

TFT LCD Approval Specification

MODEL NO.: V315B1 - L07

Customer:
Approved by:
Note:

Approved Dy	TVHD				
Approved By	LY Chen				
Reviewed By	QRA Dept.	Product Development Div.			
Tieviewed by	Tomy Chen	WT Lin			

Prepared By

LCD TV Marketing and Product Management Div.

Denise Shieh Jim Ho

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	 4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT	 5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT INVERTER UNIT 3.2.1 CCFL(Cold Cathode Fluorescent Lamp) CHARACTE 3.2.2 INVERTER CHARACTERISTICS 3.2.3 INVERTER INTERFACE CHARACTERISTICS	7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE	 12
5. INTERFACE PIN CONNECTION 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 INVERTER UNIT 5.4 BLOCK DIAGRAM OF INTERFACE 5.5 LVDS INTERFACE 5.6 COLOR DATA INPUT ASSIGNMENT	 13
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	 19
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 22
8. DEFINITION OF LABELS 8.1 CMO MODULE LABEL	 26
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD	 27
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS	 29
11. REGULATORY STANDARDS 11.1 SAFETY	 29
12. MECHANICAL CHARACTERISTICS	 30

REVISION HISTORY

Version Date Page (New) Section Description Ver 2.0 Jun 13,'07 All All Approval Specification was first issued.	
Ver 2.0 Jun 13,'07 All Approval Specification was first issued.	

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V315B1- L07 is a 31.5" TFT Liquid Crystal Display module with 16-CCFL Backlight unit and 1ch-LVDS interface. This module supports 1366 x 768 WXGA format and can display true 16.7M colors (8-bit colors). The inverter module for backlight is built-in.

1.2 FEATURES

- -High brightness (500 nits)
- Ultra-high contrast ratio (1500:1)
- Faster response time (gray to gray average 6.5ms)
- High color saturation NTSC 72%
- Ultra wide viewing angle: 176(H)/176(V) (CR>20) with Super MVA technology
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- 180 degree rotation display (option)
- Color reproduction (nature color)
- Low color shift function
- RoHS Compliance

1.3 APPLICATION

- TFT LCD TVs
- Multi-Media Display

1.4 GENERAL SPECIFICATIONS

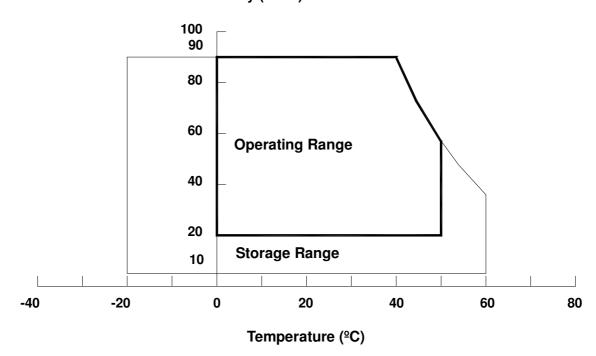
ltem	Specification	Unit	Note
Active Area	697.6845 (H) x 392.256 (V) (31.51" diagonal)	mm	(1)
Bezel Opening Area	703.8 (H) x 398.4 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	
Pixel Number	1366 x R.G.B. x 768	pixel	
Pixel Pitch (Sub Pixel)	0.17025(H) x 0.51075 (V)	mm	
Pixel Arrangement	RGB vertical stripe	-	
Display Colors	16.7M	color	
Display Operation Mode	Transmissive mode / Normally black	ı	
Surface Treatment	Anti-Glare coating (Haze 25%), Hard coating (3H)	-	

1.5 MECHANICAL SPECIFICATIONS

Į†	Item		Тур.	Max.	Unit	Note
	Horizontal(H)	759	760	761	mm	(1)
Module Size	Vertical(V)	449	450	451	mm	(1)
Module Size	Depth(D)	36.95	37.95	38.95	mm	To PCB cover
	Depth(D)	46.4	47.4	48.4	mm	To inverter cover
W	eight	6300	6500	6700	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Syllibol	Min.	Max.	Offit	Note	
Storage Temperature	T _{ST}	-20	+60	ōC	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	ōC	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 ${}^{\circ}$ C).
- (b) Wet-bulb temperature should be 39 $^{\circ}$ C Max. (Ta > 40 $^{\circ}$ C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Relative Humidity (%RH)

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note
	Syllibol	Min. M	Max.	Ullit	Note
Power Supply Voltage	Vcc	-0.3	13.0	V	(1)
Input Signal Voltage	VIN	-0.3	3.6	V	(1)

2.2.2 BACKLIGHT UNIT

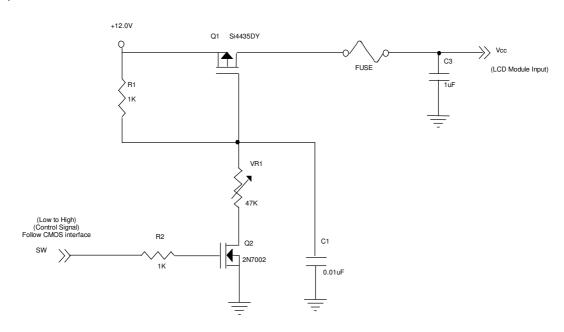
Item	Symbol			Unit	Note	
item	Syllibol	Min.	Max.	Offic	Note	
Lamp Voltage	V_W	_	3000	V_{RMS}		
Power Supply Voltage	V_{BL}	0	30	٧	(1)	
Control Signal Level	_	-0.3	7	V	(1), (3)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating conditions.

