

Product Approval Specification

MODEL NO.: LQ035NC111

Customer :	
Approved by :	
Note :	

紀錄	工作	審核	角色	投票
2009-11-17	Approval by Dept. Mgr.(Section anager)	朱砡瑩	Section Manager (PM)	Accept
2009-11-17	Approval by Dept. Mgr.(PM)	黄任遠	Department Manager (PM)	Accept

CONTENTS

No.	ITEM	PAGE
0	RECORD OF REVISION	3
1	SUMMARY	4
2	FEATURES	4
3	GENERAL SPECIFICATIONS	4
4	ABSOLUTE MAXIMUM RATINGS	4
5	ELECTRICAL CHARACTERISTICS	5
6	DC CHARATERISTICS	6
7	AC CHARACTERISTICS	7
8	OPTICAL CHARATERISTIC	17
9	INTERFACE	20
10	BLOCK DIAGRAM	25
11	QUALITY ASSURANCE	26
12	OUTLINE DRAWING	27
13	PACKAGE INFORMATION	28
14	PRECAUTIONS	29

RECORD OF REVISIONS

Revision	Date	Page	Description
A	2008/2/12	all	New Creation
В	2008/6/13	18	LCM PIN Definition
2.0	2009/08/13	all	Change format form 奇信 to 奇美
2.1	2009/11/17	27	變更OUTLINE DRAWING
		28	變更PACKAGE INFORMATION

1. SUMMARY

This technical specification applies to 3.45" color TFT-LCD panel. The 3.45" color TFT-LCD panel is designed for GPS, camcorder, digital camera application and other electronic products which require high quality flat panel displays. This module follows RoHS.

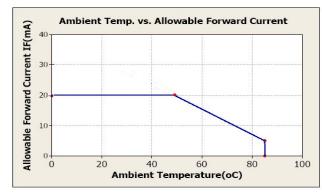
2. FEATURES

High Resolution: 230,400 Dots (320 RGB x 240). LQ035NC111 is a transmissive type color active matrix liquid crystal display (LCD) which uses amorphous thin film transistor (TFT) as switching devices. This product is composed of a TFT LCD panel, driver ICs, FPC, backlight unit.

3. GENERAL SPECIFICATIONS

Paramete	er	Specifications	Unit
Screen size		3.45(Diagonal)	Inch
Display Format		320 RGB x 240	Dot
Active area		70.08(H) x 52.56(V)	mm
Dot size		73x 219	um
Pixel Configuration		RGB-Stripe	
Outline dimension		76.9(W) x 63.9(H) x 3.26(D)	mm
Display Mode		Normally white/Transmissive	
Surface Treatment		Haze 20%	
Display Garmut		NTSC 60%	
Input Interface		Digital 24-bit RGB/SERIAL RGB/CCIR656/CCIR601	
Weight		31	g
View Angle direction		6 o'clock	
	Operation	-20~70	°C
Temperature Range	Storage	-30~80	°C

4. ABSOLUTE MAXIMUM RATINGS

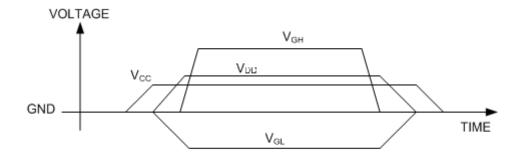

2.

Item	Symbol	Condition	Min.	Max.	Unit	Remark
Power Voltage	DVDD,AVDD	GND=0	-0.3	5.0	V	
Input Signal Voltage	V _{in}	GND=0	-0.3	VDD+0.3	V	NOTE
Logic Output Voltage	V _{OUT}	GND=0	-0.3	VDD+0.3	V	NOTE

Note: Device is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above

1. Temp. \leq 60°C, 90% RH MAX.

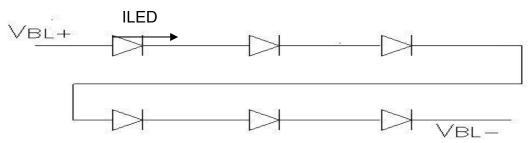
Temp. $>~60^\circ$ C. Absolute humiditv shall be less than 90% RH at 60°C



5. ELECTRICAL CHARACTERISTICS

5.1. Operating conditions:

Parameter	Symbol	Rating			Unit	Condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Power Voltage	VCC	3.0	3.3	3.6	V	
Digital Operation Current	lcc	-	8.6	-	mA	
Gate On Power	VGH	-	13.9	-	V	
Gate Off Power	VGL	-	-13.6	-	V	
Vcom High Voltage	VcomH	-	3.9	-	V	Note1
Vcom low Voltage	VcomL	-	-1.2	-	V	Note1
Vcom level max	VcomA	-	-	6	V	


Note1. VcomH& VcomL : Adjust the color with gamma data. Vp-p should be higher then 4V.(Option 5V) Note: Please power on following the sequence VCC \rightarrow VDD

