

TFT LCD Approval Specification

MODEL NO.: V320B1 - L07

Customer:

Approved b Note:	y:							
Ammanad Du		TVHD						
Approved By	L	LY Chen						
Reviewed By	QRA Dept.	Product Development Div.						
Treviewed By	Tomy Chen	WT Lin						
Dropared Py	LCD TV Marketing and Product Management Div							
Prepared By	Jiayu Weng	Joyce Huang						

- CONTENTS -

REVISION HISTORY		4
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		5
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 PACKAGE STORAGE 2.3 ELECTRICAL ABSOLUTE RATINGS 2.3.1 ELECTRICAL ABSOLUTE RATINGS (OPEN CELI 2.3.2 BACKLIGHT UNIT	L)	6
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 RSDS CHARACTERISTICS 3.3 BACKLIGHT INVERTER UNIT 3.3.1 CCFL (Cold Cathode Fluorescent Lamp) CHARAC 3.3.2 CMO INVERTER JIG CHARACTERISTICS	CTERISTICS	8
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE		10
5. PIN CONNECTION5.1 TFT LCD MODULE5.2 BACKLIGHT UNIT5.3 COLOR DATA INPUT ASSIGNMENT		11
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		15
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		18
8. DEFINITION OF LABELS 8.1 CMO MODULE LABEL		22
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD		23
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS		25
11. REGULATORY STANDARDS 11.1 SAFETY		25

Issued Date: Jan. 02 2007 Model No.: V320B1 - L07

Approval

12. MECHANICAL CHARACTERISTICS -------26

REVISION HISTORY

	<u>ILEVISION TIISTONT</u>						
Version	Date	Page (New)	Section	Description			
Ver 2.0	Jan. 02,'07	All	All	Approval Specification was first issued.			

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V320B1- L07 is a 32" TFT Liquid Crystal Display module with 12-CCFL Backlight unit and RSDS interface. This module supports 1366 x 768 WXGA format and can display true 16.7M colors (8-bit colors).

1.2 FEATURES

- -High brightness (400 nits)
- Ultra-high contrast ratio (1200:1)
- Faster response time (6.5ms)
- High color saturation NTSC 75%
- Ultra wide viewing angle: 176(H)/176(V) (CR>20) with Super MVA technology
- RSDS (Reduced Swing Differential Signaling) interface
- Color reproduction (nature color)
- Optimized response time for both 50 / 60 Frame rate

1.3 APPLICATION

- TFT LCD TVs
- Multi-Media Display

1.4 GENERAL SPECIFICATIONS

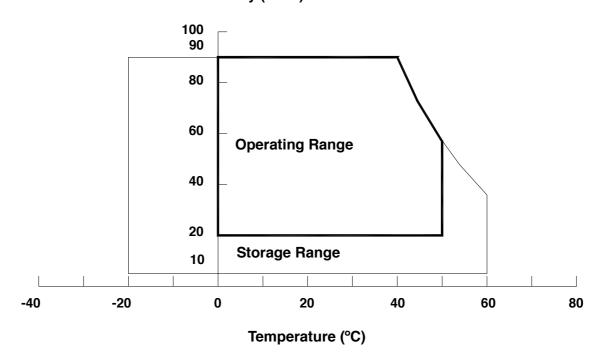
Item	Specification	Unit	Note
Active Area	708.954(H) x 398.592 (V) (32.02" diagonal)	mm	(1)
Bezel Opening Area	714.96 (H) x 404.6 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	
Pixel Number	1366 x R.G.B. x 768	pixel	
Pixel Pitch (Sub Pixel)	0.1730 (H) x 0.5190 (V)	mm	
Pixel Arrangement	RGB vertical stripe	-	
Display Colors	16.7M	color	
Display Operation Mode	Transmissive mode / Normally black	-	
Surface Treatment	Anti-Glare coating (Haze 25%),Hard coating (3H)	-	

1.5 MECHANICAL SPECIFICATIONS

Ite	em	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	759	760	761	mm	(1)
Module Size	Vertical(V)	449	450	451	mm	(1)
	Depth(D)	43.7	44.7	45.7	mm	
We	eight	6500	6700	6900	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note		
item	Symbol	Min.	Max.	Offic	NOLE	
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	(+50)	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Relative Humidity (%RH)

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°Cat normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

Item	Symbol	Value)	Unit	Note
пеш	Symbol	Min	Max	Offic	
Power Supply Voltage	VAA	-0.3	+14.0	V	
	VGH	-0.3	+30.0	V	(1)
	VGL	-10.0	-0.3	V	(1)
Logic Input Voltage	V _{IN}	-0.3	3.6	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

2.3.2 BACKLIGHT UNIT

Item	Symbol	Va	Value		Note	
iteiii	Syllibol	Min.	Max.	Unit	Note	
Lamp Voltage	V _w	_	3000	V_{RMS}		
Power Supply Voltage	V_{RI}	0	30	V	(1)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating conditions.