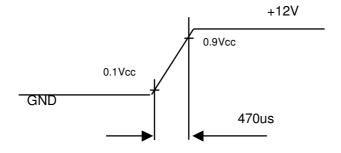
Note (2) No moisture condensation or freezing.

Note (3) The control signals includes Backlight On/Off Control, I_PWM Control, E_PWM Control and ERR signal for inverter status output.

3. ELECTRICAL CHARACTERISTICS

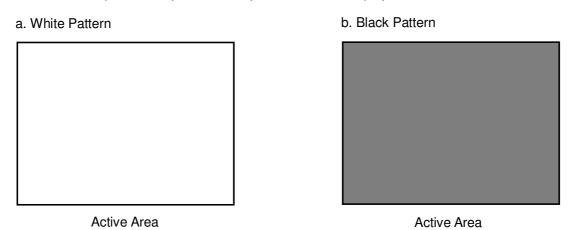

3.1 TFT LCD MODULE

 $Ta = 25 \pm 2 \,{}^{\circ}C$


Parameter		Symbol		Value		Unit	Note	
	Faramet	EI	Syllibol	Min.	Тур.	Max.	Offic	. Note
Power Supply Voltage		V_{CC}	11.4	12.0	12.6	V	(1)	
Power Su	pply Ripple Vo	Itage	V_{RP}	ı	ı	100	mV	
Rush Curi	rent		I _{RUSH}	ı	ı	2.3	Α	(2)
		White		ı	0.63	0.80	Α	
Power Su	pply Current	Black	I _{CC}	ı	0.30	-	Α	(3)
Vertical		Vertical Stripe		ı	0.58	-	Α]
LVDC	Differential Input High Threshold Voltage		V_{LVTH}	1	-	+100	mV	
Interface	Interface Differential Input Low Threshold Voltage		V_{LVTL}	-100	-	-	mV	
Common Input			V_{LVC}	1.125	1.25	1.375	V	
Terminating Resistor		R _T	-	100	-	ohm		
CMOS	Input High Threshold Voltage		V_{IH}	2.7	- 1	3.3	V	
interface	Input Low Thr	eshold Voltage	V_{IL}	0	-	0.7	V	·

Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:



Vcc rising time is 470us

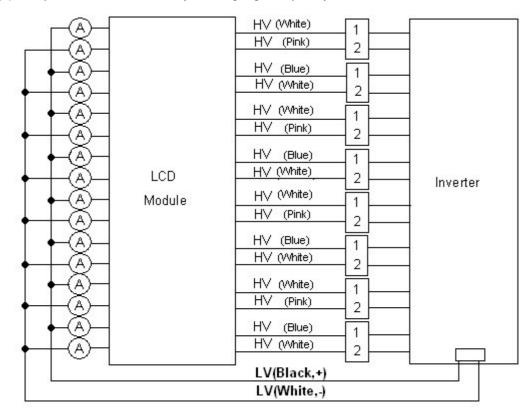
Note (3) The specified power supply current is under the conditions at Vcc = 12 V, Ta = 25 \pm 2 $^{\circ}$ C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

c. Vertical Stripe Pattern RGBRG BRGBRG

Active Area

3.2 BACKLIGHT INVERTER UNIT

3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)


Parameter	Symbol	Value				Note	
Farameter	Syllibol	Min.	Тур.	Max.	Unit	Note	
Lamp Voltage	V_W	-	1250	-	V_{RMS}	$I_L = 5.2 \text{mA}$	
Lamp Current	Ι _L	4.7	5.2	5.7	mA_{RMS}	(1)	
	V	-	-	2450	V_{RMS}	(2), Ta = 0 ^o C	
Lamp Starting Voltage	Vs	-	-	2360	V_{RMS}	(2), Ta = 25 ^o C	
Operating Frequency	Fo	40	-	70	KHz	(3)	
Lamp Life Time	L_BL	50,000		-	Hrs	(4)	

3.2.2 INVERTER CHARACTERISTICS (Ta = 25 ± 2 $^{\circ}$ C)

Parameter	Symbol			Unit	Note	
Farameter	Syllibol	Min.	Тур.	Max.	Offic	Note
Power Consumption	P_{BL}	-	110	120	W	$(5),(6), I_L = 5.2mA$
Input Voltage	V_{BL}	22.8	24	25.2	V_{DC}	
Input Current	I_{BL}	1	5.0	1	Α	Non Dimming
Input Ripple Noise	-	ı	-	500	mV_{P-P}	V _{BL} =22.8V
Oscillating Frequency	Fw	63	66	69	kHz	
Dimming frequency	F _B	150	160	170	Hz	
Minimum Duty Ratio	D _{MIN}	-	20	-	%	

Note (1) Lamp current is measured by utilizing high frequency current meters as shown below:

- Note (2) The lamp starting voltage V_S should be applied to the lamp for more than 1 second under starting up duration. Otherwise the lamp could not be lighted on completed.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency of the display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point of lamp.) as the time in which it continues to operate under the condition at Ta = 25 $\pm 2^{\circ}$ C and I_L = 4.7 ~ 5.7 mA_{RMS}.
- Note (5) The power supply capacity should be higher than the total inverter power consumption P_{BL}. Since

the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when inverter dimming.