5.2 LED driving conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED current		-	20	-	mA	
Power Consumption		-	400	420	mW	
LED voltage	VBL+	18.6	19.8	21	V	Note 1
LED Life Time	-	10,000	-	-	Hr	Note 2,3

Note 1 : There are 1 Groups LED

Note 2 : Ta = 25℃

Note 3 : Brightess to be decreased to 50% of the initial value

6. DC CHARATERISTICS

Parameter	Symbol		Rating			Condition
Farameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Low level input voltage	V _{IL}	0	-	0.3 VCC	V	
Hight level input voltage	V _{IH}	0.7 VCC	-	VCC	V	

7. AC CHARATERISTICS

Digital Parallal RGB interface

Signal	Item	Symbol	Min	Тур	Max	Unit
	Frequency	Tosc	-	156	-	ns
Dclk	High Time	Tch	-	78	-	ns
	Low Time	Tcl	-	78	-	ns
Data	Setup Time	Tsu	12	-	-	ns
Dala	Hold Time	Thd	12	-	-	ns
	Period	TH	-	408	-	Tosc
	Pulse Width	THS	5	30	-	Tosc
Hsync	Back-Porch	Thb		38		Tosc
Tioyno	Display Period	TEP	-	320	-	Tosc
	Hsync-den time	THE	36	68	88	Tsoc
	Front-Porch	Thf	-	20	-	Tosc
	Period	Τv	-	262	-	TH
	Pulse Width	Tvs	1	3	5	TH
Vsync	Back-Porch	Tvb	-	15	-	ТН
	Display Period	Tvd	-	240	-	TH
	Front-Porch	Tvf	2	4	-	ТН

Note: 1. Thp + Thb = 68, the user is make up by yourself. 2. Tv = Tvs + Tvb + Tvd + Tvf , the user is make up by yourself. 3.When SYNC mode is used,1st data start from 68th Dclk after Hsync falling

Digital Serial RGB interface

Signal	Item	Symbol	Min	Тур	Max	Unit
	Frequency	Tosc	-	52	-	ns
Dclk	High Time	Tch	-	78	-	ns
	Low Time	Tcl	-	78	-	ns
Data	Setup Time	Tsu	12	-	-	ns
Data	Hold Time	Thd	12	-	-	ns
	Period	ТН	-	1224	-	Tosc
	Pulse Width	THS	5	90	-	Tosc
Hsync	Back-Porch	Thb		114		Tosc
TISYIC	Display Period	TEP	-	960	-	Tosc
	Hsync-den time	THE	108	204	264	
	Front-Porch	Thf	-	60	-	Tosc
	Period	Τv	-	262	-	ТН
	Pulse Width	Tvs	1	3	5	TH
Vsync	Back-Porch	Tvb	-	15	-	ТН
	Display Period	Tvd	-	240	-	TH
	Front-Porch	Tvf	2	4	-	ТН

Note: 1. Thp + Thb = 204, the user is make up by yourself. 2. Tv = Tvs + Tvb + Tvd + Tvf , the user is make up by yourself. 3. When SYNC mode is used,1st data start from 204th Dclk after Hsync falling

CCIR601/656 Interface

Signal	Item	Symbol	Min	Тур	Max	Unit
	Frequency	Tosc	-	37	-	ns
Dclk	High Time	Tch	-	78	-	ns
	Low Time	Tcl	-	78	-	ns
Data	Setup Time	Tsu	12	-	-	ns
Data	Hold Time	Thd	12	-	-	ns

7.1 Waveform

SEL[2:0]	= 100, NTSC/PAL
HSYNC	
HSYNC	
DOTCLK	
RR[7:0]	Invalid Data
	←
SELI2:01	= 101, NTSC
3сц2.0ј	- 101, N13C
HSYNC	
DOTCLK	
RR[7:0]	Invalid Data
SEL[2:0]	= 101, PAL
HSYNC	
DOTCLK	
RR[7:0]	Invalid Data Cr1 V 11 V Cb1 V 12 Cr360 V 7719 V Cb360 V 7720 V Invalid Data
SEL[2:0]	= 110, NTSC
HSYNC	
Harne	
DOTCLK	
RR[7:0]	Invalid Data
	t _{HBP} = HBP[6:0]*4+STH[1:0]
SEL[2:0]	= 110, PAL
	← H _{oyde} = 1728
HSYNC	
DOTCLK	
RR[7:0]	Invalid Data
	◄t _{HBP} = HBP[6:0]*4+STH[1:0]►
SEL[2:0]	= 111, NTSC/PAL
HSYNC	
DOTCLK	
RR[7:0]	Invalid Data
	<t<sub>HBP = HBP[6:0]*4+STH[1:0]►</t<sub>

