

TFT LCD Approval Specification

MODEL NO.: V420H1 – L11

Customer:
Approved by:
Note:

Approved Dy	TV Head Division.
Approved By	LY Chen

Reviewed By	QRA Dept.	Product Development Div.
The first of a by	Tomy Chen	WT Lin

Droporod Dy	LCD TV Marketing and Product Management I				
Prepared By	Ken Wu	Joyce Huang			

Approval

CONTENTS -_ 1. GENERAL DESCRIPTION 1.1 OVERVIEW **1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS** 2. ABSOLUTE MAXIMUM RATINGS ----- 6 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 PACKAGE STORAGE 2.3 ELECTRICAL ABSOLUTE RATINGS 2.3.1 TFT LCD MODULE 2.3.2 BACKLIGHT INVERTER UNIT **3. ELECTRICAL CHARACTERISTICS** -----8 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT 3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS **3.2.2 INVERTER CHARACTERISTICS** 3.2.3 INVERTER INTERFACE CHARACTERISTICS 4. BLOCK DIAGRAM -----14 4.1 TFT LCD MODULE 5. V420H1-L11 LCD INPUT TERMINAL PIN ASSIGNMENT -----15 5.1 TFT LCD MODULE INPUT **5.2 BACKLIGHT UNIT 5.3 INVERTER UNIT** 5.4 BLOCK DIAGRAM OF INTERFACE 5.5 LVDS INTERFACE **5.6 COLOR DATA INPUT ASSIGNMENT** 6. INTERFACE TIMING -----25 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE 7. OPTICAL CHARACTERISTICS -----28 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS 8. PRECAUTIONS -----32 8.1 ASSEMBLY AND HANDLING PRECAUTIONS **8.2 SAFETY PRECAUTIONS** 9.DEFINITION OF LABELS .-----33 9.1 CMO MODULE LABEL **10. PACKAGING** -----34 **10.1 PACKING SPECIFICATION. 10.2 PACKING METHOD 11.MECHANICAL CHARACTERISTICS** -----36

REVISION HISTORY

Version	Date	Page	Section	Description
Ver 2.0	June,22,2007	All		V420H1-L11 Approval spec was 1 st issued.

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V420H1-L11 is a 42" TFT Liquid Crystal Display module with 16-CCFL Backlight unit and 2ch-LVDS interface. This module supports 1920 x 1080 HDTV format and can display true 16.7M colors (8-bit/color). The inverter module for backlight is built-in.

1.2 FEATURES

- High brightness (400 nits)
- High contrast ratio (2000:1)
- Fast response time (Gray to gray average 6.5 ms)
- High color saturation (NTSC 72%)
- Full HDTV (1920 x 1080 pixels) resolution, true HDTV format
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Optimized response time for 60 Hz frame rate
- Ultra wide viewing angle : Super MVA technology
- 180 degree rotation display option
- RoHS compliance

1.3 APPLICATION

- Standard Living Room TVs.
- Public Display Application.
- Home Theater Application.
- MFM Application.

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	930.24(H) x 523.26 (V) (42.02" diagonal)	mm	(1)
Bezel Opening Area	938.3 (H) x 531.3 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920x R.G.B. x 1080	pixel	-
Pixel Pitch(Sub Pixel)	0.1615 (H) x 0.4845 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Anti-Glare	-	(2)

Note (1) Please refer to the attached drawings in chapter 11 for more information about the front and back outlines.

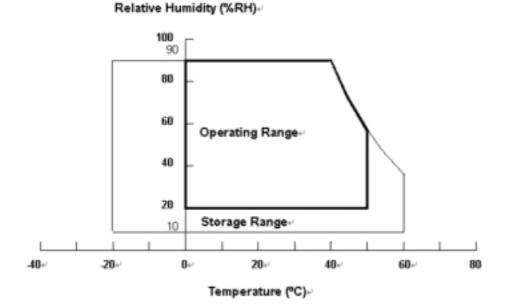
Note (2) The spec of the surface treatment is temporarily for this phase. CMO reserves the rights to change this feature.

1.5 MECHANICAL SPECIFICATIONS

	Item	Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	982.0	983.0	984.0	mm	
Module Size	Vertical (V)	575.0	576.0	577.0	mm	(1), (2)
	Depth (D)	53.5	54.5	55.5	mm	
	Weight	12600	12800	13000	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Module Depth does not include connectors.


2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note	
liem	Symbol	Min.	Max.	Onit	NOLE
Storage Temperature	T _{ST}	-20	+60	°C	(1)
Operating Ambient Temperature	T _{OP}	0	50	°C	(1), (2)
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)
Vibration (Non-Operating)	V _{NOP}	-	1.0	G	(4), (5)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta ≦ 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

2.2 Package storage

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Item	Svmbol	Value		Unit	Note
	<i>c jz c</i> .	Min.	Max.	•••••	
Power Supply Voltage	V _{cc}	-0.3	13.5	V	(1)
Logic Input Voltage	V _{IN}	-0.3	3.6	V	(1)

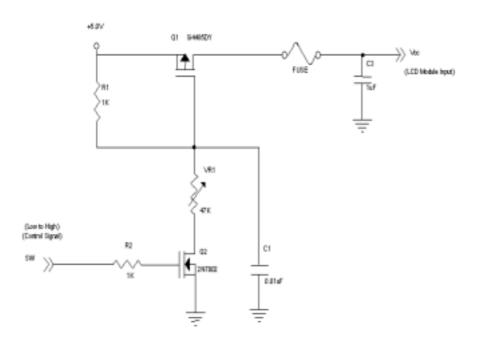
2.3.2 BACKLIGHT INVERTER UNIT

Item	Symbol	Symbol Value		Unit	Note	
item	Symbol	Min.	Max.	Onit	NOLE	
Lamp Voltage	Vw	_	3000	V _{RMS}		
Power Supply Voltage	V _{BL}	0	30	V	(1)	
Control Signal Level	—	-0.3	7	V	(1), (3)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

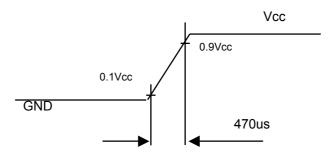
Note (2) No moisture condensation or freezing.

