

TFT LCD Approval Specification

MODEL NO.: V216B1- L01

Customer:	
Approved by:_	
Note:	

Approved Dy	TV Head Division
Approved By	LY Chen

Reviewed By	QRA Dept.	Product Development Div.
	Tomy Chen	WT Lin

Propared By	LCD TV Marketing and Product Management Div				
Prepared By	WY Li	Steven Tu			

CONTENTS

REVISION HISTORY		3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 GENERAL 1.4 MECHANICAL		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 TFT LCD MODULE 2.3 BACKLIGHT UNIT		5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERIS	STICS	6
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE		9
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 LVDS DATA MAPPING TABLE 5.3 BACKLIGHT UNIT 5.4 COLOR DATA INPUT ASSIGNMENT		10
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		14
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		17
8. DEFINITION OF LABELS 8.1 CMO MODULE LABEL		21
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD		22
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS 10.3 SAFETY STANDARDS		24
11. MECHANICAL CHARACTERISTICS		25

REVISION HISTORY

Version	Date	Page (New)	Section	
Ver 2.0	Jul. 04,'08	All	All	Approval Specification was first issued.

GENERAL SPECIFICATIONS

1.1 OVERVIEW

The V216B1-L01 model is a 21.6 inch wide TFT-LCD module with a 4-CCFL Backlight Unit and a 30-pin 1ch-LVDS interface. This module supports 1366 x 768 (16:9 wide screen) mode and displays up to 16.7 (6-bit+Hi-FRC colors) millions colors. The inverter module for the Backlight Unit is not built in.

1.2 FEATURES

- Excellent Brightness: 400nits
- Contrast Ratio: 800:1
- Fast Response Time: 5ms
- Color Saturation: NTSC 72%
- WXGA (1366 x 768 pixels) Resolution
- DE (Data Enable) Only Mode
- LVDS (Low Voltage Differential Signaling) Interface
- Viewing Angle: 170(H)/160(V) (CR>10) TN Technology
- Color Reproduction (Nature Color)

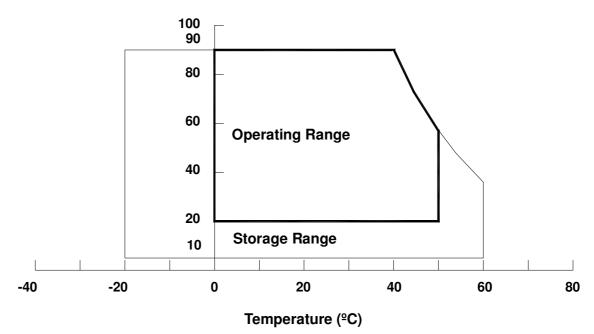
1.3 GENERAL

Item	Specification	Unit	Note
Active Area	477.417 (H) x 268.416 (V) (21.6" diagonal)	mm	
Bezel Opening Area	481.5 (H) x 272.5 (V)	mm	
Driver Element	a-si TFT active matrix	-	
Pixel Number	1366 x R.G.B. x 768	pixel	
Pixel Pitch (Sub Pixel)	0.1165 (H) x 0.3495 (V)	mm	
Pixel Arrangement	RGB vertical stripe	-	
Display Colors	16.7 millions	color	
Display Operation Mode	Transmissive mode / Normally White	-	
Surface Treatment	Hard coating (3H), AG (Haze 25%)	-	

1.4 MECHANICAL

lt	em	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	500.3	501	501.7	mm	
Module Size	Vertical(V)	296.4	297	297.6	mm	
	Depth(D)	16.8	17.3	17.8	mm	To PCB cover
We	eight	Na	2350	Na	g	

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Valu	le	Unit	Note	
Item	Symbol	Min.	Max.	Unit		
Storage Temperature	Tst	-20	+60	°C	(1)	
Operating Ambient Temperature	Тор	0	+50	°C	(1), (2)	
Shock (Non-Operating)	SNOP	-	50	G	(3), (5)	
Vibration (Non-Operating)	VNOP	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

(a) 90% RH Max. (Ta \leq 40 $^{\circ}$ C).