Note (6) The measurement condition of Max. value is based on 31.5" backlight unit under input voltage 24V, average lamp current 5.5 mA and lighting 30 minutes later.

3.2.3 INVERTER INTERFACE CHARACTERISTICS

No	ITEM	SYMBOL	TEST CONDITION	MIN	TYPE	MAX	UNIT	NOTE ⁽¹⁻²⁾			
1	Error Signal		ERR	_	_	_	_	_	(Note 2)		
2	On/Off Control Voltage	ON	V		2.0		5.0	٧			
	On/Off Control Voltage	OFF	V_{BLON}	_	0		0.8	٧			
0		MAX	.,		3.15	3.3	3.45	V	Maximum Duty Ratio		
3	Internal PWM Control Voltage	MIN	V_{IPWM}	Ī	_	0	I	V	Minimum Duty Ratio		
4	1 External DMM Central Valtage		kternal PWM Control Voltage HI VEP		V_{EPWM}	_	2.0		5.0	V	ON Duration
4	4 External PVVIVI Control Voltage	LO	V EPWM		0	1	8.0	V	OFF Duration		
5	VBL Rising Time	Tr1	_	30	_	50	ms				
6	VBL Falling Time		Tf1	_	30	_	50	ms			
7	Control Signal Rising Time	е	Tr	_	_	_	100	ms			
8	Control Signal Falling Tim	е	Tf	_	_	_	100	ms			
9	PWM Signal Rising Tim	е	T_{PWMR}		_		50	us			
10	PWM Signal Falling Tim	е	T_{PWMF}				50	us			
11	Input impedance		R _{IN}	_	1		_	$M\Omega$			
12	PWM Delay Time		T _{PWM}	_	100		300	mS			
13	BLON Delay Time		T _{on}	_	300	_	500	mS			
14	BLON Off Time		T _{OFF}	_	300	_	500	mS			

Note (1) The power sequence and control signal timing are shown as the following figure 1.

Note (2) When inverter protective function is triggered, ERR will output open collector status; In normal operation, the signal of ERR will output a low level voltage.

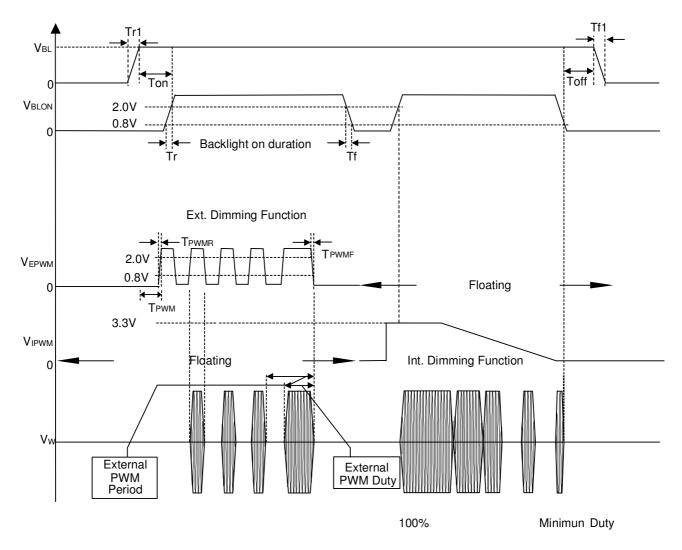
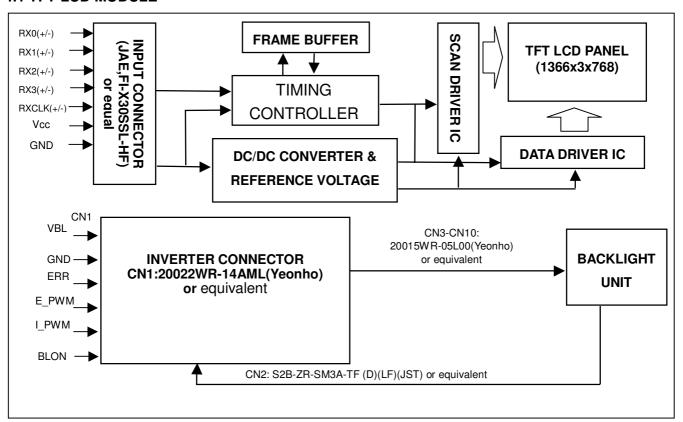



Figure 1

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

5. INTERFACE PIN CONNECTION

5.1 TFT LCD MODULE

CNF1 Connector Pin Assignment

Pin No.	Symbol	Description	Note
1	VCC	Power supply: +12V	
2	VCC	Power supply: +12V	
3	VCC	Power supply: +12V	
4	VCC	Power supply: +12V	
5	GND	Ground	
6	GND	Ground	
7	GND	Ground	
8	GND	Ground	
9	SELLVDS	Select LVDS data format	(2)
10	ODSEL	Overdrive Lookup Table Selection	(3)
11	GND	Ground	
12	RX0-	Negative transmission data of pixel 0	
13	RX0+	Positive transmission data of pixel 0	
14	GND	Ground	
15	RX1-	Negative transmission data of pixel 1	
16	RX1+	Positive transmission data of pixel 1	
17	GND	Ground	
18	RX2-	Negative transmission data of pixel 2	
19	RX2+	Positive transmission data of pixel 2	
20	GND	Ground	
21	RXCLK-	Negative of clock	
22	RXCLK+	Positive of clock	
23	GND	Ground	
24	RX3-	Negative transmission data of pixel 3	
25	RX3+	Positive transmission data of pixel 3	
26	GND	Ground	
27	NC	No connection	(4)
28	NC	No connection	(4)
29	GND	Ground	
30	GND	Ground	

Note (1) Connector Part No.: FI-X30SSL-HF(JAE) or compatible

Note (2) Please refer to 5.5 LVDS INTERFACE (Page 17)

Note (3) Overdrive lookup table selection. The Overdrive lookup table should be selected in accordance to the frame rate to optimize image quality.