Note (2) No moisture condensation or freezing.

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

	Parameter			Value	Unit	Note	
			Min.	Тур.	Max.	Offic	Note
		VGH	22	23	24	V	
		VGL	-6.0	-5.5	-5.0	V	
F	Power Supply Voltage	VAA	13.2	13.5	13.8	V	
			3.1	3.3	3.5	V	
			12.3	12.5	12.7	V	
		IGH	-	20	-	mA	
-	Power Supply Current	IGL	-	20	-	mA	
	Power Supply Current		-	450	-	mA	
		13.3V	-	150	-	mA	
CMOS	Input High Threshold Voltage	V _{IH}	2.7	-	3.3	V	
interface	Input Low Threshold Voltage	V _{IL}	0	-	0.7	V	

3.2 RSDS CHARACTERISTICS

Item	Symbol	Condition	,	Unit		
iteiii	Symbol	Condition	Min	Тур	Max	Offic
RSDS high input Voltage	V_{DIFFRSDS}	V _{CMRSDS} = +1.2 V (1)	100	200	-	mV
RSDS low input Voltage	V _{DIFFRSDS}	V _{CMRSDS} = +1.2 V (1)	-	-200	-100	mV
RSDS common mode	V	$V_{DIFFRSDS} = 200 \text{mV} (2)$	VSSD+0.1	Note(3)	VSSD+1.2	V
input voltage range	V _{CMRSDS}	VDIFFRSDS - 200111V (2)	V33D+0.1	Note(3)	V33D+1.2	V
RSDS Input leakage	I	D _{xx} P, D _{xx} N ,CLKO ,CLPN	-10		10	μΑ
current	I _{DL}	DXXI , DXXIN ,GENO ,GEFIN	-10	-	10	$\mu \cap$

Note (1) V_{CMRSDS} = (VCLKP + VCLKN)/2 or V_{CMRSDS} = (VD_{XX}P + VD_{XX}N)/2

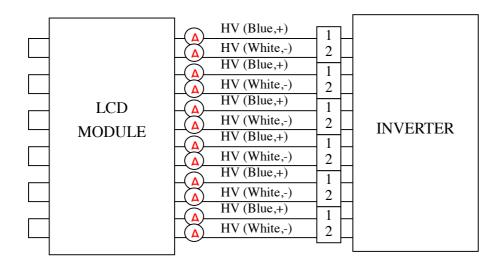
Note (2) $V_{DIFFRSDS}$ = VCLKP - VCLKN or $V_{DIFFRSDS}$ = $VD_{XX}P$ - $VD_{XX}N$

Note (3) $V_{CMRSDS} = 1.2V(VDDD = 3.3V)$

3.3 BACKLIGHT INVERTER UNIT

3.3.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol	Value			Unit	Note	
raiametei	Symbol	Min.	Тур.	Max.	Offic	Note	
Lamp Voltage	V_W	ı	1220	-	V_{RMS}	$I_{L} = 8.2 \text{mA}$	
Lamp Current(HI-Side)	ΙL	7.7	8.2	8.7	mA_{RMS}	(1)	
Longo Charting Voltage	M	ı	-	2450	V_{RMS}	(2), Ta = 0 °C	
Lamp Starting Voltage	Vs	-	-	2360	V_{RMS}	(2), Ta = 25 °C	
Operating Frequency	Fo	40	-	70	KHz	(3)	
Lamp Life Time	L_BL	50,000		-	Hrs	(4)	