- (b) Wet-bulb temperature should be 39 $^{\circ}$ C Max. (Ta > 40 $^{\circ}$ C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half-sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Relative Humidity (%RH)

2.2 TFT LCD MODULE

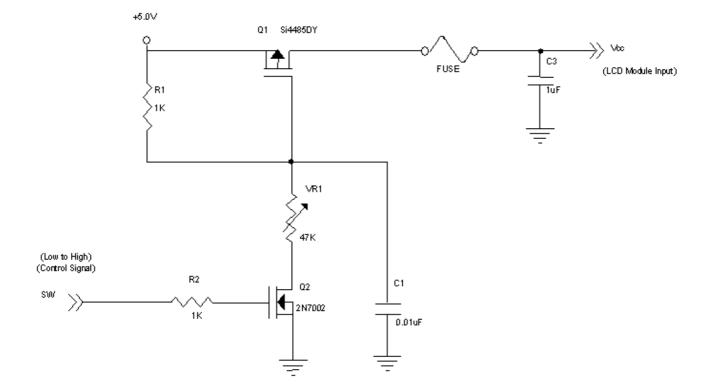
Item	Symbol	Va	lue	Unit	Note	
	Symbol	Min.	Max.	Unit	Note	
Power Supply Voltage	Vcc	-0.3	6.0	V		
Input Signal Voltage	VIN	-0.3	3.6	V		

2.3 BACKLIGHT UNIT

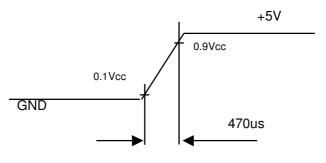
Item	Symbol	Test Condition	Min.	Туре	Max.	Unit	Note
Lamp Voltage	Vw	Ta = 25 ℃			3000	V_{RMS}	

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

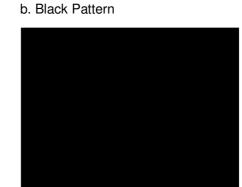

Ta = 25 ± 2 ºC	
----------------	--

Parameter		Symbol		Value	Unit	Note		
			Symbol	Min.	Тур.	Max.	Onit	NOLE
Power Supply Voltage			V _{CC}	4.5	5.0	5.5	V	(1)
Power Su	pply Ripple Vo	ltage	V _{RP}	-	-	150	mV	
Rush Current			I _{RUSH}	-	-	3.0	Α	(2)
White		White		-	0.50	-	Α	
Power Su	pply Current	Black	I _{cc}	-	0.85	0.95	Α	(3)
Vertical Stripe		Vertical Stripe		-	0.75	-	Α	
	Differential In Threshold Vo		V_{LVTH}	+100	-	-	mV	
LVDS Interface	Differential In Threshold Vo		V _{LVTL}	-	-	-100	mV	
	Common Inpu	ut Voltage	V _{LVC}	1.125	1.25	1.375	V	
Terminating Resistor			RT	-	100	-	ohm	
CMOS	Input High Threshold Voltage		VIH	2.7	-	3.3	V	
interface	Input Low Thr	eshold Voltage	VIL	0	-	0.7	V	


Note (1) The module should be always operated within above ranges.

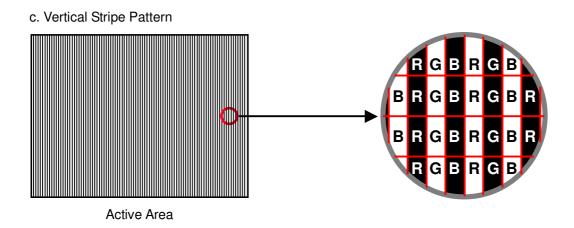
Note (2) Measurement Conditions:


Vcc rising time is 470us



Note (3) The specified power supply current is under the conditions at Vcc = 5 V, Ta = $25 \pm 2 \degree C$, $f_v = 60 Hz$, whereas a power dissipation check pattern below is displayed.

