

Issued Date: July, 05, 2006 Model No.: N154I4-L02

Approval

TFT LCD Approval Specification

MODEL NO.: N154I4-L02

Customer :	
Approved by :	
Note:	

記錄	工作	審核	角色	投票
2006-07-17 15:05:25 CST	Approve by Dept. Mgr.(QA RA)	tomy_chen(陳永一 /52720/54140/43150)	Assignee	Accept
2006-07-05 16:17:58 CST	Approve by Director	teren_lin(林添仁/56910/36064)	Director	Accept

- CONTENTS -

REVISION HISTORY	3	3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT	5	5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT	7	7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE 4.2 BACKLIGHT UNIT	1	10
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 TIMING DIAGRAM OF LVDS INPUT SIGNAL 5.4 COLOR DATA INPUT ASSIGNMENT 5.5 EDID DATA STRUCTURE 5.6 EDID SIGNAL SPECIFICATION		11
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	1	19
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		21
8. PRECAUTIONS 8.1 HANDLING PRECAUTIONS 8.2 STORAGE PRECAUTIONS 8.3 OPERATION PRECAUTIONS		25
9. PACKING 9.1 CARTON 9.2 PALLET		26
10. DEFINITION OF LABELS 10.1 CMO MODULE LABEL 10.2 CARTON LABEL	2	28

Issued Date: July, 05, 2006 Model No.: N154I4-L02

Approval

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 0.0	Mar.15, 2006	All	All	Tentative specification first issued.
Ver1.0	May 8, 2006	All	All	Preliminary specification first issued
Ver2.0	June 19,2006	All	All	Approval specification first issued
Ver2.1	July 05,2006	20	7.2	Update OPT CR Spec

Issued Date: July, 05, 2006 Model No.: N154I4-L02

Approval

1. GENERAL DESCRIPTION

1.1 OVERVIEW

N154I4-L01 is a 15.4" TFT Liquid Crystal Display module with 2 CCFLs Backlight unit and 30 pins LVDS interface. This module supports 1280 x 800 Wide-XGA mode and can display 262,144 colors. The optimum viewing angle is at 6 o'clock direction. The inverter module for Backlight is not built in.

1.2 FEATURES

- Thin and light weight
- WXGA (1280 x 800 pixels) resolution
- 3.3V LVDS (Low Voltage Differential Signaling) interface with 1 pixel/clock

1.3 APPLICATION

- TFT LCD Notebook

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	331.2 (H) x 207.0 (V) (15.4" diagonal)	mm	(1)
Bezel Opening Area	335.0 (H) x 210.7 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1280 x R.G.B. x 800	pixel	-
Pixel Pitch	0.2588 (H) x 0.2588 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262,144	color	_
Transmissive Mode	Normally white	-	_
Surface Treatment	Hard coating (3H), Glare	-	-

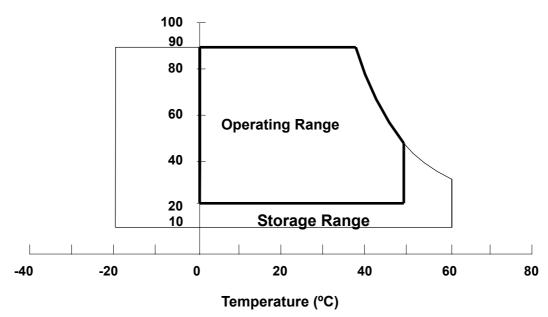
1.5 MECHANICAL SPECIFICATIONS

Į:	Item		Тур.	Max.	Unit	Note
	Horizontal(H)	343.5	344.0	344.5	mm	
Module Size	Vertical(V)	223.5	224.0	224.5	mm	(1)
	Depth(D)	-	6.2	6.5	mm	
Weight		-	565	580	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

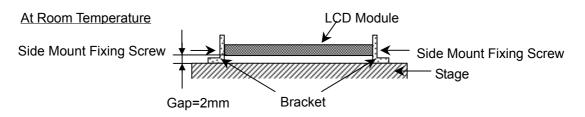
Issued Date: July, 05, 2006 Model No.: N154I4-L02

Approval


2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note		
item	Symbol	Min.	Max.	Offic	Note	
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	220/2	G/ms	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.5	G	(4), (5)	


- Note (1) (a) 90 %RH Max. (Ta <= 40 °C).
 - (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
 - (c) No condensation.
- Note (2) The temperature of panel surface should be 0 °C min. and 50 °C max.