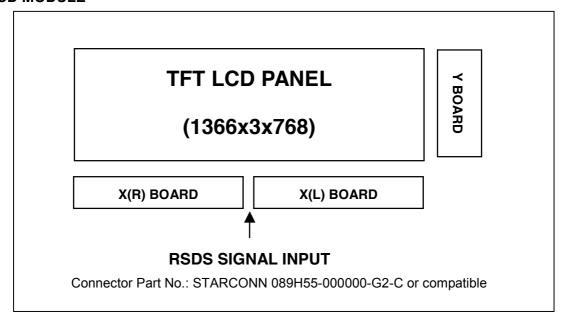


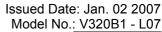
3.3.2 CMO INVERTER JIG CHARACTERISTICS

(Ta	= 25	± 2	°C)
-----	------	-----	-----

Parameter	Symbol		Value	Unit	Note	
Farameter	Symbol	Min.	Min. Typ. Max.		Offic	Note
Power Consumption	P_{BL}	-	97.9		W	$(5),(6), I_L = 8.2mA$
Input Voltage	V_{BL}	22.8	24	25.2	V_{DC}	
Input Current	I_{BL}	-	4.08	-	Α	Non Dimming
Input Ripple Noise	-	ı	-	500	mV_{P-P}	V _{BL} =22.8V
Backlight Turn on Voltage	V	2450	_	-	V_{RMS}	Ta = 0 °C
Backlight full on voltage	V _{BS}	2360	_	-	V_{RMS}	Ta = 25 °C
Oscillating Frequency	Fw	55	58	61	kHz	
Dimming frequency	F _B	150	160	170	Hz	
Minimum Duty Ratio	D _{MIN}	-	20	-	%	

Note (1) Lamp current is measured by utilizing high frequency current meters as shown below:


- Note (2) The lamp starting voltage V_S should be applied to the lamp for more than 1 second under starting up duration. Otherwise the lamp could not be lighted on completed.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency of the display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point of lamp.) as the time in which it continues to operate under the condition at Ta = 25 $\pm 2^{\circ}$ C and I_L = 7.7 ~ 8.7 mA_{RMS}.
- Note (5) The power supply capacity should be higher than the total inverter power consumption P_{BL}. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when inverter dimming.

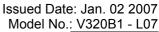


Note (6) To enhance the performance of backlight, the power consumption will increase to 1.5 times of the typical power consumption P_{BL} in the power on stage and 20 seconds later it will return to typical value. Thus, the power source capacity for inverter should be considered to supply the initial power consumption at power on duration.

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

5. PIN CONNECTION


5.1 TFT LCD MODULE

Pin assignment

CN1(XL) Connector Pin Assignment

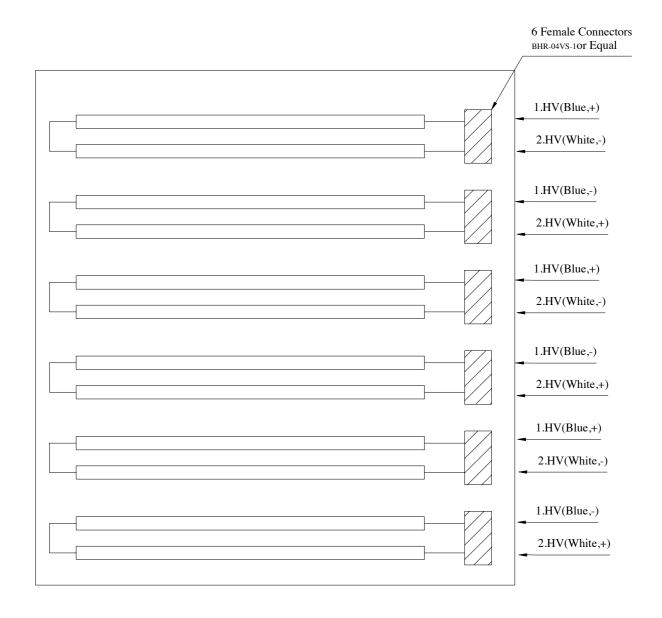
Pin No.	Symbol	mbol Description		Symbol	Description
1	VCM	VCM Power supply	Pin No. 29	ATP1	A-Path RSDS data latch
2	VCM	VCM Power supply	30	A_R1P	A-Path RSDS data signal (Red1)
3	GM14	Gamma Power supply	31	A_R1M	A-Path RSDS data signal (Red1)
4	CON2	Gamma Power supply	32	A_R0P	A-Path RSDS data signal (Red0)
5	GM13	Gamma Power supply	33	A_R0M	A-Path RSDS data signal (Red0)
6	GM12	Gamma Power supply	34	VAA	Driver Power supply
7	GM11	Gamma Power supply	35	VAA	Driver Power supply
8	GM10	Gamma Power supply	36	GM7	Gamma Power supply
9	GM9	Gamma Power supply	37	GM6	Gamma Power supply
10	GM8	Gamma Power supply	38	GM5	Gamma Power supply
11	GND	Ground	39	GM4	Gamma Power supply
12	A_B1P	A-Path RSDS data signal (Blue1)	40	GM3	Gamma Power supply
13	A_B1M	A-Path RSDS data signal (Blue1)	41	GM2	Gamma Power supply
14	A_B0P	A-Path RSDS data signal (Blue0)	42	CON1	Gamma Power supply
15	A_B0M	A-Path RSDS data signal (Blue0)	43	GM1	Gamma Power supply
16	A_G1P	A-Path RSDS data signal (Green1)	44	GND	Ground
17	A_G1M	A-Path RSDS data signal (Green1)	45	GND	Ground
18	A_G0P	A-Path RSDS data signal (Green0)	46	STV_R	Scan driver start pulse2
19	A_G0M	A-Path RSDS data signal (Green0)	47	OE	Scan driver output enable
20	DRL1	Control the direction of start pulse	48	GRL1	Control the direction of start pulse
		for data driver			for scan driver
21	POL	polarity invert	49	CKV	Scan driver clock
22	V33V	Logic Power supply	50	STV	Scan driver start pulse1
23	V33V	Logic Power supply	51	VGL	Driver Power supply
24	ASTH_R	A-Path source driver start pulse2	52	VGH	Driver Power supply
25	ASTH	A-Path source driver start pulse1	53	GND	Ground
26	GND	Ground	54	NC	No connection
27	A_CLKP	Data driver clock	55	TR1	Trace 1
28					