Note (3)The control signals include On/Off Control, Internal PWM Control, External PWM Control.

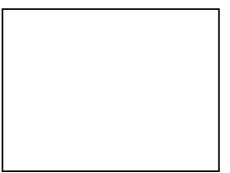

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE (Ta = 25 ± 2 °C)

				Value				
Parameter		Symbol	Min.	Тур.	Max.	Unit	Note	
Power Su	oply Voltage		V _{CC}	10.8	12	13.2	V	(1)
Power Su	oply Ripple √	/oltage	V _{RP}	-	-	350	mV	
Rush Curr	rent		I _{RUSH}	-	-	5.0	А	(2)
		White	-		1.35	1.7	А	
Power Su	wer Supply Current Black		-		0.5		А	
	Vertical Stripe		-		1.0		А	(3)
		tial Input High hold Voltage	V _{LVTH}	-	-	100	mV	
LVDS		tial Input Low hold Voltage	V _{LVTL}	-100	-	-	mV	
Interface	Commor	n Input Voltage	V _{LVC}	1.125	1.25	1.375	V	
		ating Resistor	R _T	-	100	-	ohm	
смоѕ	Input High	Threshold Voltage	V _{IH}	2.7	-	3.3	V	
interface	Input Low T	hreshold Voltage	V _{IL}	0	_	0.7	V	

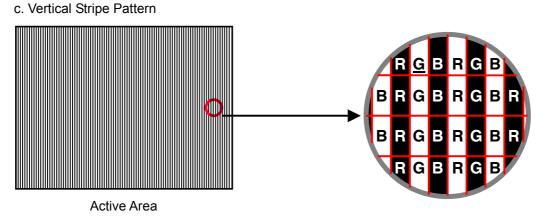

Note (1) The module should be always operated within the above ranges.

Note (2) The duration of rush current is about 0.5mS and measurement condition is shown below:



Vcc rising time is 470us

Note (3) The specified power supply current is under the conditions at Vcc = 12 V, Ta = 25 ± 2 °C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.



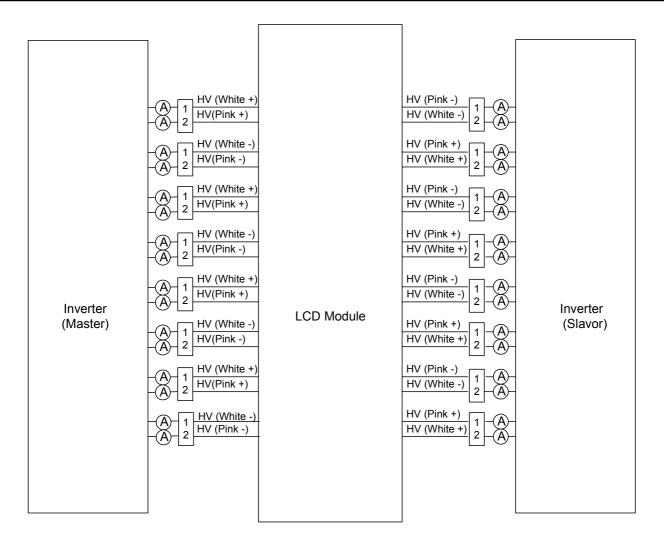
Active Area

b. Black Pattern

3.2 BACKLIGHT UNIT

3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

Deremeter	Symbol		Value	Linit	Noto		
Parameter	Symbol	Min.	Тур.	Max.	- Unit	Note	
Lamp Input Voltage	VL	-	1490	-	V _{RMS}	-	
Lamp Current	١L	6.0	6.5	7.0	mA _{RMS}	(1)	
Lamp Turn On Voltage	Vs	-	-	2370	V _{RMS}	Ta = 0 °C	
Lamp rum on voltage	vs	-	-	2160	V _{RMS}	Ta = 25 °C	
Operating Frequency	FL	40	-	70	KHz		
Lamp Life Time	L _{BL}	50,000	60,000	-	Hrs	(2)	