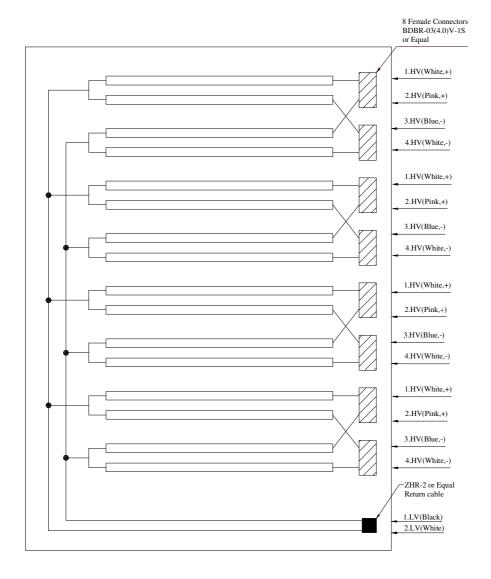
ODSEL Note							
L or Open	Lookup table was optimized for 50 Hz frame rate.						
Н	Lookup table was optimized for 60 Hz frame rate.						

Note (4) Reserved for internal use. Left it open.

5.2 BACKLIGHT UNIT

The pin configuration for the housing and leader wire is shown in the table below.

CN3-CN10 (Housing): BDBR-03(4.0)V-1S or equivalent


Pin No.	Symbol	Description	Wire Color
1	HV	High Voltage	White
2	HV	High Voltage	Pink
3	HV	High Voltage	Blue
4	HV	High Voltage	White

Note (1) The backlight interface housing for high voltage side is a model BDBR-03(4.0)V-1S, manufactured by JST or equivalent. The mating header on inverter part number is SM02(8.0)B-BDBS-1-TB(LF)

CN2 (Housing): ZHR-2 (JST) or equivalent

Pin No.	Symbol	Description	Wire Color			
1	LV	Low Voltage (+)	Black			
2	LV	Low Voltage (-)	White			

Note (2) The backlight interface housing and return cable for low voltage side is a model ZHR-2, manufactured by JST or equivalent. The mating header on inverter part number is S2B-ZR-SM3A-TF(D)(LF) or equivalent.

5.3 INVERTER UNIT

CN1(Header): 20022WR-14AML(Yeonho) or equivalent..

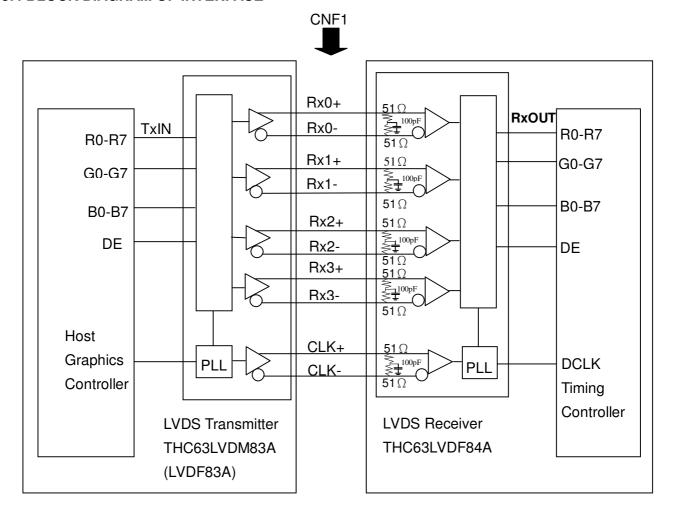
Pin No.	Symbol	Description						
1	-							
2								
3	VBL	+24V Power input						
4								
5								
6								
7								
8	GND	Ground						
9								
10								
11	ERR	Normal (GND) Abnormal (open collector)						
12	BLON	Backlight on/off control						
13	I_PWM	Internal PWM control signal						
14	E_PWM	External PWM control signal						

Notice:

#PIN 13:Analog Dimming Control (Use Pin 13): 0V~3.3V and Pin 14 must open.

#PIN 14:PWM Dimming Control (Use Pin 14): Pin 13 must open.

 $\#Pin\ 13(I_PWM)$ and $Pin\ 14(E_PWM)$ can not open in same period.


CN2(Header): S2B-ZR-SM3A-TF(D)(LF)(JST) or equivalent

	Pin No.	Symbol	Description
Ī	1	CCFL COLD	CCFL low voltage (+)
Ī	2	CCFL COLD	CCFL low voltage (-)

CN3-CN10 (Header): 20015WR-05L00(Yeonho) or equivalent.