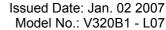
CN2(XR) Connector Pin Assignment

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	VCM	VCM Power supply	29	BTP1	B-Path RSDS data latch
2	VCM	VCM Power supply	30	B_R1P	B-Path RSDS data signal (Red1)
3	GM14	Gamma Power supply	31	B_R1M	B-Path RSDS data signal (Red1)
4	CON2	Gamma Power supply	32	B_R0P	B-Path RSDS data signal (Red0)
5	GM13	Gamma Power supply	33	B_R0M	B-Path RSDS data signal (Red0)
6	GM12	Gamma Power supply	34	VAA	Driver Power supply
7	GM11	Gamma Power supply	35	VAA	Driver Power supply
8	GM10	Gamma Power supply	36	GM7	Gamma Power supply
9	GM9	Gamma Power supply	37	GM6	Gamma Power supply
10	GM8	Gamma Power supply	38	GM5	Gamma Power supply
11	GND	Ground	39	GM4	Gamma Power supply
12	B_B1P	B-Path RSDS data signal (Blue1)	40	GM3	Gamma Power supply
13	B_B1M	B-Path RSDS data signal (Blue1)	41	GM2	Gamma Power supply
14	B_B0P	B-Path RSDS data signal (Blue0)	42	CON1	Gamma Power supply
15	B_B0M	B-Path RSDS data signal (Blue0)	43	GM1	Gamma Power supply
16	B_G1P	B-Path RSDS data signal (Green1)	44	GND	Ground
17	B_G1M	B-Path RSDS data signal (Green1)	45	GND	Ground
18	B_G0P	B-Path RSDS data signal (Green0)	46	NC	No connection
19	B_G0M	B-Path RSDS data signal (Green0)	47	VSCM	VSCM Power supply
20	DRL1	Control the direction of start pulse	48	VREF	Gamma Power supply
		for data driver			
21	POL	polarity invert	49	NC	No connection
22	V33V	Logic Power supply	50	NC	No connection
23	V33V	Logic Power supply	51	STV	Driver Power supply
24	BSTH_R	B-Path source driver start pulse2	52	VGL	Driver Power supply
25	BSTH	B-Path source driver start pulse1	53	GND	Ground
26	GND	Ground	54	TR2	Trace 2
27	B_CLKP	Data driver clock	55	GND	Ground
28	B_CLKM	Data driver clock			

Note (1) CN1 ${\,^{\backprime}}$ CN2 Connector Part No.: STARCONN 089H55-000000-G2-C or equal.

Note (2) The TR1 must be connected to the TR2.


