USB Sensor Board.
b. Programmable software
c. Document: Auto V-com adjustment suggestion OI..

6．INTERFACE TIMING

6．1 INPUT SIGNAL TIMING SPECIFICATIONS

$$
\left(\mathrm{Ta}=25 \pm 2^{\circ} \mathrm{C}\right)
$$

The input signal timing specifications are shown as the following table and timing diagram．

Signal	Item	Symbol	Min．	Typ．	Max．	Unit	Note
LVDS Receiver Clock	Frequency	$\begin{gathered} \mathrm{F}_{\mathrm{clkin}} \\ (=1 / \mathrm{TC}) \end{gathered}$	60	74.25	80	MHz	
	Input cycle to cycle jitter	$\mathrm{Trcl}_{\text {re }}$	－	－	200	ps	（3）
	Spread spectrum modulation range	Fclkin＿mod	$\mathrm{F}_{\mathrm{clkin}}$－2\％	－	$\mathrm{F}_{\text {clkin }}+2 \%$	MHz	（4）
	Spread spectrum modulation frequency	$\mathrm{F}_{\text {SSM }}$			200	KHz	
LVDS Receiver Data	Receiver Skew Margin	$\mathrm{T}_{\text {RSKM }}$	－400	－	400	ps	（5）
Vertical Active Display Term	Frame Rate	$\mathrm{F}_{\mathrm{r} 5}$	47	50	53	Hz	
		$\mathrm{F}_{\mathrm{r} 6}$	57	60	62.5	Hz	
	Total	Tv	1090	1125	1480	Th	$\mathrm{Tv}=\mathrm{Tvd}+\mathrm{Tvb}$
	Display	Tvd	1080	1080	1080	Th	－
	Blank	Tvb	10	45	400	Th	－
Horizontal Active Display Term	Total	Th	1030	1100	1325	Tc	Th＝Thd + Thb
	Display	Thd	960	960	960	Tc	－
	Blank	Thb	70	140	365	Tc	－

Note（1）Since the module is operated in DE only mode，Hsync and Vsync input signals should be set to low logic level． Otherwise，this module would operate abnormally．

Note（2）Please make sure the range of pixel clock has follow the below equation：
Fclkin（max）$\geqq \mathrm{Fr}_{6} \times \mathrm{Tv} X \mathrm{Th}$
Fr5 $X \mathrm{Tv} X \mathrm{Th} \geqq \operatorname{Fclkin}_{\text {（min }}$ CHIMEI INNOLUX

INPUT SIGNAL TIMING DIAGRAM

Note（3）The input clock cycle－to－cycle jitter is defined as below figures． $\mathrm{Trcl}=\left|\mathrm{T}_{1}-\mathrm{T}\right|$

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and the receiver skew margin is defined and shown in following figure..

LVDS RECEIVER INTERFACE TIMING DIAGRAM

6．2 POWER ON／OFF SEQUENCE

$\left(\mathrm{Ta}=25 \pm 2^{\circ} \mathrm{C}\right)$
To prevent a latch－up or DC operation of LCD module，the power on／off sequence should be as the diagram below．

Note（1）The supply voltage of the external system for the module input should follow the definition of Vcc．
Note（2）Apply the lamp voltage within the LCD operation range．When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off，the display may momentarily become abnormal screen．

Note（3）In case of Vcc is in off level，please keep the level of input signals on the low or high impedance．If $\mathrm{T} 2<0$ ，that maybe cause electrical overstress failure．

Note（4）T4 should be measured after the module has been fully discharged between power off and on period．
Note（5）Interface signal shall not be kept at high impedance when the power is on．
Note（6）Vcc must decay smoothly when power－off．

7．OPTICAL CHARACTERISTICS

7．1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25 ± 2	${ }^{\circ} \mathrm{C}$
Ambient Humidity	Ha	50 ± 10	\％RH
Supply Voltage	VCC	12.0 ± 1.2	V
Input Signal	According to typical value in＂3．ELECTRICAL CHARACTERISTICS＂		
Vertical Frame Rate	Fr	60	Hz

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring in a windless room．

PRODUCT SPECIFICATION

7．2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown as below．The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7．1．

Item		Symbol	Condition	Min．	Typ．	Max．	Unit	Note
Color Chromaticity	Red	Rcx	$\theta_{\mathrm{x}}=0^{\circ}, \theta_{\mathrm{Y}}=0^{\circ}$ Viewing Angle at Normal Direction Standard light source "C"	－	0.659	－	－	（0），（1）
		Rcy			0.324		－	
	Green	Gcx			0.275		－	
		Gcy			0.591		－	
	Blue	Bcx			0.134		－	
		Bcy			0.117		－	
	White	Wcx			0.302		－	
		Wcy			0.356		－	
Center Transmittance		T\％	$\theta_{\mathrm{x}}=0^{\circ}, \theta_{\mathrm{Y}}=0^{\circ}$ with CMI module＠60Hz	－	5.0	－	\％	（1），（6）
Contrast Ratio		CR		3500	5000	－	－	（1），（3）
Response Time（VA）		Gray to gray	$\theta_{X}=0^{\circ}, \theta_{Y}=0^{\circ}$ with CMI Module＠60Hz	－	8.5	17		（1），（4）
White Variation		$\delta \mathrm{W}$	$\theta_{X}=0^{\circ}, \theta_{Y}=0^{\circ}$ with CMI module	－	－	1.3	－	（1），（5）
Viewing Angle	orizontal	$\theta_{x}+$	$C R \geq 20$（VA） with CMI module	80	88		Deg．	（1），（2）
		$\theta^{-}{ }^{-}$		80	88			
	Vertical	$\theta_{\mathrm{Y}}{ }^{+}$		80	88			
		$\theta_{Y}{ }^{-}$		80	88			