7

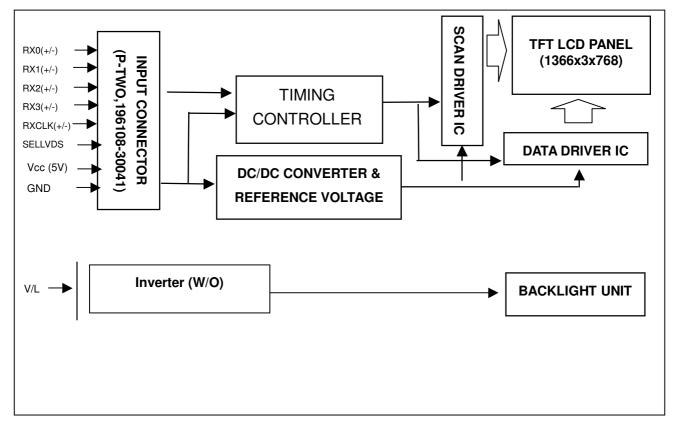

a. White Pattern

5.2 CCFL (Cold Califord Fluorescent Lamp) CHARACTERISTICS $(1a = 25 \pm 2 - 6)$										
Parameter	Symbol		Value	Unit	Note					
i arameter	Symbol	Min.	Max.	Offic	NOLE					
Lamp Voltage	Vw	-	810	-	V_{RMS}	$I_L = 7.0 \text{mA}$				
Lamp Current	١L	6.5	7.0	7.5	mA _{RMS}					
				1250	V _{RMS}	(2), Ta = 25 ºC				
Lamp Turn On Voltage	Vs			1450	V_{RMS}	(2), Ta = 0 ºC				
Operating Frequency	F_{L}	40		80	KHz	(3)				
Lamp Life Time	L_BL	50000			Hrs	(4)				

3.2 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

Note (1) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be carefully designed to avoid producing too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.

- Note (2) The lamp starting voltage V_S should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency of the



display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.

Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point of lamp.) as the time in which it continues to operate under the condition at Ta = $25 \pm 2^{\circ}$ C and I_L = 7.0 mArms.

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

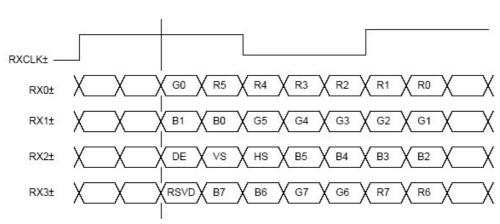
5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

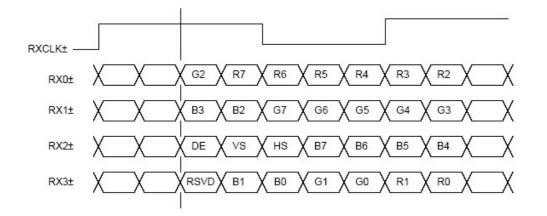
Pin No.	Symbol	Description	Note
1	NC	No Connection	(2)
2	NC	No Connection	(2)
3	NC	No Connection	(2)
4	GND	Ground	
5	RX0-	Negative transmission data of pixel 0	
6	RX0+	Positive transmission data of pixel 0	
7	GND	Ground	
8	RX1-	Negative transmission data of pixel 1	
9	RX1+	Positive transmission data of pixel 1	
10	GND	Ground	
11	RX2-	Negative transmission data of pixel 2	
12	RX2+	Positive transmission data of pixel 2	
13	GND	Ground	
14	RXCLK-	Negative of clock	
15	RXCLK+	Positive of clock	
16	GND	Ground	
17	RX3-	Negative transmission data of pixel 3	
18	RX3+	Positive transmission data of pixel 3	
19	GND	Ground	
20	NC	No Connection	(2)
21	SELLVDS	Select LVDS data format	(3)
22	NC	No Connection	(2)
23	GND	Ground	
24	GND	Ground	
25	GND	Ground	
26	VCC	Power supply: +5V	
27	VCC	Power supply: +5V	
28	VCC	Power supply: +5V	
29	VCC	Power supply: +5V	
30	VCC	Power supply: +5V	

Note (1) Connector part no.: P-TWO 196108-30041 (1.0mm FFC) or compatible

Note (2) Reserved for CMO internal use, please leave it open


Note (3) Low: JEIDA data format. High/open: VESA data format.