Relative Humidity (%RH)

- Note (3) 1 time for \pm X, \pm Y, \pm Z. for Condition (220G / 2ms) is half Sine Wave,.
- Note (4) 10~500 Hz, 0.5hr/cycle 1cycle for X,Y,Z
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

The fixing condition is shown as below:

Issued Date: July, 05, 2006 Model No.: N154I4-L02

Approval

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note	
Power Supply Voltage	Vcc	-0.3	+4.0	V	(1)	
Logic Input Voltage	V_{IN}	-0.3	Vcc+0.3	V	(1)	

2.2.2 BACKLIGHT UNIT

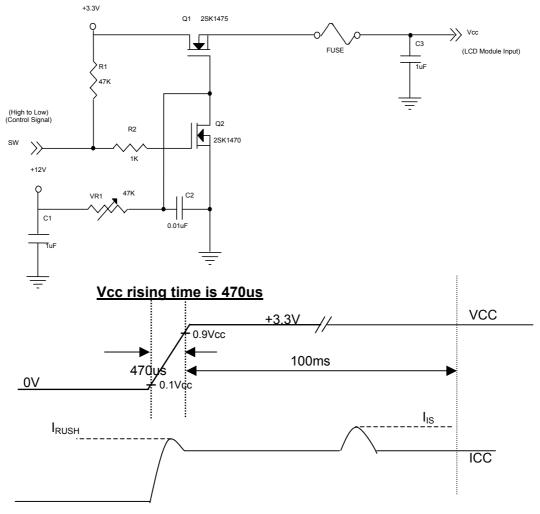
Item	Symbol	Val	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Lamp Voltage	V_L	-	2.5K	V_{RMS}	Lamp Voltage
Lamp Current	Ι _L	2.0	7.0	mA_RMS	Lamp Current
Lamp Frequency	F _L	45	80	KHz	Lamp Frequency

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to Section 3.2 for further information).

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE


Parameter		Symbol		Value	Unit	Note	
		Syllibol	Min.	Тур.	Max.	Offic	NOLE
Power Supply Voltage		Vcc	3.0	3.3	3.6	V	_
Permissive Ripple Voltage	ge	V_{RP}	-	50	-	mV	-
Rush Current		I _{RUSH}	-	-	1.5	Α	(2)
Initial Stage Current		I _{IS}	-	-	1.0	Α	(2)
Power Supply Current	White	lcc	-	330	360	mA	(3)a
Fower Supply Current	Black		-	460	500	mA	(3)b
LVDS Differential Input F	ligh Threshold	V _{TH(LVDS)}	-	-	+100	mV	(5), V _{CM} =1.2V
LVDS Differential Input L	V _{TL(LVDS)}	-100	-	-	mV	(5) V _{CM} =1.2V	
LVDS Common Mode Vo	V_{CM}	1.125	-	1.375	V	(5)	
LVDS Differential Input \	$ V_{ID} $	100	=	600	mV	(5)	
Terminating Resistor	R_T	-	100	-	Ohm		
Power per EBL WG		P_{EBL}	-	4.4	-	W	(4)

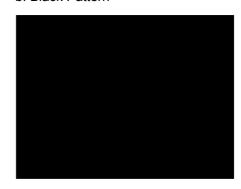
Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.

Note (2) I_{RUSH} : the maximum current when VCC is rising

 I_{IS} : the maximum current of the first 100ms after power-on

Measurement Conditions: Shown as the following figure. Test pattern: black.

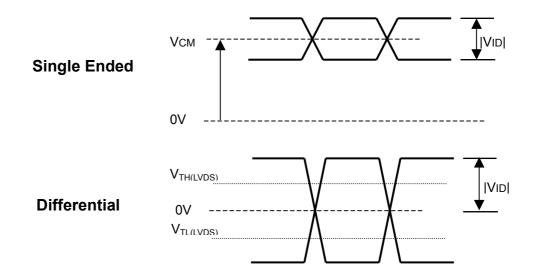
Issued Date: July, 05, 2006 Model No.: N154I4-L02


Approval

Note (3) The specified power supply current is under the conditions at Vcc = 3.3 V, Ta = 25 ± 2 °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

a. White Pattern

Active Area



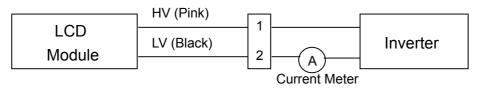
Active Area

Note (4) The specified power are the sum of LCD panel electronics input power and the inverter input power. Test conditions are as follows.

- (a) Vcc = 3.3 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, $f_v = 60 \,\text{Hz}$,
- (b) The pattern used is a black and white 32 x 36 checkerboard, slide #100 from the VESA file "Flat Panel Display Monitor Setup Patterns", FPDMSU.ppt.
- (c) Luminance: 60 nits.
- (d) The inverter used is provided from _______Please contact them for detail information. CMO doesn't provide the inverter in this product.

Note (5) The parameters of LVDS signals are defined as the following figures.