Figure 1 CCIR601 Horizontal Timing

SEL[2	2:0] = 100 ~ 111, NTSC
	EVEN Field ODD Field
VSYNC	
HSYNC	1 2 3 4 5 6 7 22 23 24 25 261 262 263
RR[7:0]	→ t _{VBP} = VBP[6:0] → DL1 DL2 DL3 DL239 DL240
VSYNC	ODD Field EVEN Field
HSYNC	
RR[7:0]	►
SEL[2	2:0] = 100 ~ 111, PAL, PALM=0
	EVEN ODD Field
VSYNC	
HSYNC	1 2 3 4 5 6 7 26 27 28 29 305 306 307
RR[7:0]	← t _{vBP} = VBP[6:0] → DL1 DL2 DL3 DL279 DL280
	i
VSYNC	ODDEVEN Field
HSYNC	
DDI7-01	
RR[7:0]	
SEL[2	2:0] = 100 ~ 111, PAL, PALM=1
	EVENODD Field
VSYNC	
HSYNC	
	1 2 3 4 5 6 7 22 23 24 25 309 310 311
RR[7:0]	← t _{VBP} = VBP[6:0] → DL1 DL2 DL3 DL287 DL288
	ODD EVEN Field
VSYNC	Field
HSYNC	313 315 316 317 318 319 335 336 337 338 622 623 624
RR[7:0]	

SEL[2:0] = 01	
orderol - or	
DOTCLK	
RR[7:0]	X FF X 00 X 00 X EAV X Invalid Data X FF X 00 X 00 X SAV X Cb1 X Y1 X Cr1 X Y2 Cb320 X Y630 X CG20 X Y640 X FF X 00 X 00 X EAV X Invalid Data
	م المربعة المرب
	←
SEL[2:0] = 01	1, NTSC
DOTCLK	
DOTCER	
RR[7:0]	V FF 00 V0 V Cb360 V779 VC60 V770 VFF 00 V Invalid Data
	←
	+ H _{opds} = 1716
SEL[2:0] = 01	1, PAL
DOTCLK	
RR[7:0]	V FF 00 V 00 V Ch360 V7719 VC360 V7720 V FF V Invalid Data
· · · · · · · · · · · · · · · · · · ·	
	←
	· · · · · · · · · · · · · · · · · · ·
	++H _{orth} = 1728
L	

Figure 2 CCIR656 Horizontal Timing

SEL[2:0] = 010, 011, NTSC (F=0 à ODD field, F=1 à EVEN fie	ld)			
н					
V F		-t _{VBP} = VBP[6:0]			
RR[7:0]	DL238DL239DL240			L1 DL2 DL3 DL4	
н					
V F					
RR[7:0]	<mark>е</mark> DL239DL240	t _{vBP} = VBP[6:0]		L1 DL2 DL3 DL4	
SEL[2:0] = 010, 011, PAL, PALM=0 (F=0 à ODD field, F=1 à E	VEN field)			
н	618 619 620 621 622 623 624 625 1 2 3				4 25 26 27 28 29 30
V F					
RR[7:0]	DL278 DL280		t _{VBP} = VBP[6:0]		DL1 DL2 DL3 DL4
н	305 306 307 308 309 310 311 312 313 314 315				36] 337] 338 339 340 341 342
V F					
RR[7:0]	D1279D1280		-t _{VBP} = VBP[6:0] + 1		DL1 DL2 DL3
SEL[2:0] = 010, 011, PAL, PALM=1 (F=0 à ODD field, F=1 à E	VEN field)			
н					
v					4 25 26 27 28 29 30
F					
RR[7:0]	DL283 DL284 DL285 DL286 DL287 DL288	t _{VBP} = VBF	[6:0]	DL1 D	L2 DL3 DL4 DL5 DL6 DL7 DL8
н	1 1				36] 337] 338] 339] 340] 341] 342]
V F					
F RR[7:0]		$t_{VBP} = VB$	P[6:0] + 1		L1 DL2 DL3 DL4 DL5 DL6 DL7

Figure 2 CCIR656 Vertical Timing

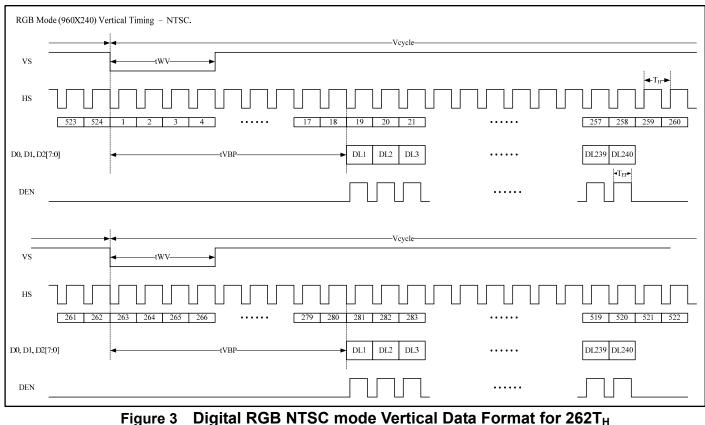
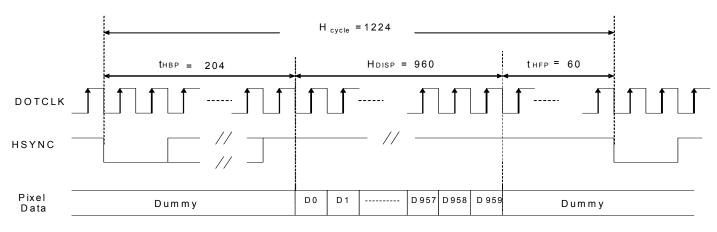
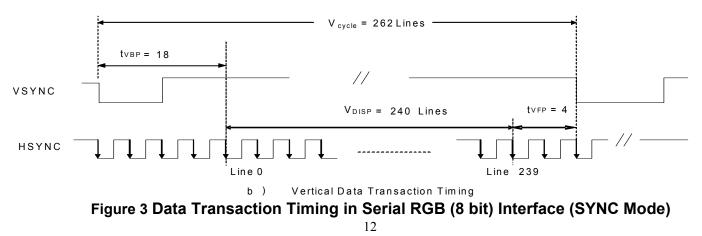