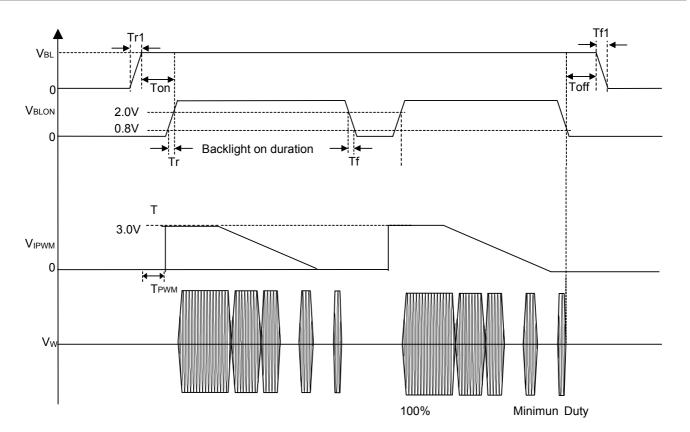

3.2.2 INVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value	Unit	Note	
Farameter	Symbol	Symbol Min. Typ. Max.		Unit	NOLE	
Power Consumption at Gray level 255	P ₂₅₅	-	150	160	W	(3)(4), I _L =5.8mA
Power Consumption at Gray level 128	P ₁₂₈	-	75	-	W	(5)
Power Consumption at Gray level 0	P ₀	-	50	-	W	(5)
Power Supply Voltage	V _{BL}	22.8	24	25.2	V _{DC}	
Power Supply Current	I _{BL}		6.25		А	Non Dimming
Input Ripple Noise	-	-	-	912	mV _{P-P}	V _{BL} =22.8V
Oscillating Frequency	Fw	47	50	53	kHz	
Dimming frequency	F _B	150	160	170	Hz	
Minimum Duty Ratio	D _{MIN}	-	20	-	%	

Note (1) Lamp current is measured by utilizing AC current probe and its value is average by measuring master and slave board.

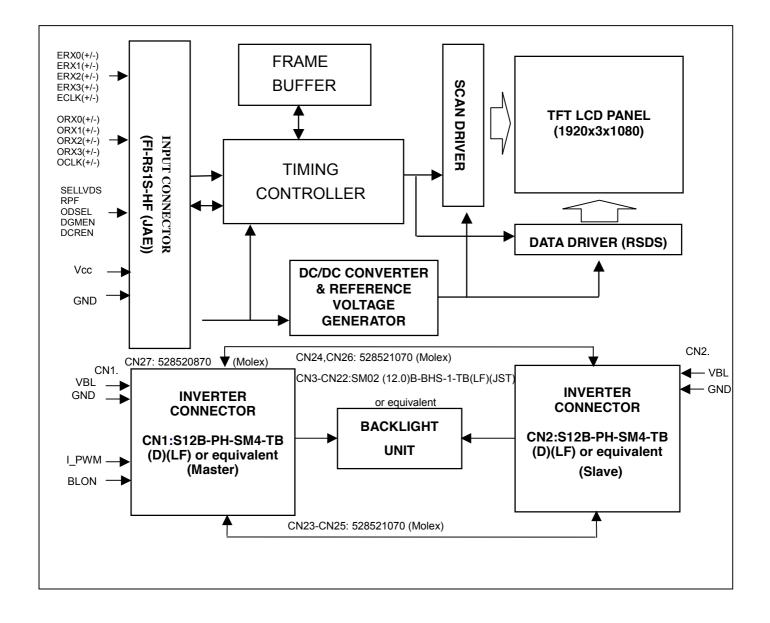
- Note (2) The lamp starting voltage V_s should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency of the display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point of lamp.) as the time in which it continues to operate under the condition at Ta = 25 \pm° C and I_L = 5.3~ 6.3mArms.
- Note (6) The measurement condition of Max. value is based on 42" backlight unit under input voltage 24V, average lamp current 6.1 mA and lighting 30 minutes later.
- Note (7) The power consumption refers to the condition that Dynamic CR has been turned on.

3.2.3 INVERTER INTERFACE CHARACTERISTICS


		Symbol	Test		Value				
Parameter	Parameter		Condition	Min.	Тур.	Max.	Unit	Note	
On/Off Control Voltage	ON	V _{BLON}	_	2.0		5.0	V		
On/On Control Voltage	OFF	✓ BLON	-	0	-	0.8	V		
Internal PWM Control	MAX	V _{IPWM}	_	3.15	3.3	3.45	V	maximum duty ratio	
Voltage	MIN	▼ IPWM		_	0	—	V	minimum duty ratio	
External PWM Control	HI	V _{EPWM}					V	duty on	
Voltage	LO	✓ EPWM					V	duty off	
Status Signal	HI	I Status	tus –				V	normal	
	LO	Status					V	abnormal	
VBL Rising Time		Tr1	—	30	—	50	ms	See as below	
VBL Falling Time		Tf1	Ι	30	1	50	ms	See as below	
Control Signal Rising Tin	ne	Tr	Ι	_		100	ms		
Control Signal Falling Tir	ne	Tf	_	_	_	100	ms		
PWM Signal Rising Time	;	T _{PWMR}	-	—	_	50	us		
PWM Signal Falling Time	T _{PWMF}	-	—	_	50	us			
Input impedance	R _{IN}	_	1	_	_	MΩ			
PWM Delay Time	T _{PWM}	Ι	100		300	mS			
BLON Delay Time	T _{on}	_	1	_	_	ms			
BLON Off Time		T _{off}	_	1	_	_	ms		

Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the internal/external PWM signal during backlight turn on period.

- Note (2) The power sequence and control signal timing are shown in the following figure.
- Note (3) The power sequence and control signal timing must follow the figure below. For a certain reason, the inverter has a possibility to be damaged with wrong power sequence and control signal timing.