Pin No.	Symbol	Description
1	CCFL HOT	CCFL high voltage
2	CCFL HOT	CCFL high voltage

5.4 BLOCK DIAGRAM OF INTERFACE

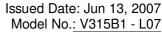
R0~R7 : Pixel R Data ,
G0~G7 : Pixel G Data ,
B0~B7 : Pixel B Data ,
DE : Data enable signal

Note (1) The system must have the transmitter to drive the module.

Note (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

5.5 LVDS INTERFACE

	SIGNAL			ISMITTER 3LVDM83A	INTERF CONNE			ECEIVER 63LVDF84A	TFT CONTROL INPUT		
	SELLVDS =L or OPEN	SELLVDS =H	PIN	INPUT	Host	TFT-LCD	PIN	OUTPUT	SELLVDS =L or OPEN	SELLVDS =H	
	R0	R2	51	TxIN0			27	Rx OUT0	R0	R2	
	R1	R3	52	TxIN1			29	Rx OUT1	R1	R3	
	R2	R4	54	TxIN2	TA OUT0+	Rx 0+	30	Rx OUT2	R2	R4	
	R3	R5	55	TxIN3			32	Rx OUT3	R3	R5	
	R4	R6	56	TxIN4			33	Rx OUT4	R4	R6	
	R5	R7	3	TxIN6	TA OUT0-	Rx 0-	35	Rx OUT6	R5	R7	
	G0	G2	4	TxIN7			37	Rx OUT7	G0	G2	
	G1	G3	6	TxIN8			38	Rx OUT8	G1	G3	
	G2	G4	7	TxIN9			39	Rx OUT9	G2	G4	
	G3	G5	11	TxIN12	TA OUT1+	Rx 1+	43	Rx OUT12	G3	G5	
	G4	G4 G6 12	12	TxIN13			45	Rx OUT13	G4	G6	
	G5	G7	14	TxIN14			46	Rx OUT14	G5	G7	
	В0	B2	15	TxIN15	TA OUT1-	Rx 1-	47	Rx OUT15	B0	B2	
	B1	В3	19	TxIN18			51	Rx OUT18	B1	В3	
24	B2	B4	20	TxIN19			53	Rx OUT19	B2	B4	
bit	В3	B5	22	TxIN20			54	Rx OUT20	В3	B5	
	B4	В6	23	TxIN21	TA OUT2+	Rx 2+	55	Rx OUT21	B4	В6	
	B5	В7	24	TxIN22			1	Rx OUT22	B5	В7	
	DE	DE	30	TxIN26			6	Rx OUT26	DE	DE	
	R6	R0	50	TxIN27	TA OUT2-	Rx 2-	7	Rx OUT27	R6	R0	
	R7	R1	2	TxIN5			34	Rx OUT5	R7	R1	
	G6	G0	8	TxIN10			41	Rx OUT10	G6	G0	
	G7	G1	10	TxIN11			42	Rx OUT11	G7	G1	
	В6	В0	16	TxIN16	TA OUT3+	Rx 3+	49	Rx OUT16	В6	В0	
	В7	B1	18	TxIN17			50	Rx OUT17	В7	B1	
	RSVD 1	RSVD 1	25	TxIN23			2	Rx OUT23	NC	NC	
	RSVD 2	RSVD 2	27	TxIN24	TA OUT3-	Rx 3-	3	Rx OUT24	NC	NC	
	RSVD 3	RSVD 3	28	TxIN25			5	Rx OUT25	NC	NC	
	DC	LK	31	TxCLK IN	TxCLK OUT+	RxCLK IN+	26	RxCLK OUT	DC	LK	
					TxCLK OUT-	RxCLK IN-					


R0~R7: Pixel R Data (7; MSB, 0; LSB)

G0~G7: Pixel G Data (7; MSB, 0; LSB)

B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE: Data enable signal

Notes(1) RSVD(reserved)pins on the transmitter shall be "H" or ("L" or OPEN)

5.6 COLOR DATA INPUT ASSIGNMENT

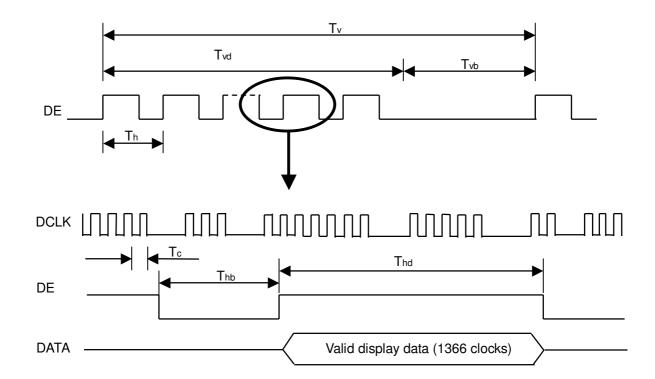
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

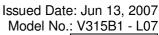
00101 1	ersus data iriput.											D:	ata '	Qia-	201										
Color					Re	ad .				Data Signal Green								Blue							
COIOI		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5		G3	G2	G1	G0	B7	В6	B5	B4	B3	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
001010	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	:	:		:		:	:	:	:	:	:	:		:		:	:	:	:	:	:	:		:	:
Of	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Dide	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