Note (4) Logic level voltage definition: Low: 0V, High: 3.3V



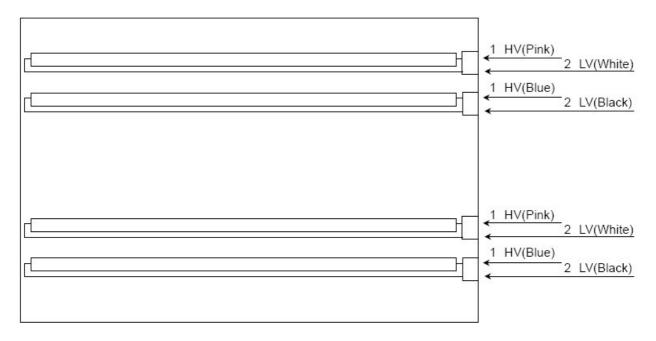
5.2 LVDS DATA MAPPING TABLE

SELLVDS = H or Open (VESA)

SELLVDS = L (JEIDA)

R0~R7: Pixel R Data (7; MSB, 0; LSB)

G0~G7: Pixel G Data (7; MSB, 0; LSB)


B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE: Data enable signal

Note (1) RSVD (reserved) pins on the transmitter shall be "H" or "L"

5.3 BACKLIGHT UNIT

5.4 COLOR DATA INPUT ASSIGNMENT

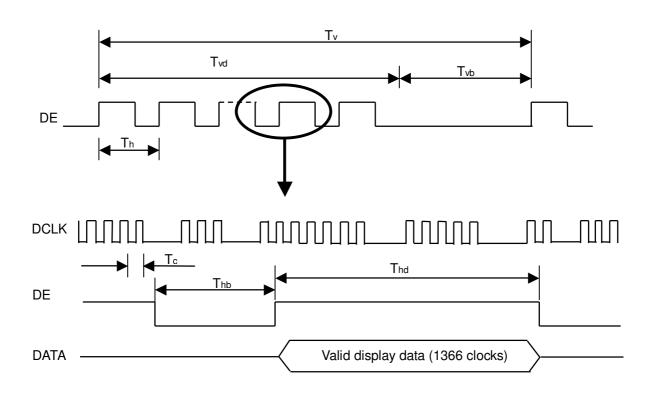
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

										1		Da	ata	Sigr	nal			1							
	Color		1		Re	ed		1					G	reer	٦ ١				1		Bl	ue			
	T	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Crow	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
neu	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Cieen	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Dide	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

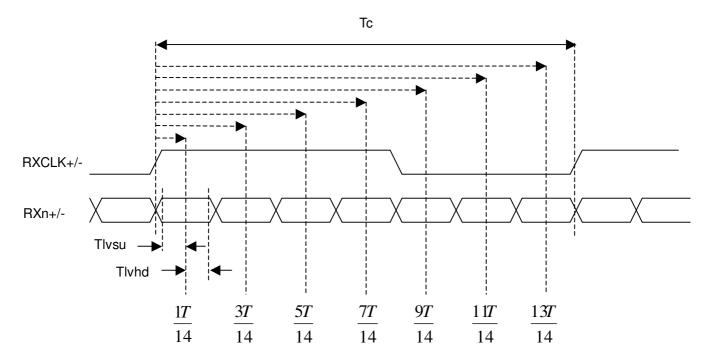
6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