Issued Date: July, 05, 2006 Model No.: N154I4-L02


Approval

3.2 BACKLIGHT UNIT

Ta = 25 ± 2 °C

Parameter	Symbol		Value	Unit	Note	
Farameter	Syllibol	Min.	Тур.	Max.	Offic	Note
Lamp Input Voltage	V_L	657	730	803	V_{RMS}	$I_{L} = 6.0 \text{ mA}$
Lamp Current	I.	2.0	6.0	6.5	mA _{RMS}	(1),(2)
Lamp Current	ΙL	3.0			IIIARMS	(1),(3)
Lamp Turn On Voltage	Vs	ı	-	1460(25 °C)	V_{RMS}	(4)
Lamp rum on voltage		ı	-	1600(0 °C)	V_{RMS}	(4)
Operating Frequency	F_L	45	-	80	KHz	(5)
Lamp Life Time	L_BL	12,000	-	-	Hrs	(7)
Power Consumption	P_L	-	8.76	-	W	(6), $I_L = 6.0 \text{ mA}$

Note (1) Lamp current is measured by utilizing a high frequency current meter as shown below:

- Note (2) for burst mode inverter design
- Note (3) for continuous mode inverter design
- Note (4) The voltage shown above should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (5) The lamp frequency may generate interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (6) $P_L = I_L \times V_L$
- Note (7) The lifetime of lamp is defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and I_L = $6.5 \text{ mA}_{\text{RMS}}$ until one of the following events occurs:
 - (a) When the brightness becomes $\leq 50\%$ of its original value.
 - (b) When the effective ignition length becomes \leq 80% of its original value. (Effective ignition length is defined as an area that the brightness is less than 70% compared to the center point.)
- Note (8) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be carefully designed to avoid generating too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.

Issued Date: July, 05, 2006


Model No.: N154I4-L02

Approval

The output of the inverter must have symmetrical (negative and positive) voltage waveform and symmetrical current waveform. (Unsymmetrical ratio is less than 10%) Please do not use the inverter, which has unsymmetrical voltage and unsymmetrical current and spike wave. Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.

Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp. It shall help increase the lamp lifetime and reduce its leakage current.

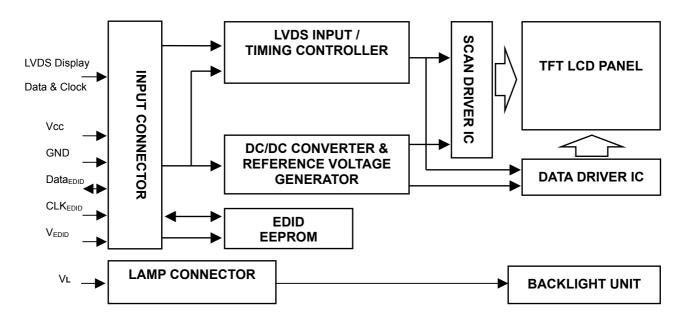
- a. The asymmetry rate of the inverter waveform should be 10% below;
- b. The distortion rate of the waveform should be within $\sqrt{2 \pm 10\%}$;
- c. The ideal sine wave form shall be symmetric in positive and negative polarities.

* Asymmetry rate:

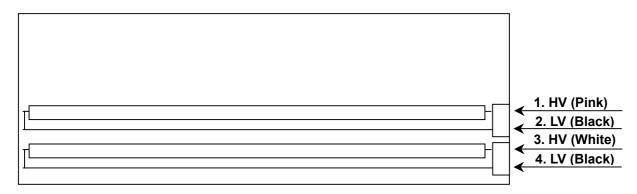
$$|I_p - I_{-p}| / I_{rms} * 100\%$$

* Distortion rate

$$I_p (or I_{-p}) / I_{rms}$$


Issued Date: July, 05, 2006 Model No.: N154I4-L02

Approval



4. BLOCK DIAGRAM

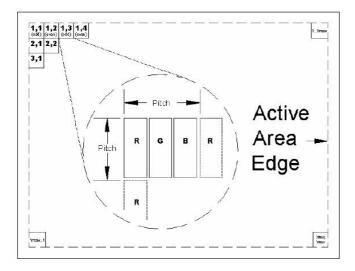
4.1 TFT LCD MODULE

4.2 BACKLIGHT UNIT

Issued Date: July, 05, 2006 Model No.: N154I4-L02

Approval

5. INPUT TERMINAL PIN ASSIGNMENT


5.1 TFT LCD MODULE

Pin	Symbol	Description	Polarity	Remark
1	Vss	Ground		
2	Vcc	Power Supply +3.3 V (typical)		
3	Vcc	Power Supply +3.3 V (typical)		
4	V_{EDID}	DDC 3.3V Power		DDC 3.3V Power
5	NC	Non-Connection		
6	CLK _{EDID}	DDC Clock		DDC Clock
7	DATA _{EDID}	DDC Data		DDC Data
8	Rxin0-	LVDS Differential Data Input	Negative	R0~R5,G0
9	Rxin0+	LVDS Differential Data Input	Positive	,
10	Vss	Ground		
11	Rxin1-	LVDS Differential Data Input	Negative	G1~G5, B0, B1
12	Rxin1+	LVDS Differential Data Input	Positive	
13	Vss	Ground		
14	Rxin2-	LVDS Differential Data Input	Negative	B2~B5, DE, Hsync, Vsync
15	Rxin2+	LVDS Differential Data Input	Positive	
16	Vss	Ground		
17	CLK-	LVDS Clock Data Input	Negative	LVDS Level Clock
18	CLK+	LVDS Clock Data Input	Positive	LVD3 Level Clock
19	Vss	Ground		
20	NC	Non-Connection		
21	NC	Non-Connection		
22	Vss	Ground		
23	NC	Non-Connection		
24	NC	Non-Connection		
25	Vss	Ground		
26	NC	Non-Connection		
27	NC	Non-Connection		
28	Vss	Ground		
29	NC	Non-Connection		
30	NC	Non-Connection		

Note (1) Connector Part No.: JAE-FI-XB30S-HF10 or equivalent

Note (2) User's connector Part No: FI-X30M or equivalent

Note (3) The first pixel is odd as shown in the following figure.