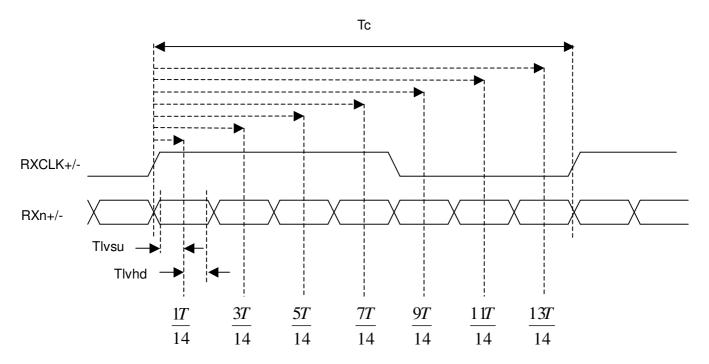

The input signal timing specifications are shown as the following table and timing diagram.

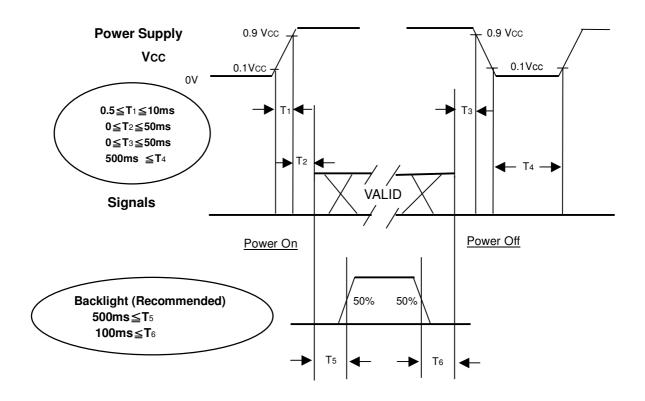

			_				
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	1/Tc	60	76	88	MHz	
LVDS Receiver Clock	Input cycle to cycle jitter	Trcl	-	-	200	ps	
LVDS Receiver Data	Setup Time	Tlvsu	600	-	-	ps	
LVDS Receiver Data	Hold Time	Tlvhd	600	-	-	ps	
	Frame Rate	Fr5	47	50	53	Hz	(2)
	riame hate	Fr6	57	60	63	Hz	(2)
Vertical Active Display Term	Total	Tv	778	806	888	Th	Tv=Tvd+Tvb
	Display	Tvd	768	768	768	Th	-
	Blank	Tvb	10	38	120	Th	-
	Total	Th	1442	1560	1936	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	1366	1366	1366	Tc	-
	Blank	Thb	76	194	570	Tc	-

Note (1) Since this module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

(2) Please refer to 5.1 for detail information.

INPUT SIGNAL TIMING DIAGRAM




LVDS RECEIVER INTERFACE TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

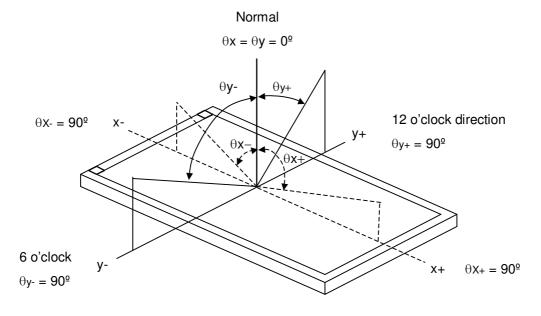
- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Ta	25±2	°C		
Ambient Humidity	На	50±10	%RH		
Supply Voltage	V_{CC}	5.0	V		
Input Signal	According to typical v	alue in "3. ELECTRICAL (CHARACTERISTICS"		
Lamp Current	lμ	5.2 ± 0.5	mA		
Oscillating Frequency (Inverter)	F_W	66±3	KHz		
Frame rate		60	Hz		

7.2 OPTICAL SPECIFICATIONS


The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

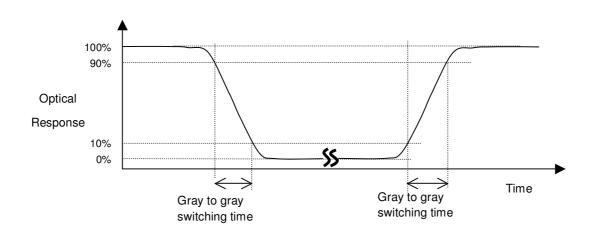
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		1200	1500		-	(2)
Response Time (Frame rate:50Hz)		Gray to gray average		-	8.5	12	ms	(3)
Center Luminance of White		L _C	θ _x =0°, θ _Y =0°	400	500	-	cd/	(4)
Average Luminance of White		L _{AVE}		400	450	-	cd/	
White Variation		δW		-	-	1.3	-	(7)
Cross Talk		CT		-	-	4.0	%	(5)
Color Chromaticity	Red	Rx	Viewing angle at		0.642		-	
		Ry	normal direction	0.333 0.272 Typ 0.594 -0.03 0.144 0.068 0.280 0.29		-		
	Green	Gx			0.272	Тур +0.03	-	(6)
		Gy			0.594		-	
	Blue	Bx			0.144		-	
		Ву			0.068		-	
	White	Wx			0.280		-	
		Wy			0.29		-	
	Color Gamut	CG		70	72		%	NTSC
Viewing Angle	Horizontal	θ_x +	CR≥20	80	88	-	Deg	(1)
		θ_{x} -		80	88	ı		
	Vertical	θ _Y +		80	88	-		
		θ_{Y} -		80	88	-		

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by EZ-Contrast 160R (Eldim)

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Gray to Gray Switching Time:

The driving signal means the signal of gray level 0, 63, 127, 191, 255.