4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD Module Input

FI-RE51S-HF (JAE) or equivalent

Pin	Name	Description	Note
1	N.C.	No Connection	
2	N.C.	No Connection	
3	N.C.	No Connection	(1)
4	N.C.	No Connection	(1)
5	N.C.	No Connection	
6	N.C.	No Connection	
7	SELLVDS	LVDS data format Selection	(2)
8	RPF	Display Rotation	(3)
9	ODSEL	Overdrive Lookup Table Selection	(4)
10	DGMEN	Dynamic Gamma Enable	(5)
11	DCREN	Dynamic Contrast Ratio Enable	(6)
12	ORX0-	Odd pixel Negative LVDS differential data input. Channel 0	
13	ORX0+	Odd pixel Positive LVDS differential data input. Channel 0	
14	ORX1-	Odd pixel Negative LVDS differential data input. Channel 1	
15	ORX1+	Odd pixel Positive LVDS differential data input. Channel 1	
16	ORX2-	Odd pixel Negative LVDS differential data input. Channel 2	
17	ORX2+	Odd pixel Positive LVDS differential data input. Channel 2	
18	GND	Ground	
19	OCLK-	Odd pixel Negative LVDS differential clock input.	
20	OCLK+	Odd pixel Positive LVDS differential clock input.	
21	GND	Ground	
22	ORX3-	Odd pixel Negative LVDS differential data input. Channel 3	
23	ORX3+	Odd pixel Positive LVDS differential data input. Channel 3	
24	N.C.	No Connection	
25	N.C.	No Connection	
26	N.C.	No Connection	
27	N.C.	No Connection	
28	ERX0-	Even pixel Negative LVDS differential data input. Channel 0	
29	ERX0+	Even pixel Positive LVDS differential data input. Channel 0	
30	ERX1-	Even pixel Negative LVDS differential data input. Channel 1	
31	ERX1+	Even pixel Positive LVDS differential data input. Channel 1	
32	ERX2-	Even pixel Negative LVDS differential data input. Channel 2	
33	ERX2+	Even pixel Positive LVDS differential data input. Channel 2	
34	GND	Ground	
35	ECLK-	Even pixel Negative LVDS differential clock input.	
36	ECLK+	Even pixel Positive LVDS differential clock input.	
37	GND	Ground	
38	ERX3-	Even pixel Negative LVDS differential data input. Channel 3	
39	ERX3+	Even pixel Positive LVDS differential data input. Channel 3	
40	N.C.	No Connection	
41	N.C.	No Connection	(1)
42	N.C.	No Connection	(1)
43	N.C.	No Connection	
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	

47	GND	Ground	
48	VCC	+12V power supply	
49	VCC	+12V power supply	
50	VCC	+12V power supply	
51	VCC	+12V power supply	

Note (1) Reserved for internal use. Please leave it open.

Note (2) Low : VESA LVDS Format (default), High : JEIDA Format.

Note (3) Low : normal display (default), High : display with 180 degree rotation

Note (4) Overdrive lookup table selection. The overdrive lookup table should be selected in accordance with the

frame rate to optimize image quality.

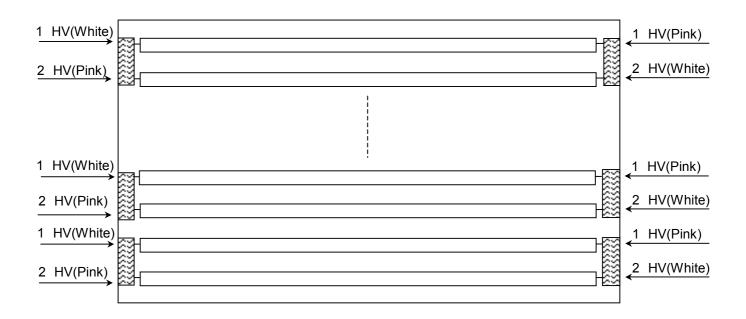
ODSEL	Note
L	Lookup table was optimized for 60 Hz frame rate.
Н	Lookup table was optimized for 50 Hz frame rate.

Note (5) Low : function disable (default), High : Dynamic Gamma function enable.

Note (6) Low : function disable (default), High : Dynamic Contrast Ratio function enable.

Note (7) Low =Open or Connect to GND, High = Connect to +3.3V

5.2 BACKLIGHT UNIT


The pin configuration for the housing and the leader wire is shown in the table below.

Pin	Name	Description	Wire Color						
1	HV	High Voltage	Pink						
2	HV	High Voltage	White						

CN3-CN22: BHR-04VS-1 (JST).

Note (1) The backlight interface housing for high voltage side is a model BHR-04VS-1, manufactured by JST.

The mating header on inverter part number is SM02(12.0)B-BHS-1-TB(LF).

5.3 INVERTER UNIT

CN1: S12B-PH-SM4-TB(D)(LF)(JST) or equivalent

Pin №	Symbol	Feature
1		
2		
3	VBL	+24V
4		
5		
6		
7		
8	GND	GND
9		
10		
11	I_PWM	Internal PWM Control Signal
12	BLON	BL ON/OFF

CN2: S12B-PH-SM4-TB(D)(LF)(JST) or equivalent

Pin №	Symbol	Feature
1		
2		
3	VBL	+24V
4		
5		
6		
7		
8	GND	GND
9		
10		
11	NC	NC
12	NC	NC