Note（0）Light source is the standard light source＂C＂which is defined by CIE and driving voltage are based on suitable gamma voltages．The calculating method is as following：

1．Measure Module＇s W，R，G，B spectrum and BLU＇s spectrum．Which BLU（for V320BJ6－LE1）is supplied by CMI．
2．Calculate cell＇s spectrum．
3．Calculate cell＇s chromaticity by using the spectrum of standard light source＂ C ＂．

Note（1）Light source is the BLU which supplied by CMI and driving voltage are based on suitable gamma voltages．

Note（2）Definition of Viewing Angle（ $\theta \mathrm{x}, \theta \mathrm{y}$ ）：
Viewing angles are measured by Autronic Conoscope Cono－80（ or Eldim EZ－Contrast 160R ）

Note（3）Definition of Contrast Ratio（CR）：

The contrast ratio can be calculated by the following expression．
Contrast Ratio $(\mathrm{CR})=\frac{\text { Surface Luminance of L255 }}{\text { Surface Luminance of LO }}$
L255：Luminance of gray level 255
L 0：Luminance of gray level 0
$C R=C R(5)$ ，where $C R(X)$ is corresponding to the Contrast Ratio of the point X at the figure in Note（6）．

Note（4）Definition of Gray－to－Gray Switching Time：

The driving signal means the signal of gray level gray level $0,31,63,95,127,159,191,223$ and 255.
Gray to gray average time means the average switching time of gray level $0,31,63,95,127,159,191,223$ and 255 to each other．

Note（5）Definition of Transmittance（T\％）：
Measure the luminance of gray level 1023 of LCD module and the luminance of BLU at 5 points．
Transmittance $(T \%)=\frac{\text { average }[L(1), L(2), L(3), L(4), L(5)] \text { of LCD module }}{\text { average }[L(1), L(2), L(3), L(4), L(5)] \text { of BLU }} \times 100 \%$
The 5 point is corresponding of the point X at the figure in Note（6）．

Note（6）Definition of Transmittance Variation（ $\delta \mathrm{T}$ ）：
Measure the transmittance at 5 points．
The transmittance of each point can be calculated by the following expression．
$T(X)=$ L255（X）of LCD module／Luminance（ X ）of BLU．
L255：Luminance of gray level 255
Transmittance Variation $(\delta \mathrm{T})=\frac{\text { Maximume }[\mathrm{T}(1), \mathrm{T}(2), \mathrm{T}(3), \mathrm{T}(4), \mathrm{T}(5)]}{\operatorname{Minimum}[\mathrm{T}(1), \mathrm{T}(2), \mathrm{T}(3), \mathrm{T}(4), \mathrm{T}(5)]}$
Horizontal Line