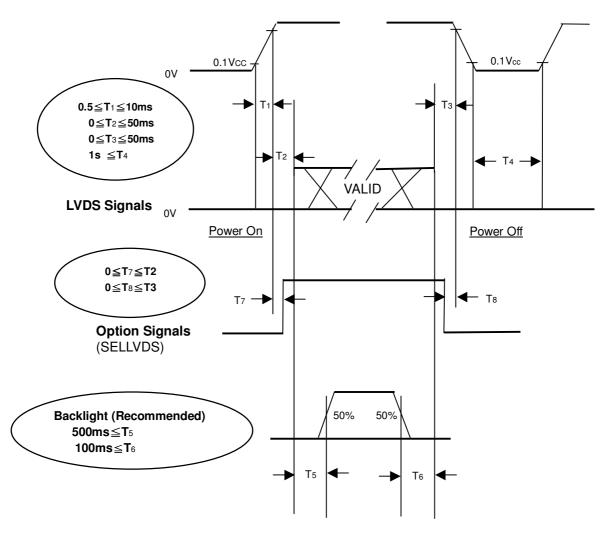

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	1/Tc	60	76	82	MHz	
LVDS Receiver Clock	Input cycle to cycle Jitter	Trcl	-	-	200	ps	
LVDS Receiver Data	Setup Time	Tlvsu	600	-	-	ps	
LVDS Receiver Data	Hold Time	Tlvhd	600	-	-	ps	
	Frame Rate	Fr	47	50	53	Hz	
Vertical Active Display Term	Fidille nale		57	60	63	112	
Vertical Active Display Term	Total	Τv	778	806	888	Th	Tv=Tvd+Tvb
	Display	Tvd	768	768	768	Th	-
	Blank	Tvb	10	38	120	Th	-
	Total	Th	1442	1560	1936	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	1366	1366	1366	Tc	-
	Blank	Thb	76	194	570	Tc	-

Note (1) Since this module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.


(2) Please refer to 5.1 for detail information.

INPUT SIGNAL TIMING DIAGRAM



6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

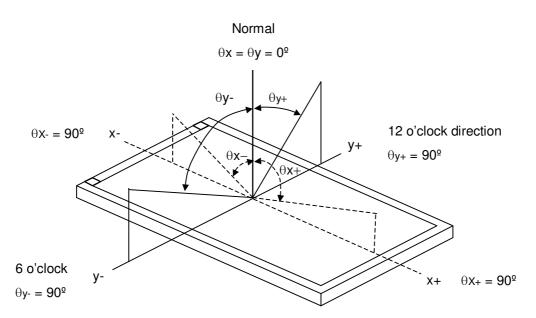
Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.

- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0,that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit				
Ambient Temperature	Та	25±2	٥C				
Ambient Humidity	Ha	50±10	%RH				
Supply Voltage	Vcc	5.0	V				
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"						
Inverter Current	۱L	7.0	mA				
Inverter Driving Frequency	FL	50	KHz				
Dimming frequency	F _B	160 (type)	Hz				
Minimum Duty Ratio	D _{MIN}	20	%				
Inverter	Ampower (27-D024817)						


7.2 OPTICAL CHARACTERISTICS

lte	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio)	CR		600	800		-	(2)
Boononoo Tim		T _R			1.3	2.2		(2)
Response Tim	le	T _F			3.7	5.8	ms	(3)
Center Lumina	ance of White	L _C		300	400			(4)
White Variatio	n	δW				1.3	-	(7)
Cross Talk		СТ				4	%	(5)
	Ded	Rx	θ _x =0°, θ _Y =0°	Тур. -0.03	0.644		-	(6)
	Red	Ry	Viewing Angle at		0.331	Тур. +0.03	-	
	Green	Gx	Normal Direction		0.273		-	
		Gy			0.588		-	
Color	Blue	Bx			0.151		-	
Chromaticity		Ву			0.061		-	
	White	Wx			0.285		-	
	vvriite	Wy			0.293		-	
	Color Gamut	CG		68	72		%	NTSC Ratio
	Llevizentel	θ _x+		75	85			
Viewing	Horizontal	θ _x -		75	85		Dag	(1)
Angle	Vertical	θ γ+	CR≥10	70	80		Deg.	
	venical	θ γ-		70	80			

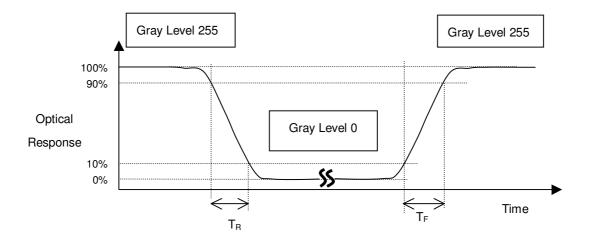
Note (1) Definition of Viewing Angle ($\theta x, \theta y$):

Viewing angles are measured by EZ-Contrast 160R (Eldim)