Figure 3 Digital RGB NTSC mode Vertical Data Format for 262T_H

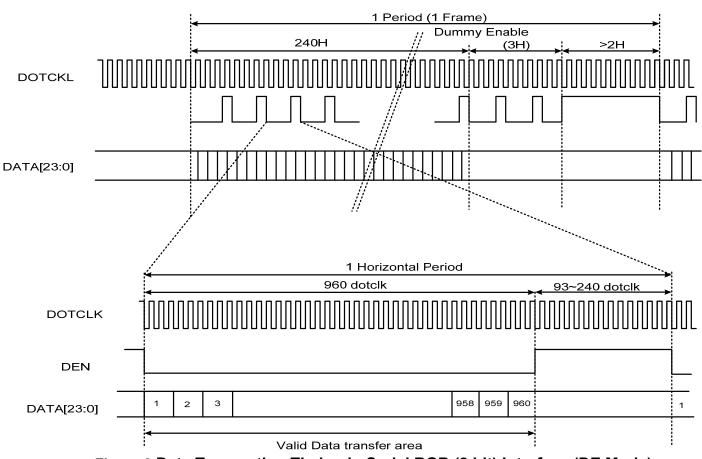
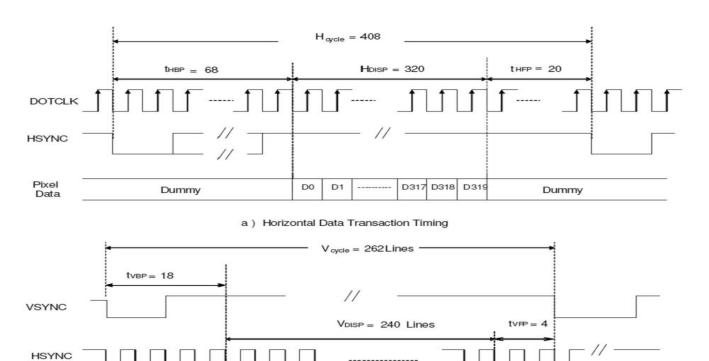
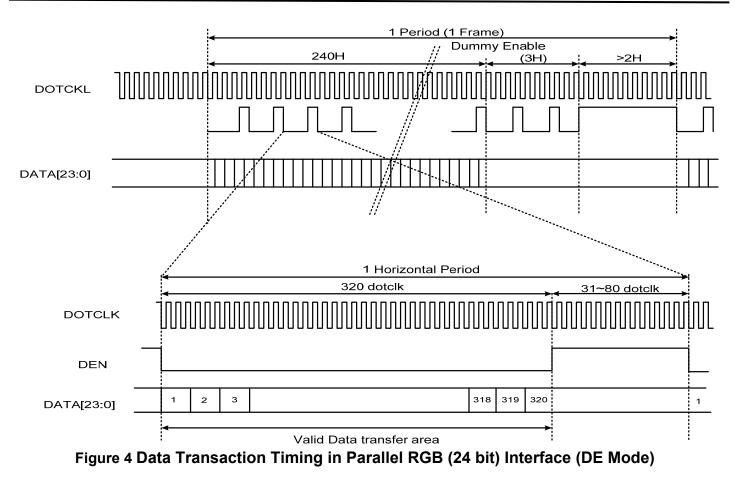



Figure 3 Data Transaction Timing in Serial RGB (8 bit) Interface (DE Mode)



Line 0 Line b) Vertical Data Transaction Timing

239

Figure 3 Data Transaction Timing in Parallel RGB (24 bit) Interface (SYNC Mode)