CN3-CN22: SM02(12.0)B-BHS-1-TB(LF)(JST) or equivalent

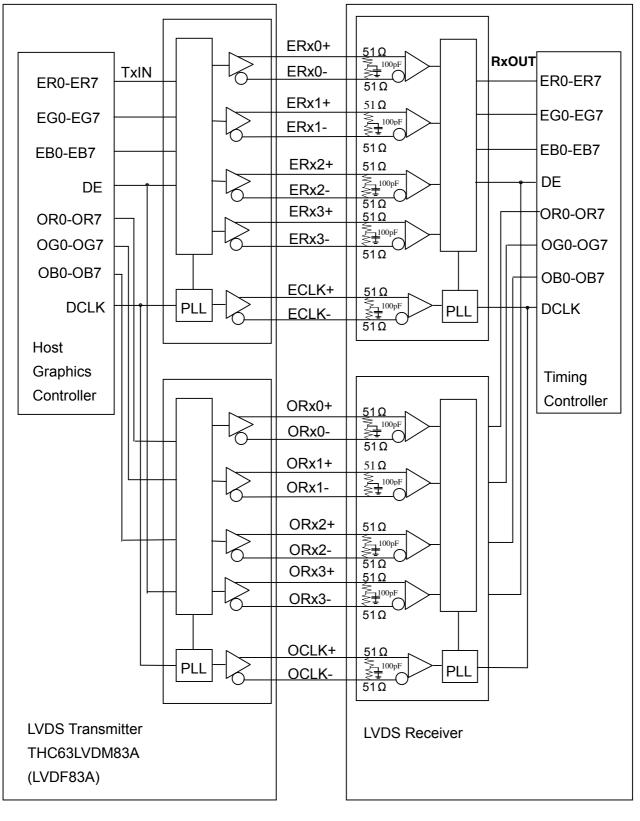
Board to Board

Signal

2

Pin No.	Symbol	Description								
1	CCFL HOT	FL high voltage								
2	CCFL HOT	CCFL high voltage								
CN23-CN26:	CN23-CN26: 528521070 (Molex)									
Pin No.	Symbol	Description								
1	Control	oard to Board								

3	Board to Board
4	Board to Board
5	Board to Board
6	Board to Board
7	Board to Board
8	Board to Board
9	Board to Board
10	Board to Board


CN27: 528520870 (Molex)

Pin No.	Symbol	Description
1		Board to Board
2		Board to Board
3		Board to Board
4	Control Signal	Board to Board
5		Board to Board
6		Board to Board
7]	Board to Board
8		Board to Board

Note (1) Floating of any control signal is not allowed.

5.4 BLOCK DIAGRAM OF INTERFACE

ER0~ER7 : Even pixel R data

EG0~EG7 : Even pixel G data

EB0~EB7 : Even pixel B data

OR0~OR7: Odd pixel R data

OG0~OG7: Odd pixel G data

OB0~OB7 : Odd pixel B data

- DE : Data enable signal
- DCLK : Data clock signal
- Notes: (1) The system must have the transmitter to drive the module.
 - (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.
 - (3) Two pixel data send into the module for every clock cycle. The first pixel of the frame is even pixel and the second pixel is odd pixel.

5.5 LVDS INTERFACE

	SIGNAL			NSMITTER 63LVDM83 A	INTERFACE C	ONNECTOR		CEIVER 31VDF84A	TFT CONTF	ROL INPUT
	LVDS_SEL		PIN	INPUT	Host	TFT-LCD	PIN	OUTPUT	LVDS_SEL	LVDS_SEL
	=L or OPEN	= H							=L or OPEN	= H
	R0	R2	51	TxIN0			27	Rx OUT0	R0	R2
	R1	R3	52	TxIN1			29	Rx OUT1	R1	R3
	R2	R4	54	TxIN2	TA OUT0+	Rx 0+	30	Rx OUT2	R2	R4
	R3	R5	55	TxIN3			32	Rx OUT3	R3	R5
	R4	R6	56	TxIN4			33	Rx OUT4	R4	R6
	R5	R7	3	TxIN6	TA OUT0-	Rx 0-	35	Rx OUT6	R5	R7
	G0	G2	4	TxIN7			37	Rx OUT7	G0	G2
	G1	G3	6	TxIN8			38	Rx OUT8	G1	G3
	G2	G4	7	TxIN9			39	Rx OUT9	G2	G4
	G3	G5	11	TxIN12	TA OUT1+	Rx 1+	43	Rx OUT12	G3	G5
	G4	G6	12	TxIN13			45	Rx OUT13	G4	G6
	G5	G7	14	TxIN14			46	Rx OUT14	G5	G7
	B0	B2	15	TxIN15	TA OUT1-	Rx 1-	47	Rx OUT15	B0	B2
	B1	B3	19	TxIN18			51	Rx OUT18	B1	B3
24	B2	B4	20	TxIN19			53	Rx OUT19	B2	B4
bit	B3	B5	22	TxIN20			54	Rx OUT20	B3	B5
	B4	B6	23	TxIN21	TA OUT2+	Rx 2+	55	Rx OUT21	B4	B6
	B5	B7	24	TxIN22			1	Rx OUT22	B5	B7
	DE	DE	30	TxIN26			6	Rx OUT26	DE	DE
	R6	R0	50	TxIN27	TA OUT2-	Rx 2-	7	Rx OUT27	R6	R0
	R7	R1	2	TxIN5			34	Rx OUT5	R7	R1
	G6	G0	8	TxIN10			41	Rx OUT10	G6	G0
	G7	G1	10	TxIN11			42	Rx OUT11	G7	G1
	B6	B0	16	TxIN16	TA OUT3+	Rx 3+	49	Rx OUT16	B6	B0
	B7	B1	18	TxIN17			50	Rx OUT17	B7	B1
	RSVD 1	RSVD 1	25	TxIN23			2	Rx OUT23	NC	NC
	RSVD 2	RSVD 2	27	TxIN24	TA OUT3-	Rx 3-	3	Rx OUT24	NC	NC
	RSVD 3	RSVD 3	28	TxIN25			5	Rx OUT25	NC	NC
	DCLK		31	TxCLK IN	TxCLK OUT+	RxCLK IN+	26	RxCLK	DCLK	
					TxCLK OUT-	RxCLK IN-		OUT		

R0~R7: Pixel R Data (7; MSB, 0; LSB)

G0~G7: Pixel G Data (7; MSB, 0; LSB)

B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE : Data enable signal

DCLK : Data clock signal

Notes: (1) RSVD (reserved) pins on the transmitter shall be "H" or "L".