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0


L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(5),

CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

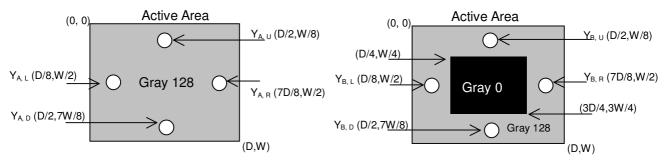
Note (3) Definition of Response Time (T_R, T_F) :

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point and 5 points

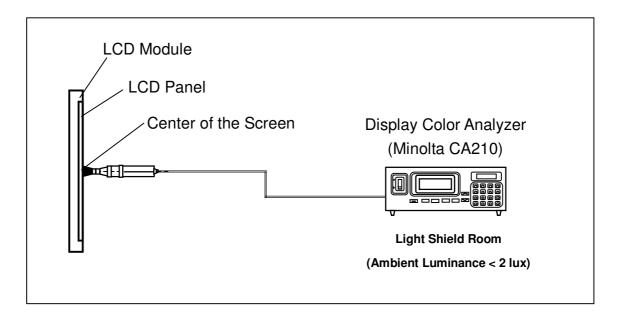
 $L_{C}=L\left(5\right)$

L (X) is corresponding to the luminance of the point X at the figure in Note (7).


Note (5) Definition of Cross Talk (CT):

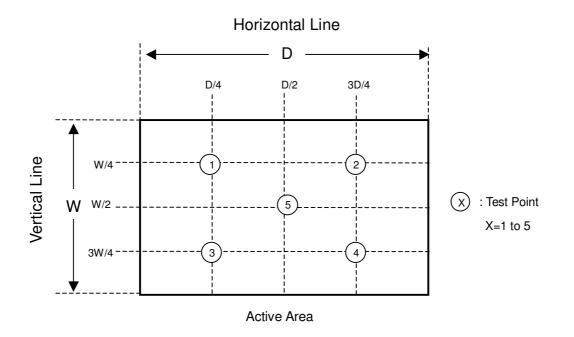
$$CT = |Y_B - Y_A| / Y_A \times 100$$
 (%)

Where:


 Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

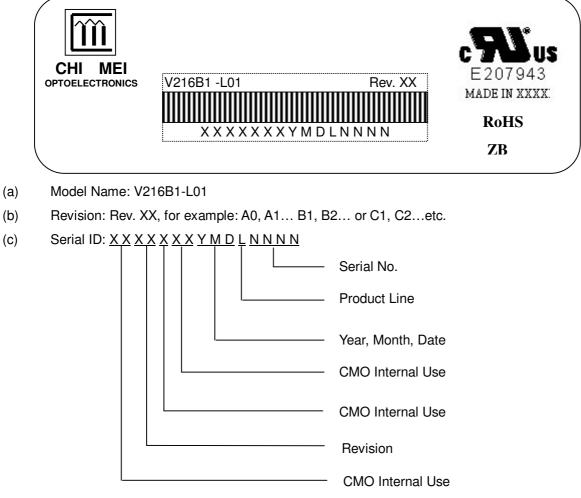
 Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:


The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

Note (7) Definition of White Variation (δ W):

Measure the luminance of gray level 255 at 5 points $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$



8. DEFINITION OF LABELS

8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(d) Production Location:XXXX, for example:TAIWAN or CHINA.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2000~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: $1 \sim 9$, $A \sim Y$, for 1^{st} to 31^{st} , exclude I ,O, and U.

(b) Revision Code: Cover all the change

(c) Serial No.: Manufacturing sequence of product

(d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

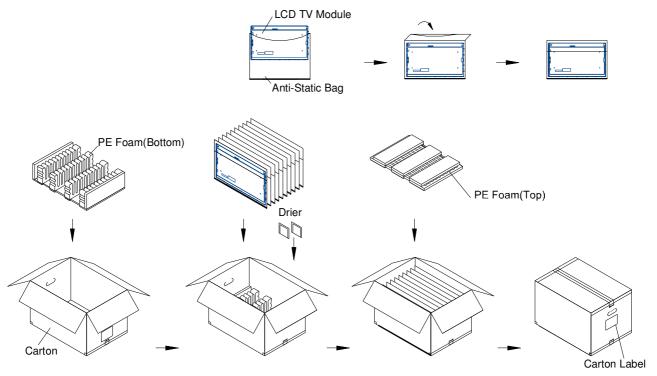
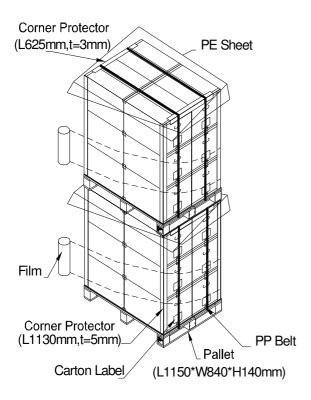
9. PACKAGING