Gray to gray average time means the average switching time of gray level 0,63,127,191,255 to each other .

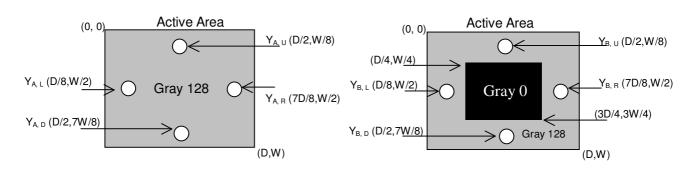
Note (4) Definition of Luminance of White (L_C, L_{AVE}):

Measure the luminance of gray level 255 at center point and 5 points

$$L_{C} = L (5)$$

$$L_{AVE} = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$$

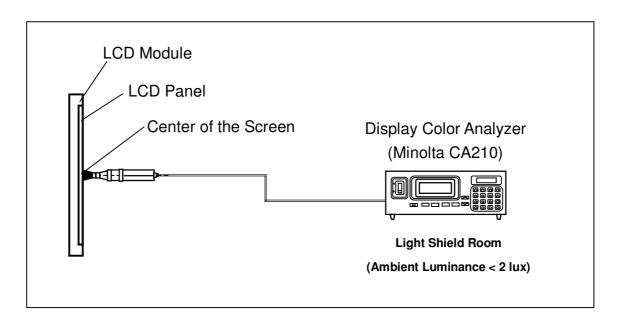
where L (x) is corresponding to the luminance of the point X at the figure in Note (7).


Note (5) Definition of Cross Talk (CT):

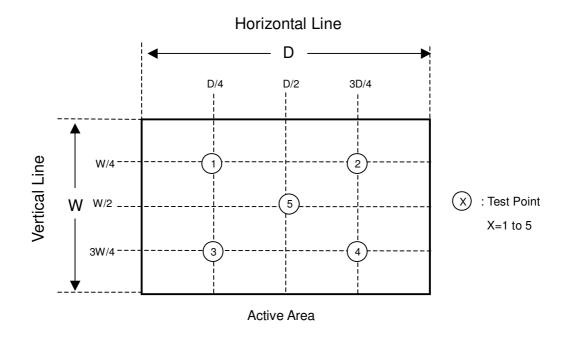
$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

 Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)


Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

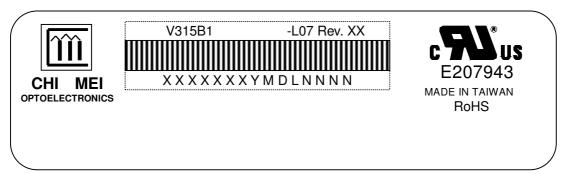
Note (6) Measurement Setup:

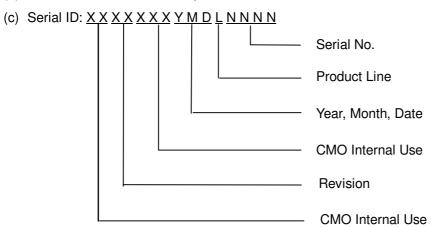

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$




8. DEFINITION OF LABELS

8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: V315B1-L07
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2000~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

- (b) Revision Code: Cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

9. PACKAGING

9.1 PACKING SPECIFICATIONS

(1) 4 LCD TV modules / 1 Box

(2) Box dimensions: 906(L) X 384 (W) X 580 (H)

(3) Weight: approximately 31.5Kg (4 modules per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

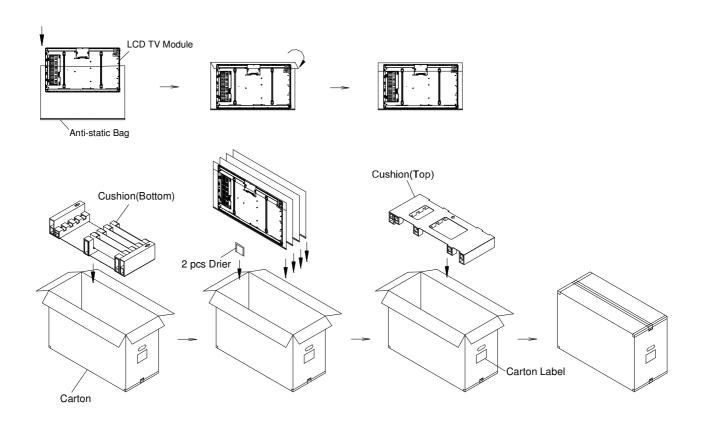
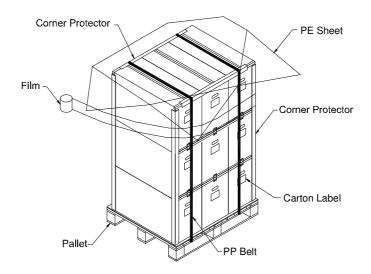



Figure.9-1 packing method

Sea Transportation

Corner Protector:L1130*50mm*50mm Corner Protector:L1400*50mm*50mm Pallet:L950*W1180*H140mm Pallet Stack:L950*W1180*H1880mm Gross:300kg