CHIME!

Doc.No.:

Issued Date: July, 05, 2006 Model No.: N154I4-L02

Approval

5.2 BACKLIGHT UNIT

Pin	Symbol	Description	Color
1	HV	High Voltage	Pink
2	LV	Ground	Black
3	HV	High Voltage	White
4	LV	Ground	Black

Note (1) Connector Part No.: JST-BHSR-02VS-1 or equivalent

Note (2) User's connector Part No.: JST-SM02B-BHSS-1-TB or equivalent

5.3 TIMING DIAGRAM OF LVDS INPUT SIGNAL

Issued Date: July, 05, 2006

Model No.: N154I4-L02

Approva

5.4 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

										Data		al							
Color		Red				Green				Blue									
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Issued Date: July, 05, 2006 Model No.: N154I4-L02

Approval

5.5 EDID DATA STRUCTURE

The EDID (Extended Display Identification Data) data formats are to support displays as defined in the VESA Plug & Display and FPDI standards.

Byte #(decim	Byte al)#(hex)	Field Name and Comments	Value(hex)	Value(binary)
)	0	Header	00	00000000
1	1	Header	FF	11111111
2	2	Header	FF	11111111
3	3	Header	FF	11111111
	4	Header	FF	11111111
5	5	Header	FF	11111111
3	6	Header	FF	11111111
7	7	Header	00	00000000
3	8	EISA ID manufacturer name ("CMO")	0D	00001101
)	9	EISA ID manufacturer name (Compressed ASCII)	AF	10101111
0	0A	ID product code (N154I4-L02)	37	00110111
1		ID product code (hex LSB first; N154I4-L02)	15	00010101
2		ID S/N (fixed "0")	00	00000000
3	0D	ID S/N (fixed "0")	00	00000000
4	0E	ID S/N (fixed "0")	00	00000000
5	0F	ID S/N (fixed "0")	00	00000000
6	10	Week of manufacture	1D	00011101
7	11	Year of manufacture	10	00010000
8	12	EDID structure version # ("1")	01	0000001
9		EDID revision # ("3")	03	00000011
:0	14	Video I/P definition ("digital")	80	10000000
1		Max H image size ("33cm")	21	00100001
2		Max V image size ("21cm")	15	00010101
23		Display Gamma (Gamma = "2.2")	78	01111000
24	18	Feature support ("Active off, RGB Color")	0A	00001010
:5	19	Red/Green (Rx1, Rx0, Ry1, Ry0, Gx1, Gx0, Gy1, Gy0)	1C	00011100
:6		Blue/White (Bx1, Bx0, By1, By0, Wx1, Wx0, Wy1, Wy0)	A5	10100101
:7		Red-x (Rx = "0.598")	99	10011001
:8		Red-y (Ry = "0.337")	56	01010110
:9		Green-x (Gx = "0.323")	52	01010010
0	1E	Green-y (Gy = "0.523")	86	10000110
1		Blue-x (Bx = "0.150")	26	00100110
2		Blue-y (By = "0.127")	20	00100000
3	21	White-x (Wx = "0.313")	50	01010000
34	22	White-y (Wy = "0.329")	54	01010100
55	23	Established timings 1	00	00000000
6	24	Established timings 2	00	00000000
37	25	Manufacturer's reserved timings	00	00000000
38	26	Standard timing ID # 1	01	00000001
39	27	Standard timing ID # 1	01	00000001