5.2 BACKLIGHT UNIT


The pin configuration for the housing and leader wire is shown in the table below.

CN3-CN10 (Housing): BHR-04VS-1(JST) or equivalent

Pin No.	Symbol	Description	Wire Color
1	HV	High Voltage	Blue
2	HV	High Voltage	White

Note (1) The backlight interface housing for high voltage side is a model BHR-04VS-1, manufactured by JST or equivalent.

Approval

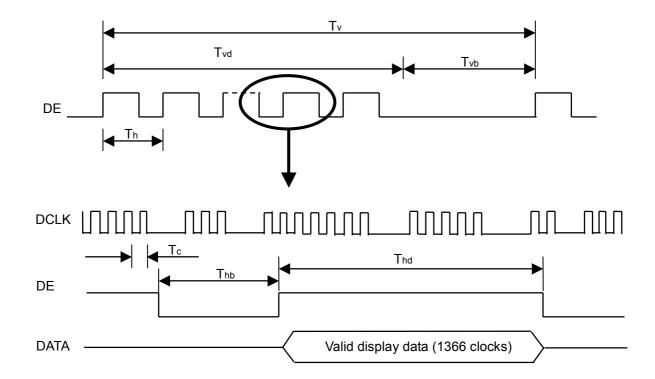
5.3 COLOR DATA INPUT ASSIGNMENT

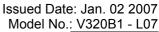
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

COIOI V	ersus data input.	ı																							
					Data Signal																				
	Color		1	1	Re	ed							G	reer	1				1		Blı	ue	1		
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	B4	В3	B2	В1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Croon	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
5.40	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

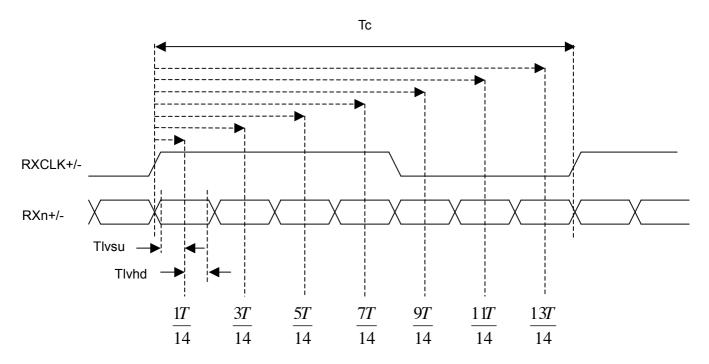

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

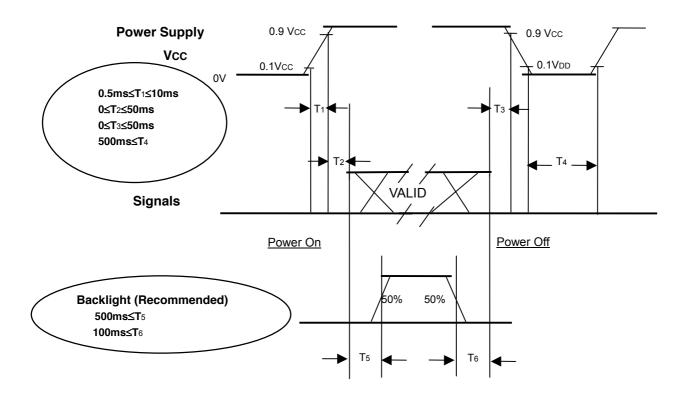

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	1/Tc	60	86	88	MHz	
LVDS Receiver Clock	Input cycle to cycle jitter	Trcl	-	-	200	ps	
LVDS Receiver Data	Setup Time	Tlvsu	600	-	-	ps	
LVDS Receiver Data	Hold Time	Tlvhd	600	-	1	ps	
	Frame Rate	Fr5	47	50	53	Hz	
	Frame Nate	Fr6	57	60	63	Hz	
Vertical Active Display Term	Total	Tv	778	795	888	Th	Tv=Tvd+Tvb
	Display	Tvd	768	768	768	Th	-
	Blank	Tvb	10	27	120	Th	-
	Total	Th	1442	1798	1936	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	1366	1366	1366	Tc	_
	Blank	Thb	76	432	570	Tc	-

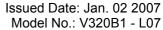
Note: Since this module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM




LVDS RECEIVER INTERFACE TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE


To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the conditions shown in the following diagram.