7.1.1 Clock and Sync waveforms

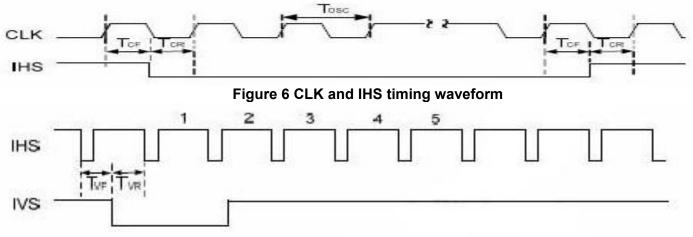
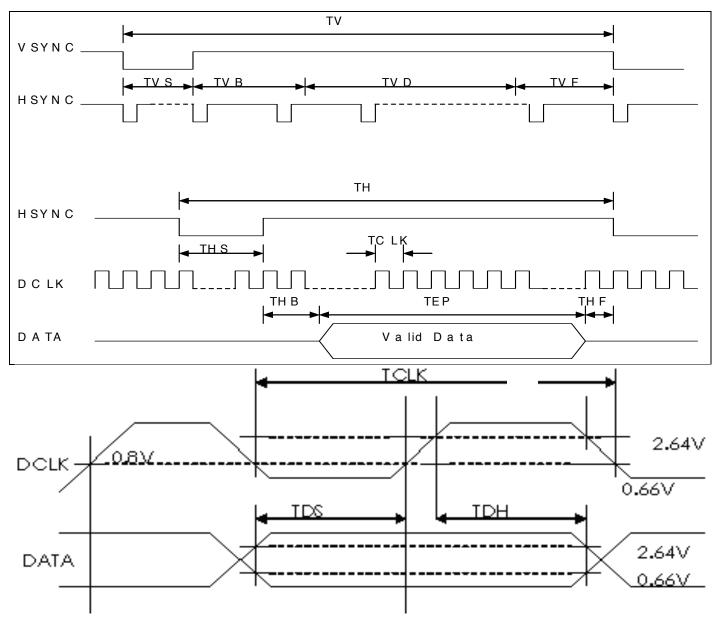
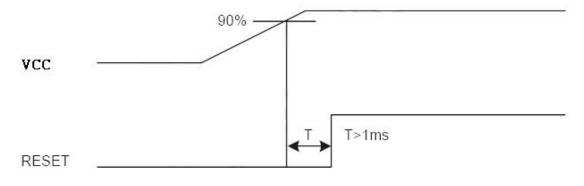



Figure 7 IHS and IVS timing waveforms

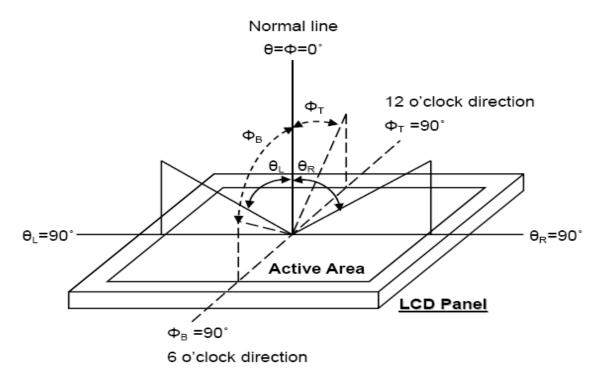


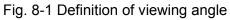
Version 2.1

7.2 Reset Timing Chart

The RESET input must be held at least 1ms after power is stable

Reset timing


8. OPTICAL CHARACTERISTIC


Ta=25±2°C, ILED=20mA

ltem		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark		
Response time	Boononao timo			-	10		ms	Note 3,5		
	5	Tf		-	15		ms	11018 3,5		
Contrast ratio		CR	At optimized viewing angle	300	400	-	-	Note 4,5		
Color Chromaticity	White	Wx	<i>θ</i> =0°、Φ=0	0.26	0.31	0.36		Note 2,6,7		
	vvriite	Wy	$0 - 0 + \Psi - 0$	0.28	0.33	0.38				
	Hor.	ΘR		50	60					
Viewing angle		ΘL	CR≧10	50	60		Deg.	Note 1		
	Ver.	ΦТ		40	50		Dey.	NOLE I		
	vei.	ΦВ		45	55					
Brightness		_	-	200	300	-	cd/m ²	Center of display		

Ta=25±2°C, I_L=20mA

Note 1: Definition of viewing angle range

Note 2: Test equipment setup:

After stabilizing and leaving the panel alone at a driven temperature for 10 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-7 luminance meter 1.0° field of view at a distance of 50cm and normal direction.

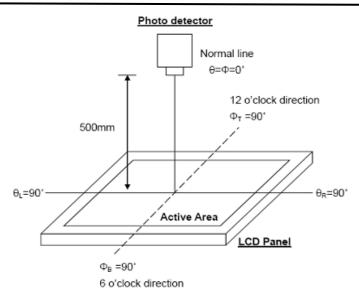


Fig. 8-2 Optical measurement system setup

Note 3: Definition of Response time:

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time, Tr, is the time between photo detector output intensity changed from 90% to 10%. And fall time, Tf, is the time between photo detector output intensity changed from 10% to 90%.

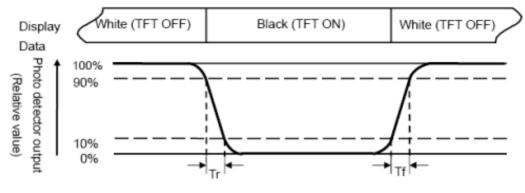


Fig. 3-3 Definition of response time

Note 4: Definition of contrast ratio:

Contrast ratio (CR)=

The contrast ratio is defined as the following expression.