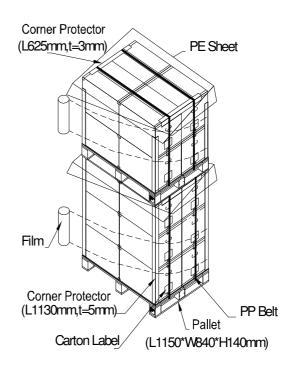
9.1 PACKING SPECIFICATIONS

- (1) 10 LCD TV modules / 1 Box
- (2) Box dimensions: 563(L) X 408 (W) X 530 (H)
- (3) Weight: approximately 25Kg (10 modules per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method


Figure.9-1 Packing Method

Sea / Land Transportation (40ft HQ Container) Pallet Stack: L840*W1150*H2530mm Gross:630kg

Sea / Land Transportation (40ft HQ Container) Pallet Stack: L840*W1150*H2155mm Gross:530kg

Air Transportation

Pallet Stack:L840*W1150*H1265m Gross:315kg

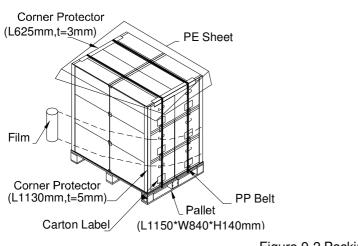


Figure.9-2 Packing Method

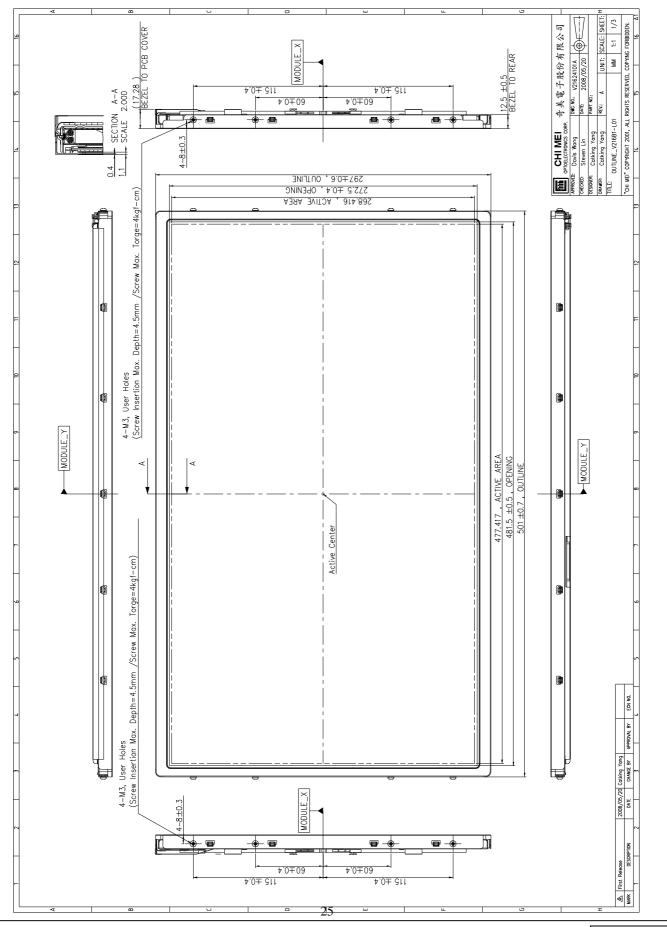
10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