5.6 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

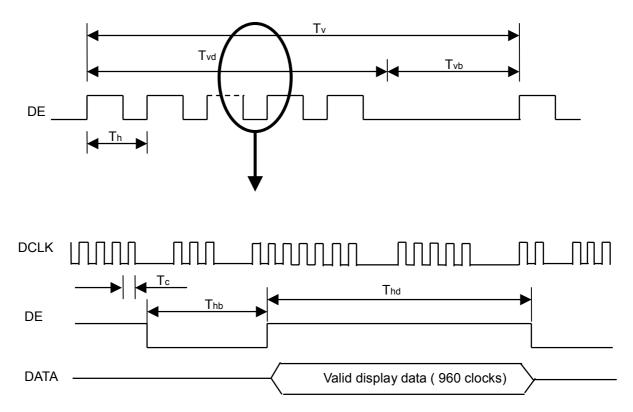
		Data Signal																							
	Color		Red R7 R6 R5 R4 R3 R2 R1 R0				Green					Blue													
			R6	R5	R4	R3	R2	R1	R0	G7			G4		G2	G1	G0	B7	B6	B5	B4	B3			B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red (253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
i teu	Red (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	-	-	:	:		:	:	:		:	:	:	:	:	:	:	-	:	-	:	:	•	:	:
Green	Green (253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue (253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

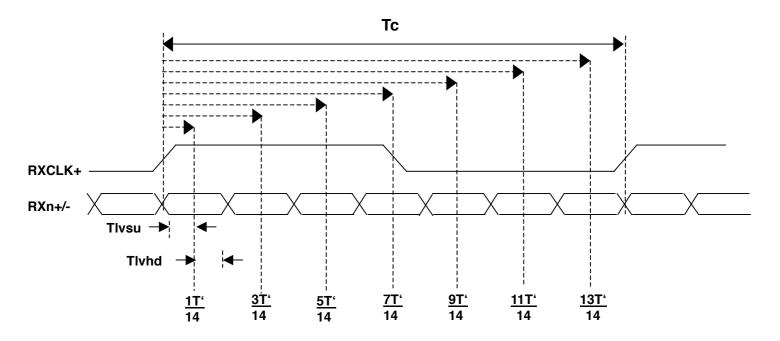
6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.


		•		• •			
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	1/Tc	60	74	80	MHz	-
LVDS Receiver Clock	Input cycle to cycle jitter	Trcl	-	-	200	ps	-
LVDS Receiver Data	Setup Time	Tlvsu	600	-	-	ps	-
LVDS Receiver Data	Hold Time	Tlvhd	600	-	-	ps	-
	Frame Rate	Fr5	47	50	53	Hz	(1)
	Fidille Rale	Fr6	57	60	63	Hz	(1)
Vertical Active Display Term	Total	Τv	1115	1125	1135	Th	Tv=Tvd+Tvb
	Display	Tvd	1080	1080	1080	Th	-
	Blank	Tvb	35	45	55	Th	-
	Total	Th	2100	2200	2300	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	1920	1920	1920	Tc	-
	Blank	Thb	180	280	380	Тс	-

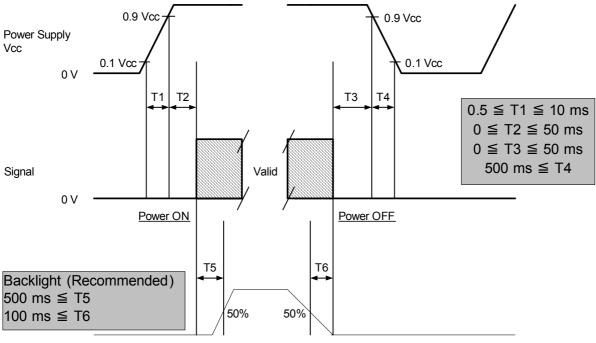
Note (1) (ODSEL) = (H), (L). Please refer to 5.1 for detail information.

Note (2) Since the module is operated in DE only mode, Hsync and Vsync input signals should be set to low


logic level. Otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM

LVDS INPUT INTERFACE TIMING DIAGRAM



6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the diagram below.

POWER ON/OFF SEQUENCE

Note.

The supply voltage of the external system for the module input should follow the definition of Vcc.

Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.

In case of VCC is in off level, please keep the level of input signals on the low or high impedance.

T4 should be measured after the module has been fully discharged between power off and on period.

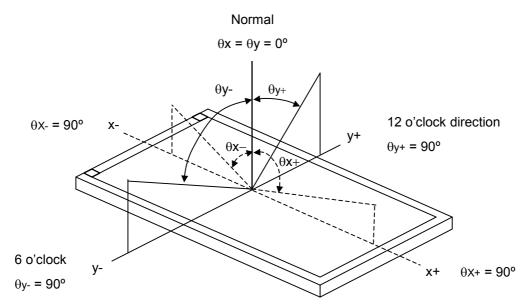
Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Та	25±2	°C		
Ambient Humidity	На	50±10	%RH		
Supply Voltage	V _{CC}	12	V		
Input Signal	According to typical va	alue in "3. ELECTRICAL (CHARACTERISTICS"		
Lamp Current	l	6.5±0.5	mA		
Oscillating Frequency (Inverter)	Fw	50±3	KHz		
Vertical Frame Rate	Fr	60	Hz		