CHI MEI

Issued Date: July, 05, 2006 Model No.: N154I4-L02

Approval

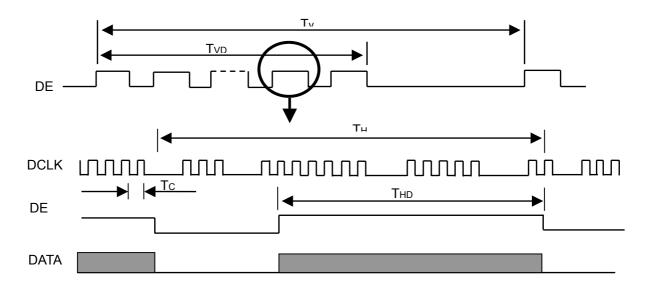
40	28	Standard timing ID # 2	01	0000001
41	29	Standard timing ID # 2	01	0000001
42	2A	Standard timing ID # 3	01	0000001
43	2B	Standard timing ID # 3	01	0000001
44	2C	Standard timing ID # 4	01	0000001
45	2D	Standard timing ID # 4	01	0000001
46	2E	Standard timing ID # 5	01	0000001
47	2F	Standard timing ID # 5	01	0000001
48	30	Standard timing ID # 6	01	0000001
49	31	Standard timing ID # 6	01	0000001
50	32	Standard timing ID # 7	01	0000001
51	33	Standard timing ID # 7	01	0000001
52	34	Standard timing ID # 8	01	0000001
53	35	Standard timing ID # 8	01	0000001
		Detailed timing description # 1 Pixel clock ("71MHz", According to	ВС	10111100
54 	36	VESA CVT Rev1.1)		
55	37	# 1 Pixel clock (hex LSB first)	1B	00011011
56 	38	# 1 H active ("1280")	00	00000000
57 	39	# 1 H blank ("160")	A0	10100000
58		# 1 H active : H blank ("1280 : 160")	50	01010000
59		# 1 V active ("800")	20	00100000
60	3C	# 1 V blank ("23")	17	00010111
61	3D	# 1 V active : V blank ("800 :23")	30	00110000
62	3E	# 1 H sync offset ("48")	30	00110000
63	3F	# 1 H sync pulse width ("32")	20	00100000
64	40	# 1 V sync offset : V sync pulse width ("3 : 6")	36	00110110
65	41	# 1 H sync offset : H sync pulse width : V sync offset : V sync width ("48: 32 : 3 : 6")	00	00000000
66	42	# 1 H image size ("331 mm")	4B	01001011
67	43	# 1 V image size ("207 mm")	CF	11001111
68	44	# 1 H image size : V image size ("331 : 207")	10	00010000
69		# 1 H boarder ("0")	00	00000000
70	46	# 1 V boarder ("0")	00	00000000
71	47	# 1 Non-interlaced, Normal, no stereo, Separate sync, H/V pol Negatives	18	00011000
72	48	Detailed timing description # 2	00	00000000
73	49	# 2 Flag	00	00000000
74	4A	# 2 Reserved	00	00000000
75	4B	# 2 FE (hex) defines ASCII string (Model Name "N154I4-L02", ASCII)	FE	11111110
76	4C	# 2 Flag	00	00000000
77	4D	# 2 1st character of name ("N")	4E	01001110
78	4E	# 2 2nd character of name ("1")	31	00110001
79	4F	# 2 3rd character of name ("5")	35	00110101
80	50	# 2 4th character of name ("4")	34	00110100
81	51	# 2 5th character of name ("I")	49	01001001
82	52	# 2 6th character of name ("4")	34	00110100
83		# 2 7th character of name ("-")	2D	00101101
		r = r til orialacter of flame (=)		55.51101

Issued Date: July, 05, 2006 Model No.: N154I4-L02

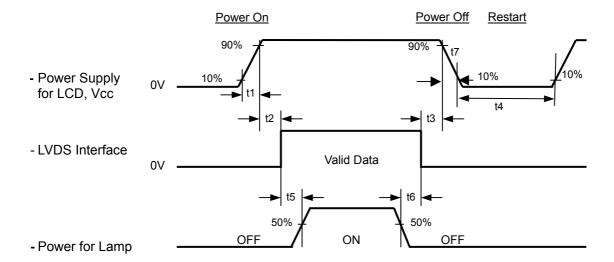
Approval

m		НΙ	M	EI
	OPTO	ELECT	RONICS	5 CORP.

84	54	# 2 8th character of name ("L")	4C	01001100
85	55	# 2 9th character of name ("0")	30	00110000
86	56	# 2 9th character of name ("2")	32	00110010
87	57	# 2 New line character indicates end of ASCII string	0A	00001010
88	58	# 2 Padding with "Blank" character	20	00100000
89	59	# 2 Padding with "Blank" character	20	00100000
90	5A	Detailed timing description # 3	00	00000000
91	5B	#3 Flag	00	00000000
92	5C	# 3 Reserved	00	00000000
93	5D	# 3 FE (hex) defines ASCII string (Vendor "CMO", ASCII)	FE	11111110
94	5E	#3 Flag	00	00000000
95	5F	# 3 1st character of string ("C")	43	01000011
96	60	# 3 2nd character of string ("M")	4D	01001101
97	61	# 3 3rd character of string ("O")	4F	01001111
98	62	# 3 New line character indicates end of ASCII string	0A	00001010
99	63	# 3 Padding with "Blank" character	20	00100000
100	64	# 3 Padding with "Blank" character	20	00100000
101	65	# 3 Padding with "Blank" character	20	00100000
102	66	# 3 Padding with "Blank" character	20	00100000
103	67	# 3 Padding with "Blank" character	20	00100000
104	68	# 3 Padding with "Blank" character	20	00100000
105	69	# 3 Padding with "Blank" character	20	00100000
106	6A	# 3 Padding with "Blank" character	20	00100000
107	6B	# 3 Padding with "Blank" character	20	00100000
108	6C	Detailed timing description # 4	00	00000000
109	6D	# 4 Flag	00	00000000
110	6E	# 4 Reserved	00	00000000
111	6F	# 4 FE (hex) defines ASCII string (Model Name"N154I4-L02", ASCII)	FE	11111110
112	70	# 4 Flag	00	00000000
113	71	# 4 1st character of name ("N")	4E	01001110
114	72	# 4 2nd character of name ("1")	31	00110001
115	73	# 4 3rd character of name ("5")	35	00110101
116	74	# 4 4th character of name ("4")	34	00110100
117	75	# 4 5th character of name ("I")	49	01001001
118	76	# 4 6th character of name ("4")	34	00110100
119	77	# 4 7th character of name ("-")	2D	00101101
120	78	# 4 8th character of name ("L")	4C	01001100
121	79	# 4 9th character of name ("0")	30	00110000
122	7A	# 4 9th character of name ("2")	32	00110010
123	7B	# 4 New line character indicates end of ASCII string	0A	00001010
124	7C	# 4 Padding with "Blank" character	20	00100000
125	7D	# 4 Padding with "Blank" character	20	00100000
126	7E	Extension flag	00	00000000
127	7F	Checksum	06	00000110