Air Transportation

Corner Protector:L1130*50mm*50mm Pallet:L950*W1180*H140mm Pallet Stack:L950*W1180*H1300mm Gross:205kg

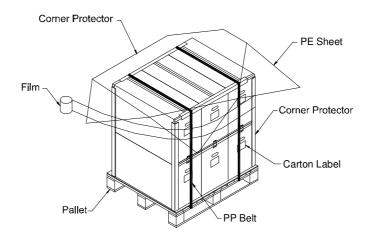
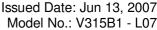



Figure. 9-2 Packing method

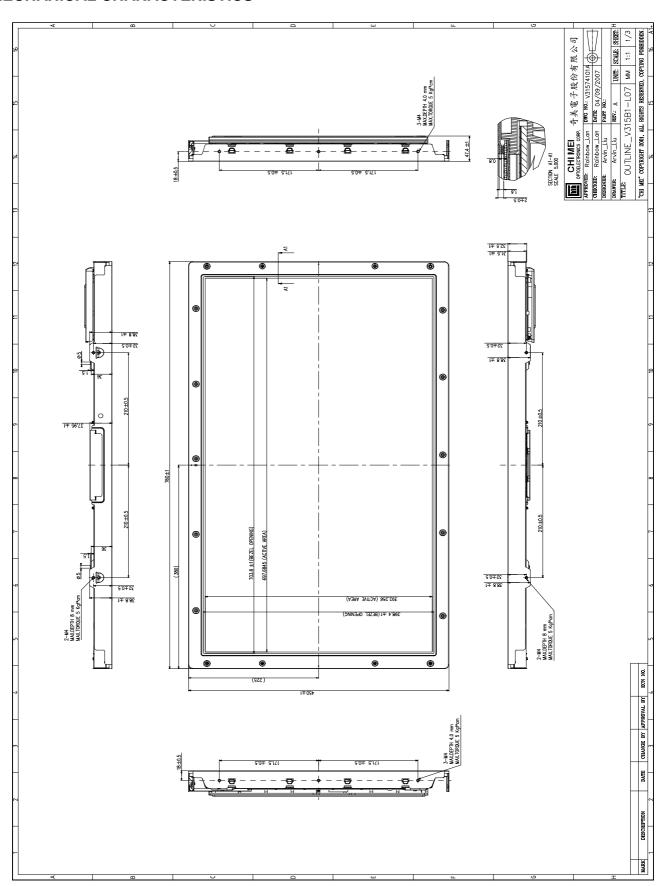
10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

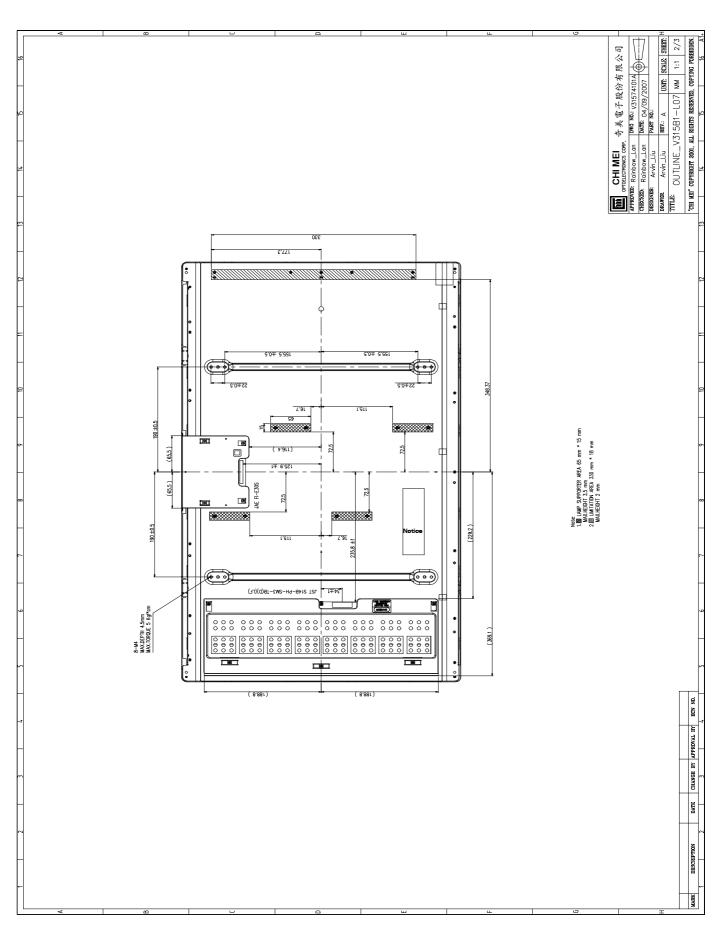
- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

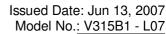
10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.


11. REGULATORY STANDARDS

11.1 SAFETY


Regulatory	Item	Standard	
	UL	UL 60950-1: 2003	
Information Technology equipment	cUL	CAN/CSA C22.2 No.60950-1-03	
	СВ	IEC 60950-1:2001	
	UL	UL 60065: 2003	
Audio/Video Apparatus	cUL	CAN/CSA C22.2 No.60065-03	
	СВ	IEC 60065:2001	



12. MECHANICAL CHARACTERISTICS