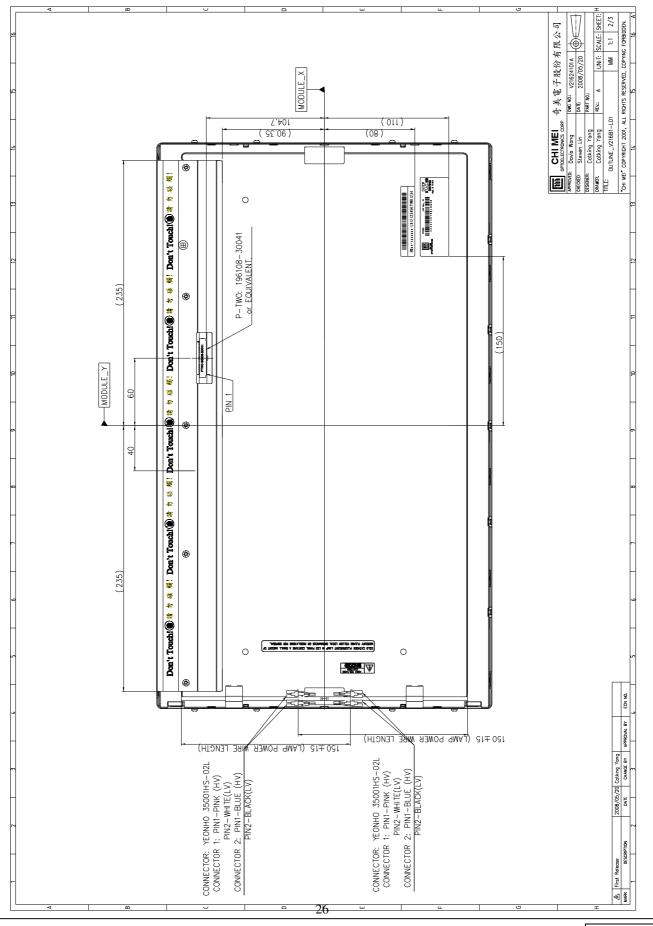
10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

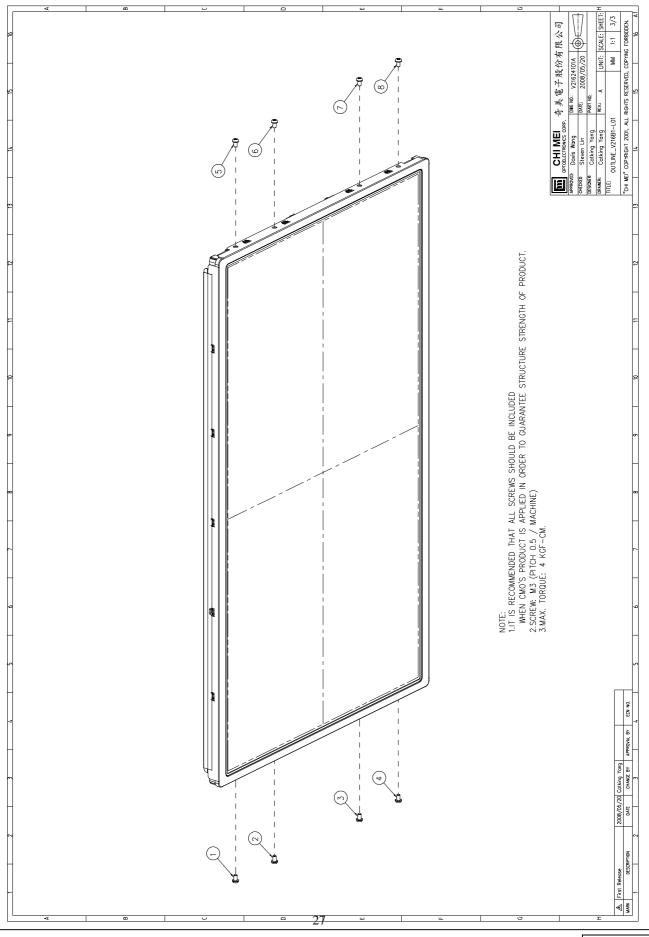

10.3 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.
- (3) UL60065 or updated standard.
- (4) IEC60065 or updated standard.



11. MECHANICAL CHARACTERISTIC


Version 2.0

Version 2.0

Version 2.0