8．PRECAUTIONS

8．1 ASSEMBLY AND HANDLING PRECAUTIONS

［1］Do not apply improper or unbalanced force such as bending or twisting to open cells during assembly．
［2］It is recommended to assemble or to install an open cell into a customer＇s product in clean working areas． The dust and oil may cause electrical short to an open cell or worsen polarizers on an open cell．
［3］Do not apply pressure or impulse to an open cell to prevent the damage．
［4］Always follow the correct power－on sequence when an open cell is assembled and turned on．This can prevent the damage and latch－up of the CMOS LSI chips．
［5］Do not design sharp－pointed structure／parting line／tooling gate on the plastic part of a COF（Chip on film），because the burr will scrape the COF．
［6］If COF would be bended in assemble process，do not place IC on the bending corner．
［7］The gap between COF IC and any structure of BLU must be bigger than 2 mm ．This can prevent the damage of COF IC．
［8］The bezel opening must have no burr and be smooth to prevent the surface of an open cell scraped．
［9］The bezel of a module or a TV set can not contact with force on the surface of an open cell．It might cause light leakage or scrape．
［10］In the case of no FFC or FPC attached with open cells，customers can refer the FFC／FPC drawing and buy them by self．
［11］It is important to keep enough clearance between customers＇front bezel／backlight and an open cell． Without enough clearance，the unexpected force during module assembly procedure may damage an open cell．
［12］Do not plug in or unplug an I／F（interface）connector while an assembled open cell is in operation．
［13］Use a soft dry cloth without chemicals for cleaning，because the surface of the polarizer is very soft and easily scratched．
［14］Moisture can easily penetrate into an open cell and may cause the damage during operation．
［15］When storing open cells as spares for a long time，the following precaution is necessary．
［ 15．1］Do not leave open cells in high temperature and high humidity for a long time．It is highly recommended to store open cells in the temperature range from 0 to $35^{\circ} \mathrm{C}$ at normal humidity without condensation．
［ 15．2 ］Open cells shall be stored in dark place．Do not store open cells in direct sunlight or fluorescent light environment．
［16］When ambient temperature is lower than $10^{\circ} \mathrm{C}$ ，the display quality might be reduced．
［17］Unpacking（Cartons／Tray plates）in order to prevent open cells broken：
［ 17．1］Moving tray plates by one operator may cause tray plates bent which may induce open cells broken． Two operators carry one carton with their two hands．Do not throw cartons／tray plates，avoid any impact on cartons／tray plates，and put down \＆pile cartons／tray plates gently．
［17．2］A tray plate handled with unbalanced force may cause an open cell damaged．Trays should be completely put on a flat platform．
［ 17．3］To prevent open cells broken，tray plates should be moved one by one from a plastic bag．
［ 17．4］Please follow the packing design instruction，such as the maximum number of tray stacking to prevent the deformation of tray plates which may cause open cells broken．
［17．5］To prevent an open cell broken or a COF damaged on a tray，please follow the instructions below：
［17．5．1］Do not peel a polarizer protection film of an open cell off on a tray
［17．5．2］Do not install FFC or LVDS cables of an open cell on a tray
［17．5．3］Do not press the surface of an open cell on a tray．
［17．5．4］Do not pull X－board when an open cell placed on a tray．
［ 18 ］Unpacking（Hard Box）in order to prevent open cells broken：
［ 18．1］Moving hard boxes by one operator may cause hard boxes fell down and open cells broken by abnormal methods．Two operators carry one hard box with their two hands．Do handle hard boxes carefully，such as avoiding impact，putting down，and piling up gently．
［ 18．2 ］To prevent hard boxes sliding from carts and falling down，hard boxes should be placed on a surface with resistance．
［ 18．3］To prevent an open cell broken or a COF damaged in a hard box，please follow the instructions below：
［18．3．1］Do not peel a polarizer protection film of an open cell off in a hard box．
［18．3．2］Do not install FFC or LVDS cables of an open cell in a hard box．
［18．3．3］Do not press the surface of an open cell in a hard box．
［18．3．4］Do not pull X－board when an open cell placed in a hard box．
［ 19］Handling－In order to prevent open cells，COFs，and components damaged：
［ 19．1］The forced displacement between open cells and X－board may cause a COF damaged．Use a fixture tool for handling an open cell to avoid X－board vibrating and interfering with other components on a PCBA \＆a COF．
［ 19．2］To prevent open cells and COFs damaged by taking out from hard boxes，using vacuum jigs to take out open cells horizontally is recommended．
［ 19．3］Improper installation procedure may cause COFs of an open cell over bent which causes damages． As installing an open cell on a backlight or a test jig，place the bottom side of the open cell first on the backlight or the test jig and make sure no interference before fitting the open cell into the backlight／the test jig．
［ 19．4］Handle open cells one by one．
［20］Avoid any metal or conductive material to contact PCB components，because it could cause electrical damage or defect．

8．2 SAFETY PRECAUTIONS

［1］If the liquid crystal material leaks from the open cell，it should be kept away from the eyes or mouth．In case of contact with hands，skin or clothes，it has to be washed away thoroughly with soap．
［2］After the end of life，open cells are not harmful in case of normal operation and storage．

9．DEFINITION OF LABELS

9．1 OPEN CELL LABEL

The barcode nameplate is pasted on each open cell as illustration for CMI internal control．

Figure．9－1 Serial No．Label on SPWB and Cell
Model Name ：V320HJ2－PE2
Revision ：Rev．XX，for example：A0，A1．．．B1，B2．．．or C1，C2 ．．．etc．
Serial ID ：XXXXXXXYMD LNNNN

Serial ID includes the information as below：
Manufactured Date：
Year： $2010=0,2011=1,2012=2 \ldots$ ．etc．
Month：1～9，A～C，for Jan．～Dec．
Day：1～9，A～Y，for 1st to 31st，exclude I ，O，and U．
Revision Code：Cover all the change
Serial No．：Manufacturing sequence of product

Figure．9－2 Panel ID Label on Cell
Panel ID Label includes the information as below：
Panel ID：TXXXXXXXXXXX

10．PACKAGING

10．1 PACKAGING SPECIFICATIONS

（1） 13 LCD TV Panels／ 1 Box
（2）Box dimensions： 810 （L） X 555 （W） X 92 （H）mm
（3）Weight：approximately 17 Kg （ 13 panels per box）
（4） 338 LCD TV Panels／ 1 Group

10．2 PACKAGING METHOD

Packing method（Hard Box）is shown in following figures．

Sea / Land Transportation (40ft HQ Container)

26 Box / Pallet +26 Box / Pallet

Sea / Land Transportation

26 Box / Pallet +18 Box / Pallet

Air Transportation

26 Box / Pallet

11．MECHANICAL CHARACTERISTIC