Luminance measured when LCD on the "White" state

Luminance measured when LCD on the "Black" state

Note 5: White Vi = $V_{i50} \pm 1.5V$

Black Vi = $V_{i50} \pm 2.0V$

"±" means that the analog input signal swings in phase with VCOM signal.

"±" means that the analog input signal swings out of phase with VCOM signal.

The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

Note 6: Definition of color chromaticity (CIE 1931) Color coordinates measured at the center point of LCD

Note 7: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Note 8 : Uniformity (U) = $\frac{\text{Brightness (min)}}{\text{Brightness (max)}} \times 100\%$

9. INTERFACE

9.1. LCM PIN Definition

Pin	Symbol	I/O	Function	Remark
1	LED-	I	Backlight LED Ground	
2	LED-	Ι	Backlight LED Ground	
3	LED+	I	Backlight LED Power	
4	LED+	I	Backlight LED Power	
5	NC	Ι	Not Use	
6	NC	I	Not Use	
7	NC		Not Use	
8	/ RESET	-	Hardware Reset	
9	SPENA	I	SPI Interface Data Enable Sgnal	Note 3
10	SPCLK	I	SPI Interface Data Clock	Note 3
11	SPDAT	I	SPI Interface Data	Note 3
12	BO	I	Blue Data Bit 0	
13	B1	I	Blue Data Bit 1	
14	B2	I	Blue Data Bit 2	
15	B3	I	Blue Data Bit 3	
16	B4	I	Blue Data Bit 4	
17	B5	I	Blue Data Bit 5	
18	B6	I	Blue Data Bit 6	
19	B7	I	Blue Data Bit 7	
20	G0	I	Green Data Bit0	
21	G1	Ι	Green Data Bit1	
22	G2	I	Green Data Bit2	
23	G3	I	Green Data Bit3	
24	G4	I	Green Data Bit4	
25	G5	I	Green Data Bit5	
26	G6	I	Green Data Bit6	
27	G7	I	Green Data Bit7	
28	R0	I	Red Data Bit0 / DX0	Note 4
29	R1	I	Red Data Bit1 / DX1	Note 4
30	R2	I	Red Data Bit2 / DX2	Note 4
31	R3	I	Red Data Bit3 / DX3	Note 4
32	R4	I	Red Data Bit4 / DX4	Note 4
33	R5	I	Red Data Bit5 / DX5	Note 4

34	R6	Ι	Red Data Bit6 / DX6	Note 4
35	R7	I	Red Data Bit7 / DX7	Note 4
36	HSYNC	Ι	Horizontal Sync Input	
37	VSYNC	Ι	Vertical Sync Input	
38	DCLK	Ι	Dot Data Clock	
39	NC		Not Use	
40	NC		Not Use	
41	Vcc	Ι	Digital Power	
42	Vcc	Ι	Digital Power	
43	NC	Ι	Not Use	
44	NC	Ι	Not Use	
45	NC	-	Internal test use	
46	NC	-	Not Use	
47	NC	-	Internal test use	
48	SEL2	Ι	Control the input data format /floating	Note 1
49	SEL1	Ι	Control the input data format	Note 1,5
50	SEL0	Ι	Control the input data format	Note 1,5
51	NC		Not Use	
52	DE	I	Data Enable Input	Note 2
53	DGND	I	Ground	
54	AVSS	I		

Note:

- 1. The mode control (SEL2) not use, it can't control CCIR601 interface. If not use CCIR601, it can floating.
- 2. For digital RGB input data format, both SYNC mode and DE+SYNC mode are supported. If DE signal is fixed now, SYNC mode is used. Otherwise, DE+SYNC mode is used. Suggest used SYNC mode. Suggest the DE signal usually pull low.
- 3. Usually pull high.
- 4. IF select serial RGB or CCIR601/656 input mode is selected, only DX0-DX7 used, and the other short to GND, only selected serial RGB < CCIR601/656 interface, DX BUS will enable. Digital input mode DX0 is LSB and DX7 is MSB.

5. Control the input data format

SEL 2-0: Define the input interface mode.