7.2 OPTICAL SPECIFICATIONS


The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
		CR		1800	2000	-		Note (2)	
Contrast Ratio		Dynamic CR		-	6000	-	-		
Response Tim	e	Gray to gray		-	6.5	-	ms	Note (3)	
Center Luminance of White		L _C		300	400	-	cd/m ²	Note (4)	
White Variation		δW	0 -00 0 -00	-	-	1.3	-	Note (7)	
Cross Talk		СТ	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$	-	-	4	%	Note (5)	
	Red	Rx	Viewing angle at normal direction.		0.635		-	1	
	Reu	Ry	normal direction.	Typ. -0.03	0.327	Typ. +0.03	-		
	Green Blue White	Gx			0.274		-		
Color		Gy			0.590		-	Note (6)	
Color Chromaticity		Bx			0.144		-		
Chromaticity		Ву			0.066		-		
		Wx			0.280		-		
		Wy			0.285		-		
	Color Gamut	C.G		68	72	-	%	NTSC	
Viewing Angle	Llorimontal	θ _x +		80	88	-			
	Horizontal	θ _x -		80 88 -	-		Note (1)		
) (a sti a al	θ _Y +	CR≥20	80	88	-	Deg.	Note (1)	
	Vertical	θ _Y -		80	88	-			

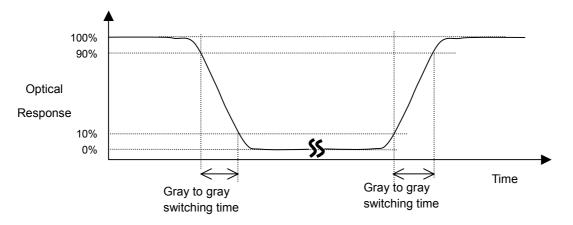
Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Eldim EZ-Contrast 160R

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Surface Luminance with all white pixels


Contrast Ratio (CR) =

Sruface Luminance with all black pixels

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

The measurement value will be "Dynamic CR" only when the dynamic contrast ratio function is enabled.

Note (3) Definition of Gray to Gray Switching Time :

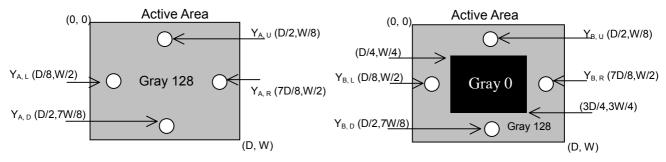
The driving signal means the signal of luminance 0%, 20%, 40%, 60%, 80%, 100%.

Gray to gray average time means the average switching time of gray level 0, 63,127,191,255 to each other.

Note (4) Definition of Luminance of White (L_C, L_{AVE}):

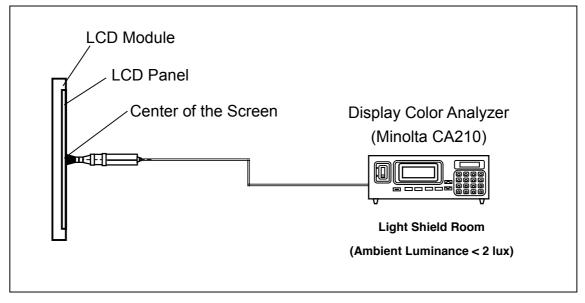
Measure the luminance of gray level 255 at center point and 5 points

 $L_{c} = L$ (5), where L (X) is corresponding to the luminance of the point X at the figure in Note (7).


Note (5) Definition of Cross Talk (CT):

 $\mathsf{CT} = \mid \mathsf{Y}_\mathsf{B} - \mathsf{Y}_\mathsf{A} \mid / \; \mathsf{Y}_\mathsf{A} \times \; \mathsf{100} \; (\%)$

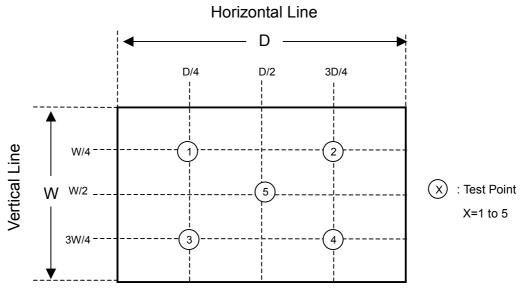
Where:


 Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

 Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.



Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

δW = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]

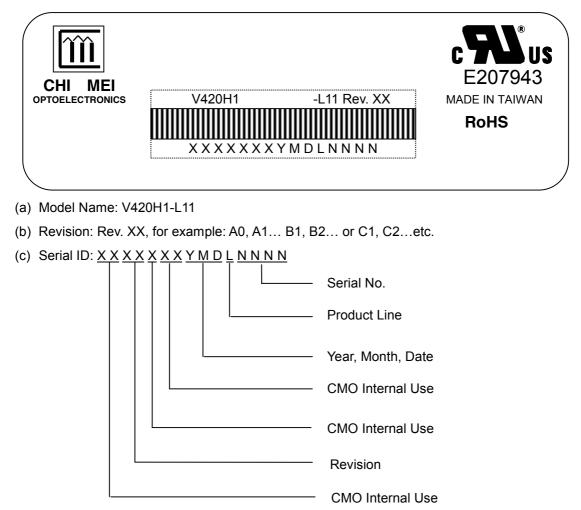
Active Area

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) When storing modules as spares for a long time, the following precaution is necessary.
- (a)Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°Cat normal humidity without condensation.
- (b)The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