Power ON/OFF Sequence

Note.

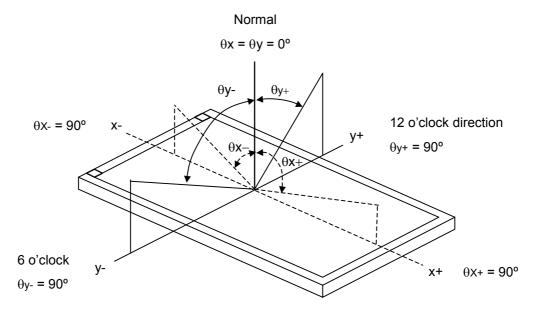
- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) Please apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation of the LCD turns off, the display may, instantly, function abnormally.
- (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power on/off periods.
- (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Та	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V_{CC}	5.0	V
Input Signal	According to typical value	alue in "3. ELECTRICAL (CHARACTERISTICS"
Lamp Current (High side)	Ι _L	$8.2\text{mA}\pm0.5$	mA
Oscillating Frequency (Inverter)	F_W	58±3	KHz
Frame rate		60	Hz

7.2 OPTICAL SPECIFICATIONS


The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

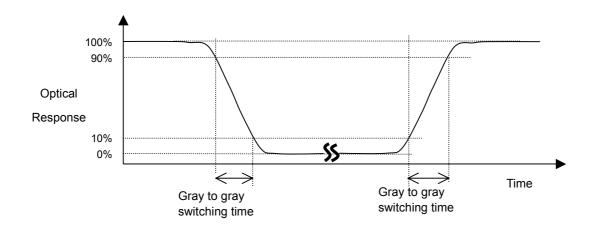
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR	Condition	900	1200	-	-	(2)
Response Tim		Gray to gray average		-	6.5	12	ms	(3)
Center Lumina	nce of White	L _C		350	400	-	cd/	(4)
Average Lumir	nance of White	L _{AVE}		300	350	-	cd/	(4)
White Variation	າ	δW	θ_x =0°, θ_Y =0°	-	-	1.3	-	(7)
Cross Talk		CT		-	-	4.0	%	(5)
	Red	Rx	Viewing Normal		0.652	Typ+0.0	-	(6)
	Reu	Ry	Angle	Typ-0. 03	0.330		-	
	Green	Gx	3 -		0.275		-	
Calar		Gy			0.596		-	
Color Chromaticity	Blue	Bx			0.143		-	
Chilomaticity	Dide	Ву			0.063		-	
	White	Wx			0.285		-	
	vviile	Wy			0.295		1	
	Color Gamut	CG		72	75		%	NTSC
Viewing	Horizontal	θ^* +	_	80	88	-		•
	HUHZUHA	θ_{x} -	CR≥20	80	88	-	Deg	(4)
Angle	Vertical	θ _Y +	UR∠ZU	80	88	-	.]	(1)
	vertical	θ _Y -		80	88	-		

Note (1) Definition of Viewing Angle (θx , θy):

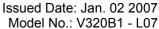
Viewing angles are measured by EZ-Contrast 160R (Eldim)

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255


L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Gray to Gray Switching Time:

The driving signal means the signal of gray level 0, 63, 127, 191, 255.

Gray to gray average time means the average switching time of gray level 0,63,127,191,255 to each other.

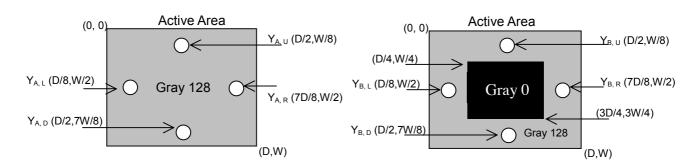
Note (4) Definition of Luminance of White (L_C, L_{AVE}):

Measure the luminance of gray level 255 at center point and 5 points

$$L_{C} = L(5)$$

$$L_{AVE} = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$$

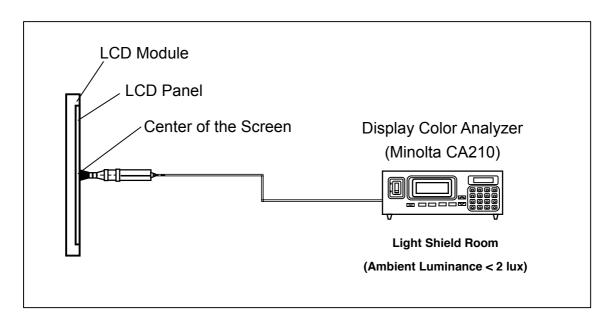
where L (x) is corresponding to the luminance of the point X at the figure in Note (7).