SEL2	SEL1	SELO	Format	Operating Frequency
0	0	0	Parallel-RGB data format (only support stripe type color filter)	6.5MHz
0	0	1	Serial-RGB data format	19.5MHz
0	1	0	CCIR 656 data format (640RGB)	24.54MHz
0	1	1	CCIR 656 data format (720RGB)	27MHz
1	0	0	YUV mode A data format (Cr-Y-Cb-Y)	24.54MHz
1	0	1	YUV mode A data format (Cr-Y-Cb-Y)	27MHz
1	1	0	YUV mode B data format (Cb-Y-Cr-Y)	27MHz
1	1	1	YUV mode B data format (Cb-Y-Cr-Y)	24.54MHz

Input format	DOTCLK Freq (MHz)	Display Data	Active Area (DOTCLK)				
YUV mode	24.54	640	1280				
TOV HIDGE	27	720	1440				

Mode	D[23:16]	D[15:8]	D[7:0]	IHS	IVS	DEN
ITU-R BT 656	D[23:16]	GND	GND	NC	NC	NC
ITU-R BT 601	D[23:16]	GND	GND	IHS	IVS	NC
8 bit RGB	D[23:16]	GND	GND	IHS	IVS	NC for HV Mode
OBILICOB	0[20.10]	UND		inio	1.0	DEN for DEN Mode
24 bit RGB	R[7:0]	G[7:0]	B[7:0]	IHS	IVS	NC for HV Mode
24 bit RGB	R[7.0]	G[7.0]	Б[7.0]	INS	103	DEN for DEN Mode

9.2 SPI timing Characteristics

PARAMETER	Symbol	Min.	Тур.	Max.	Unit
SPCK period	T _{CK}	60	1246	. 21 J	ns
SPCK high width	Тскн	30	1246		ns
SPCK low width	TCKL	30	S area	-	ns
Data setup time	T _{SU1}	12	1240	, 12	ns
Data hold time	T _{HD1}	12	1000		ns
SPENA to SPCK setup time	T _{cs}	20	S ist	5 - 5 -	ns
SPENA to SPDA hold time	TCE	20	1025	23,	ns
SPENA high pulse width	Tco	50	1.4		ns
SPDA output latency	T _{CR}	2.70	1/2		Tck

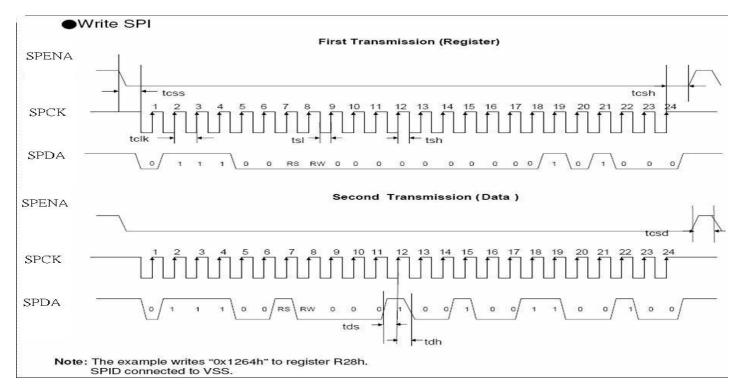
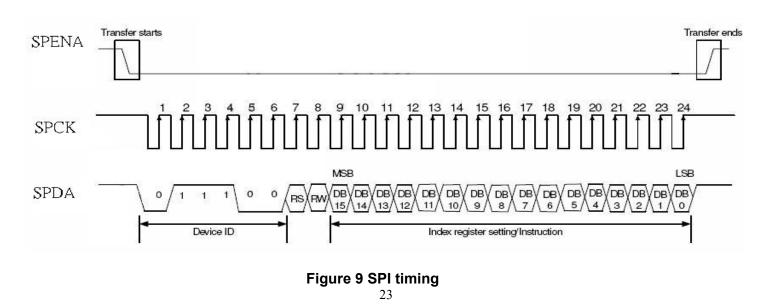



Figure 8 SPI read
virtual vir

9.3 Basic Display Color and Gray Scale

											Ir	put	Со	lor [Data	a									
	Color				Re	ed							Gre	en					Blue						
	00101	MS						3B		MSB	-			1	LSE		MSB							SB	
		R7			R4					G7			G4			G1	G0			B5		B3	B2		B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Red (253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255) Bright	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Green	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green (255) Bright	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Blue (253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		1	1	1	1	1	0
	Blue (255) Bright	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		1	1	1	1	1	1

10. BLOCK DIAGRAM

11. QUALITY ASSURANCE

No.	Test Items	Test Condition	REMARK
1	High Temperature Storage Test	Ta=80℃ Dry 240h	
2	Low Temperature Storage Test	Ta=-30℃ Dry 240h	
3	High Temperature Operation Test	Ta=70℃ Dry 240h	
4	Low Temperature Operation Test	Ta=-20℃ Dry 240h	
5	High Temperature and High Humidity Operation Test	Ta=60℃ 90%RH 240h	
6	Electro Static Discharge Test	Panel surface / top case. Contact / Air:±6KV / ±8KV, 150pF,330Ω	Non-operating
7	Shock Test (non-operating)	Shock Level : 100G Waveform : Half Snusoidal Wave Shock Time : 6ms Number of Shocks : 3 times for each ±X, ±Y, ±Z direction	
8	Vibration Test (non-operating)	Frequency range: 10Hz ~ 550Hz Stoke : 1.3mm Sweep : 1.5G, 33.3~400Hz Vibration : Sinusoidal Wave, 1Hrs for X,YZ direction.	
9	Thermal Shock Test	-20℃ (0.5h) ~ 70℃ (0.5h) / 100 cycles	

***** Ta= Ambient Temperature

Note:

1. The test samples have recovery time for 2 hours at room temperature before the function check. In the standard conditions, there is no display function NG issue occurred.