6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS


The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	-	71	80	MHz	-
	Vertical Total Time	TV	810	823	1000	TH	-
DE	Vertical Addressing Time	TVD	800	800	800	TH	-
	Horizontal Total Time	TH	1360	1440	1600	Tc	-
	Horizontal Addressing Time	THD	1280	1280	1280	Tc	-

INPUT SIGNAL TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

Timing Specifications:

$$0.5 \leq t1 \leq 10 \text{ ms}$$

 $0 \le t2 \le 50 \text{ ms}$

 $0 \le t3 \le 50 \text{ ms}$

 $t4 \ge 500 \text{ ms}$

 $t5 \ge 200 \text{ ms}$

 $t6 \ge 200 \text{ ms}$

- Note (1) Please follow the power on/off sequence described above. Otherwise, the LCD module might be damaged.
- Note (2) Please avoid floating state of interface signal at invalid period. When the interface signal is invalid, be sure to pull down the power supply of LCD Vcc to 0 V.
- Note (3) The Backlight inverter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight inverter power must be turned off before the power supply for the logic and the interface signal is invalid.
- Note (4) Sometimes some slight noise shows when LCD is turned off (even backlight is already off). To avoid this phenomenon, we suggest that the Vcc falling time is better to follow 5 ≤ t7 ≤ 300 ms.

CHIME!

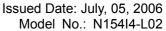
Doc.No.:

Issued Date: July, 05, 2006 Model No.: N154I4-L02

Approval

7. OPTICAL CHARACTERISTICS

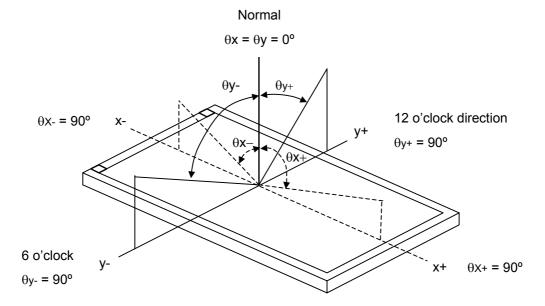
7.1 TEST CONDITIONS


Item	Symbol	Value	Unit		
Ambient Temperature	Та	25±2	°C		
Ambient Humidity	На	50±10	%RH		
Supply Voltage	V _{CC}	3.3	V		
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"				
Inverter Current	ال	6.0	mA		
Inverter Driving Frequency	F_L	55	KHz		
Inverter	Darfon-VK.12164.101				

The measurement methods of optical characteristics are shown in Section 7.2. The following items should be measured under the test conditions described in Section 7.1 and stable environment shown in Note (6).

7.2 OPTICAL SPECIFICATIONS

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		500	800	-	-	(2), (5)
Response Time		T_R		-	1.3	8	ms	(3)
response fille		T_F		-	3.7	12	ms	(3)
Central Lumina	nce of White	L _C		420	500		cd/m ²	(4), (6)
	Red	Rx			0.638		-	
	Neu	Ry	θ_x =0°, θ_Y =0°		0.347		-	(1)
	Green	Gx	Viewing Normal Angle	TYP. -0.03	0.295	TYP. +0.03	-	
Color		Gy			0.600		-	
Chromaticity	Blue	Bx			0.142		-	
		Ву			0.083		-	
	White	Wx			0.328		-	
		Wy			0.342		-	
	l la sima satal	θ_x +		50	60	-		
Viousing Anglo	Horizontal	θ_{x} -	OD>10	50	60	-	Dog	(1) (E)
Viewing Angle	Vartical	θ _Y +	CR≥10	30	40	-	Deg.	(1),(5)
	Vertical	θ _Y -		50	60	-		
White Variation of 5 Points		δW _{5p}	θ_x =0°, θ_Y =0° (BM-5A)	75	-	-	%	(5),(6)

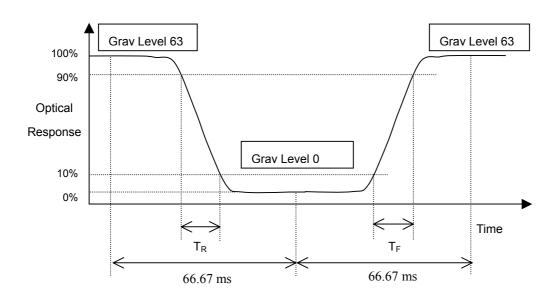


Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0


L63: Luminance of gray level 63

L 0: Luminance of gray level 0

CR = CR(5)