Note (5) Definition of Cross Talk (CT):

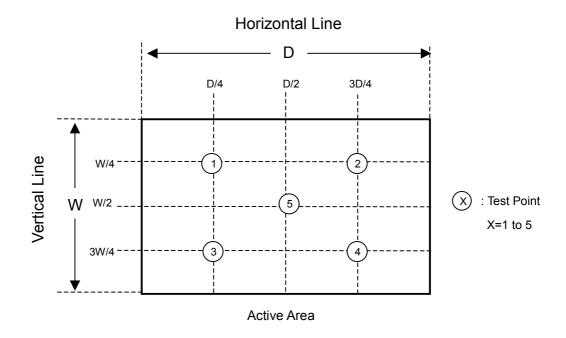
$$CT = |Y_B - Y_A| / Y_A \times 100 (\%)$$

Where:

 Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)


Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

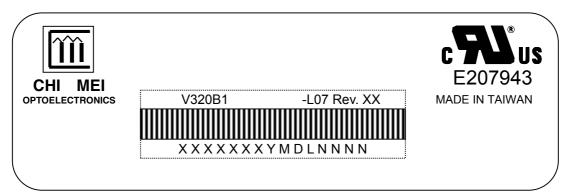
Note (6) Measurement Setup:

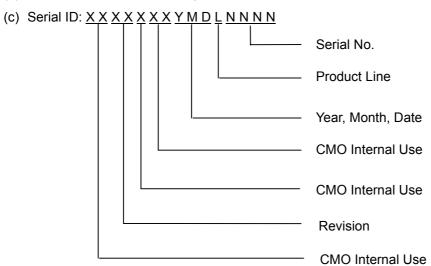

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$




8. DEFINITION OF LABELS

8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: V320B1-L07
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2000~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

- (b) Revision Code: Cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

9. PACKAGING

9.1 PACKING SPECIFICATIONS

(1) 4 LCD TV modules / 1 Box

(2) Box dimensions: 906(L) X 384 (W) X 580 (H)

(3) Weight: approximately 31.5Kg (4 modules per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

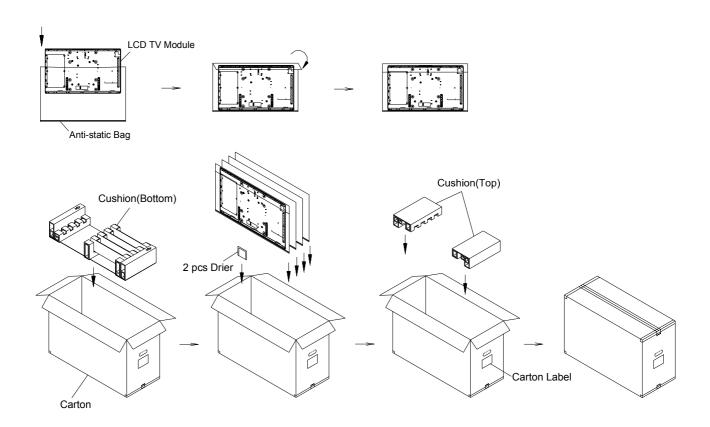
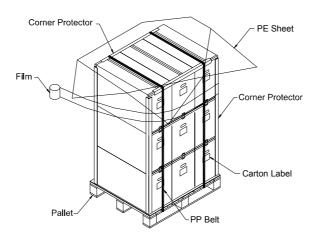



Figure.9-1 packing method

Sea Transportation

Corner Protector:L1130*50mm*50mm Corner Protector:L1400*50mm*50mm Pallet:L950*W1180*H140mm Pallet Stack:L950*W1180*H1880mm Gross:300kg

Air Transportation

Corner Protector:L1130*50mm*50mm Pallet:L950*W1180*H140mm Pallet Stack:L950*W1180*H1300mm Gross:205kg

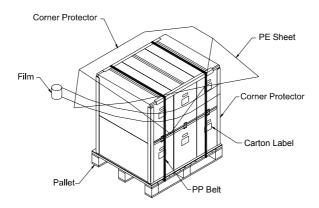
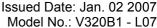