2. All the cosmetic specifications are judged before the reliability stress.

12. OUTLINE DRAWING

 \triangleleft

щ

Approval

A3

17 Unitimm

Sheet

₹₹

Scale 1:1

Date 15-SEP-2009

Bryant.Chen Bryant.Chen

Designer

±0.35

630-1000

0-5 ±0.05 60-150 ±0.2

I

5-15 ±0.10 150-300 ±0.25 15-60 ±0.15 300-630 ±0.3

General Tolerance Unless Specified

ALL RIGHTS RESERVED, COPYING FORBIDDEN

C URP.

MEI **OPTOELECTRONICS**

EH

Æ

÷I

ANGLE

Remark

No. ECN

Changed_ByApproved_By

Date

Description

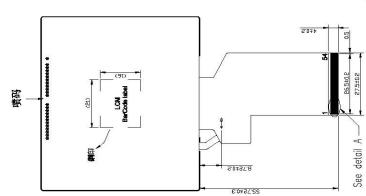
ark

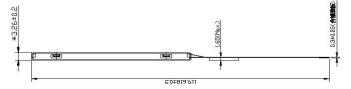
α

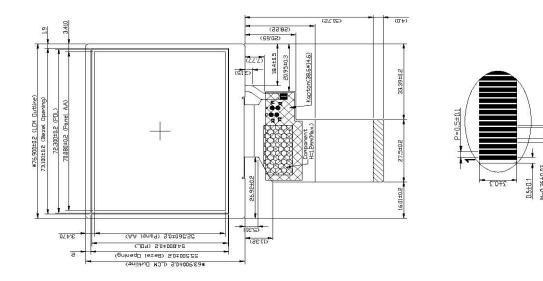
٩N

20 REV.

TITLE Ass'y Module LQ035NC111

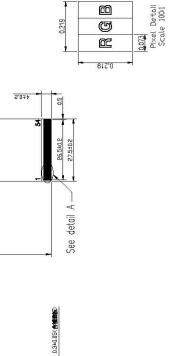

Drawing No. Part No. Material


Approved lifen chou

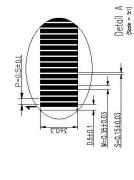

Targit Yang

Checked Drawer

В \Box



 \Box


П

27

00

ЬJ

Ш

Ĺ.

13. PACKAGE INFORMATION

A4 ¥ Antistatic Bag Adhesive Tape ALL RIGHTS RESERVED, COPYING FORBIDDEN. 1/1 20 REV. 30 REV. Unitim Sheet 1.The module/TP is placed on the tray, with the right side upward, put it into the Trays firmly, and nate that each Tray is piled with 180° revirse side to another. 2.Packaging Quantity: Ξ Date 11-NDV-2009 Scale One Tray Include : 8 pcs module/TP/F06 ; One Carton Include : 21 pcs Tray(20 Tray+1 Empty Tary) ; 160 pcs module/TP/F06 MA M MA Drawing No. Part No. Material Front/Back Foam CURP Left/Right Foam Packing_LQ345NC111 **OPTOELECTRONICS** ΣΕΙ Targit Yang Bryant.Chen Bryant.Chen lifen_chou CHI Above Foam Below Foam Adhesive Tape Approved Designer TILLE Checked Drawer E ±0.35 ł °. T General Tolerance Umless Specified 630-1000 ANGLE I ±0.25 ±0.2 ±0.3 Empty Tray 150-300 60-150 300-630 Load Tray ±0.05 ±0.15 ±0.1 Note: Dryer 15-60 5-15 0-2 Remark Front/Back Foam Left/Right Foam Carton Label ECN No. XXXXXX <u> acticitation</u> Changed_By Approved_By C024C06 Carton Label module "A" DETAIL Date D , A. Tape -DETAIL Description Adhesive Printing Iray Iray Tray Tray Tray Tray Mark В

28

Version 2.1

14 RECAUTIONS

Please pay attention to the following when you use this TFT LCD module.

14.1 MOUNTING PRECAUTIONS

- (1) You must mount a module using arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.

And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.

- (3) Please attach a transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not describe because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are determined to the polarizer)
- (7) When the surface becomes dusty, please wipe gently with adsorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

14.2 OPERATING PRECAUTIONS

- The spike noise causes the mis-operation of circuits. It should be lower than following voltage: V=±200mV(Over and under shoot voltage)
- (2) Response time depends on the temperature. (In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower) And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference.

14.3 ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wristband etc. And don't touch interface pin directly.

14.4 PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

14.5 STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5° C and 35° C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

14.6 HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) The protection film is attached to the polarizer with a small amount of glue. Is apt to remain on the polarizer. Please carefully peel off the protection film without rubbing it against the polarizer.
- (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off. You can remove the glue easily.
- (4) When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.