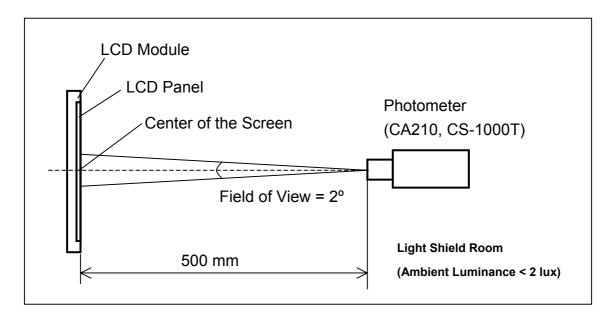
CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F):

Issued Date: July, 05, 2006 Model No.: N154I4-L02

Approval

Note (4) Definition of Average Luminance of White (LAVE):

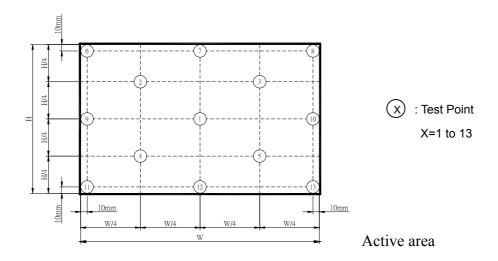

Measure the luminance of gray level 63 at 5 points

$$L_{AVE} = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$$

L(x) is corresponding to the luminance of the point X at Figure in Note (6)

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.


Issued Date: July, 05, 2006 Model No.: N154I4-L02

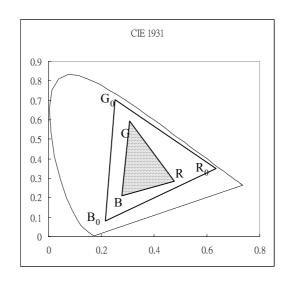
Approval

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 5 points

 δW_{5p} = Minimum [L (10)+ L (11)+ L (12)+ L (13)+ L (5)] / Maximum [L (10)+ L (11)+ L (12)+ L (13)+ L (5)] δW_{13p} = Minimum [L (1) ~ L (13)] / Maximum [L (1) ~ L (13)]

Note (7) Definition of color gamut (C.G%):


C.G%= RGB/ $R_0 G_0 B_0,*100\%$

R₀, G₀, B₀: color coordinates of red, green, and blue defined by NTSC, respectively.

R, G, B: color coordinates of module on 63 gray levels of red, green, and blue, respectively.

R₀ G₀ B₀: area of triangle defined by R₀, G₀, B₀

R G B: area of triangle defined by R, G, B

Issued Date: July, 05, 2006 Model No.: N154I4-L02

Approval

8. PRECAUTIONS

8.1 HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the lamp wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

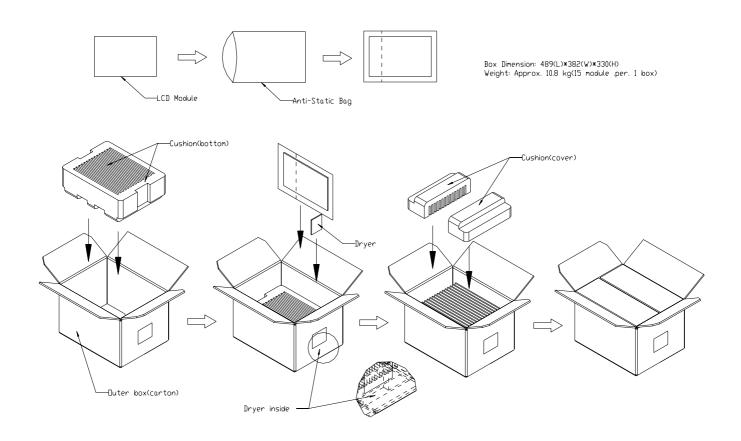
8.2 STORAGE PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of lamp will be higher than the room temperature.

8.3 OPERATION PRECAUTIONS

- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up.
- (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with inverter. Do not disassemble the module or insert anything into the Backlight unit.

TCHI MEI


Doc.No.:

Issued Date: July, 05, 2006 Model No.: N154I4-L02

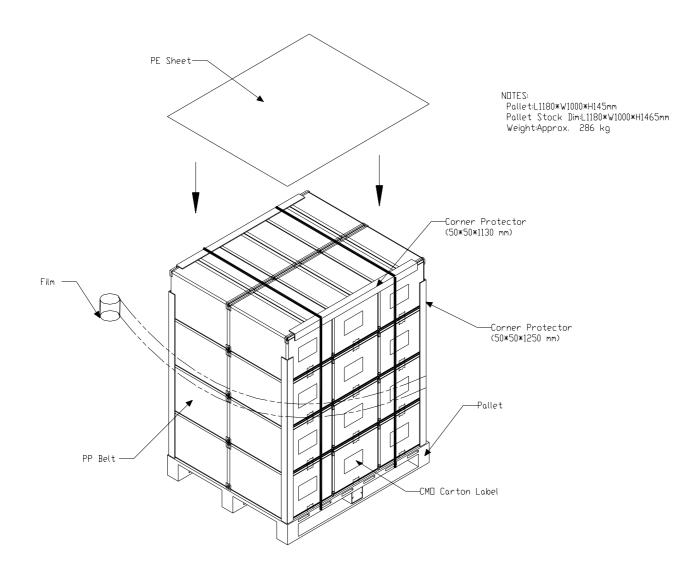
Approval

9. PACKING

9.1 CARTON

Packing testing criteria:

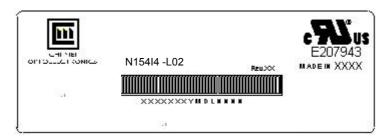
(1) Packing drop: 1 corner, 3 edges, 6 faces, each direction for one time, follow ISTA standard.


Packing vibration: Random, follow ISTA standard.

Issued Date: July, 05, 2006 Model No.: N154I4-L02

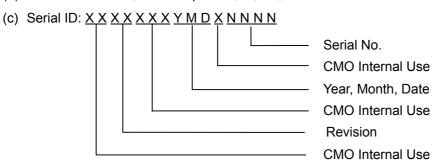
Approval

9.2 PALLET


Issued Date: July, 05, 2006 Model No.: N154I4-L02

Approval

10. DEFINITION OF LABELS


10.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: N154I4 - L02

(b) Revision: Rev. XX, for example: A1, ..., C1, C2 ...etc.

(d) Production Location: MADE IN XXXX. XXXX stands for production location.

Serial ID includes the information as below:

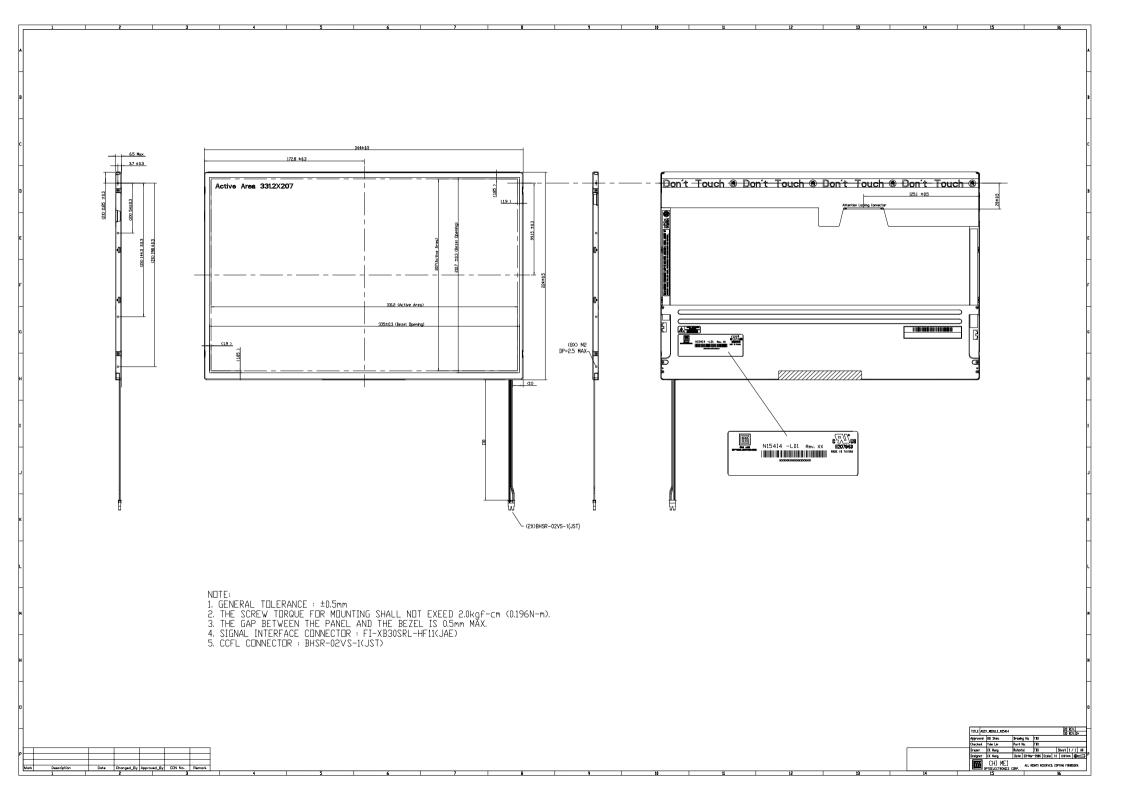
(a) Manufactured Date: Year: 1~9, for 2001~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

(b) Revision Code: cover all the change

(c) Serial No.: Manufacturing sequence of product



Issued Date: July, 05, 2006 Model No.: N154I4-L02

Approval

10.2 CARTON LABEL

CHI MEI OPTOELECTRONICS	
PO.NO	
Part ID.	
Model Name	
Carton ID.	Quantities
	Made in XXXX ROHS