Figure. 9-2 Packing method

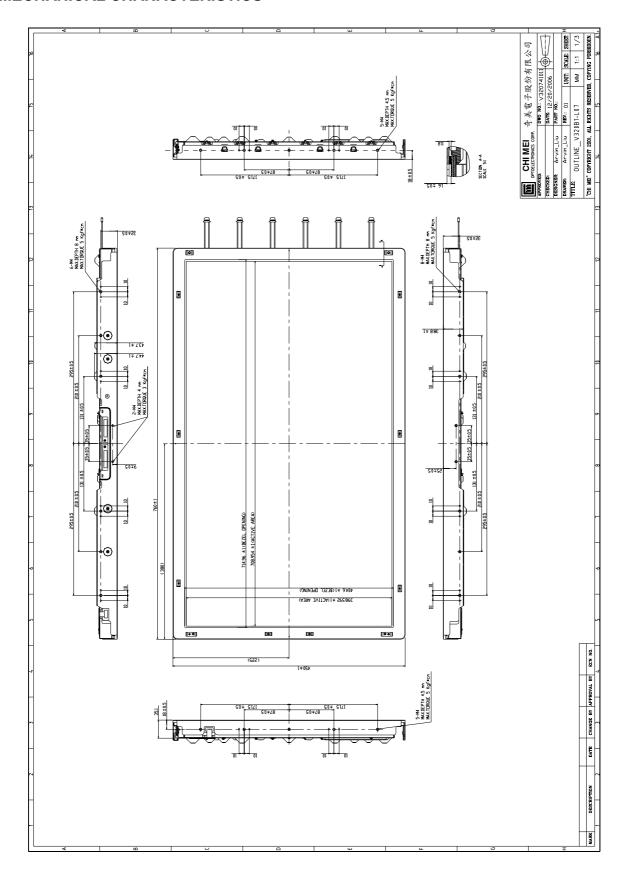
10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

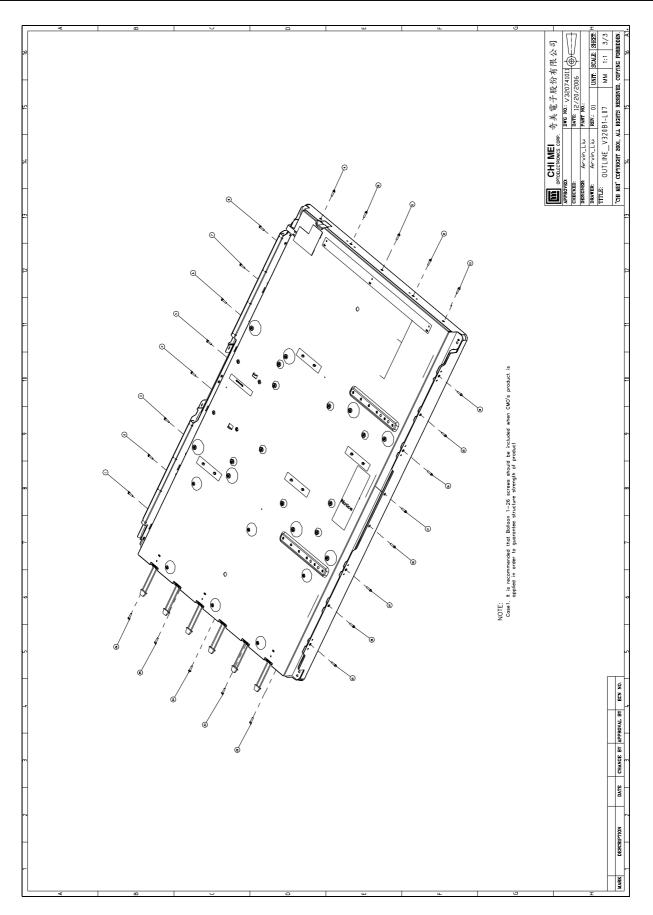
10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.


11. REGULATORY STANDARDS

11.1 SAFETY

Regulatory	Item	Standard
Information Technology equipment	UL	UL 60950-1: 2003
	cUL	CAN/CSA C22.2 No.60950-1-03
	СВ	IEC 60950-1:2001
	UL	UL 60065: 2003
Audio/Video Apparatus	cUL	CAN/CSA C22.2 No.60065-03
	СВ	IEC 60065:2001


12. MECHANICAL CHARACTERISTICS