8.2 SAFETY PRECAUTIONS


- (1) The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

9. DEFINITION OF LABELS

9.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

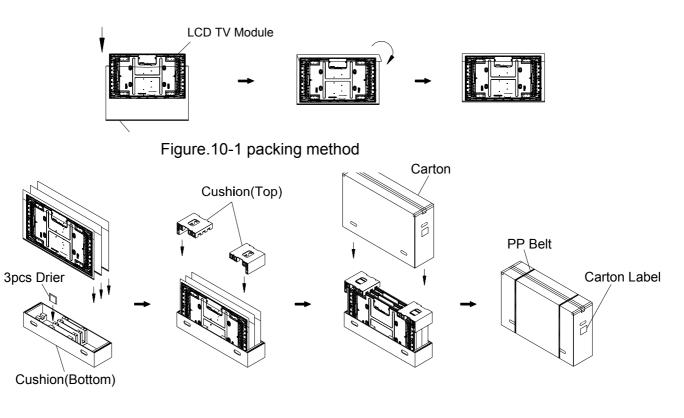
Serial ID includes the information as below:

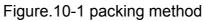
(a) Manufactured Date: Year: 0~9, for 2000~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: $1 \sim 9$, $A \sim Y$, for 1^{st} to 31^{st} , exclude I, O, and U.

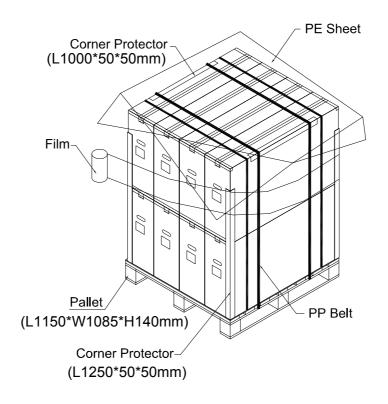
- (b) Revision Code: Cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

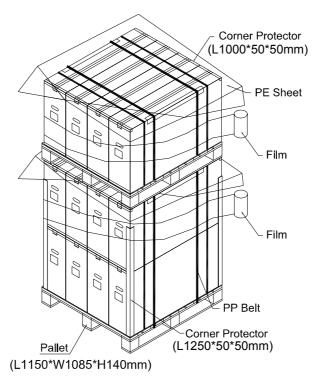

10. PACKAGING

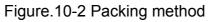

10.1 packing specifications

- (1) 3 LCD TV modules / 1 Box
- (2) Box dimensions : 1080(L) X 282 (W) X 685(H)
- (3) Weight : approximately 45Kg (3 modules per box)

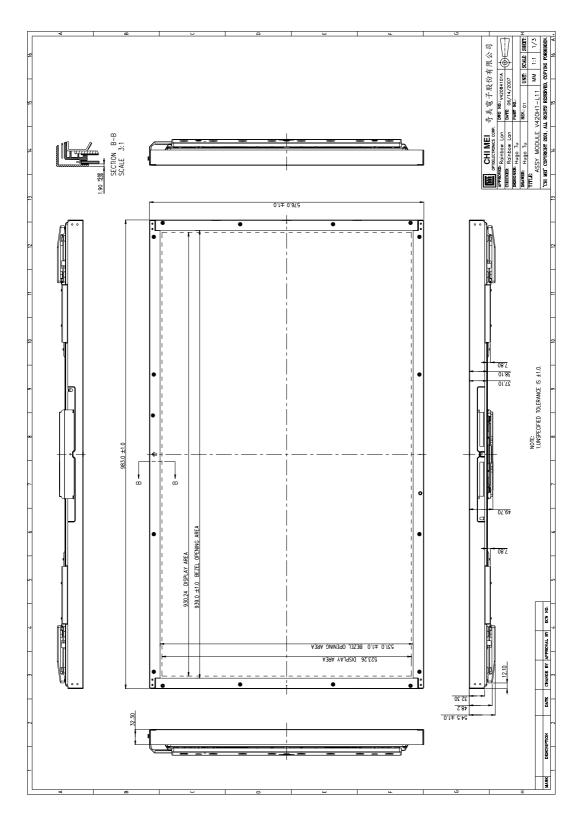
10.2 PACKING METHOD

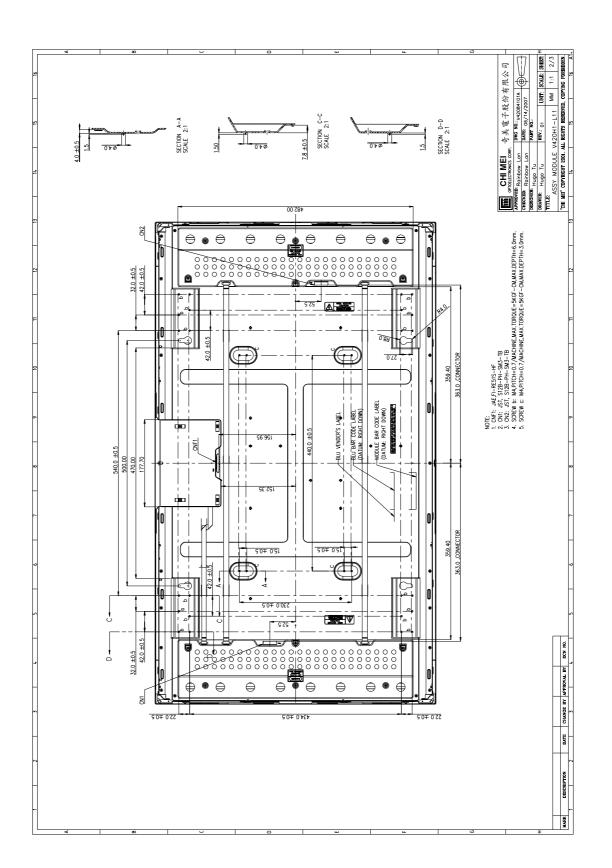

Figures 10-1 and 10-2 are the packing method

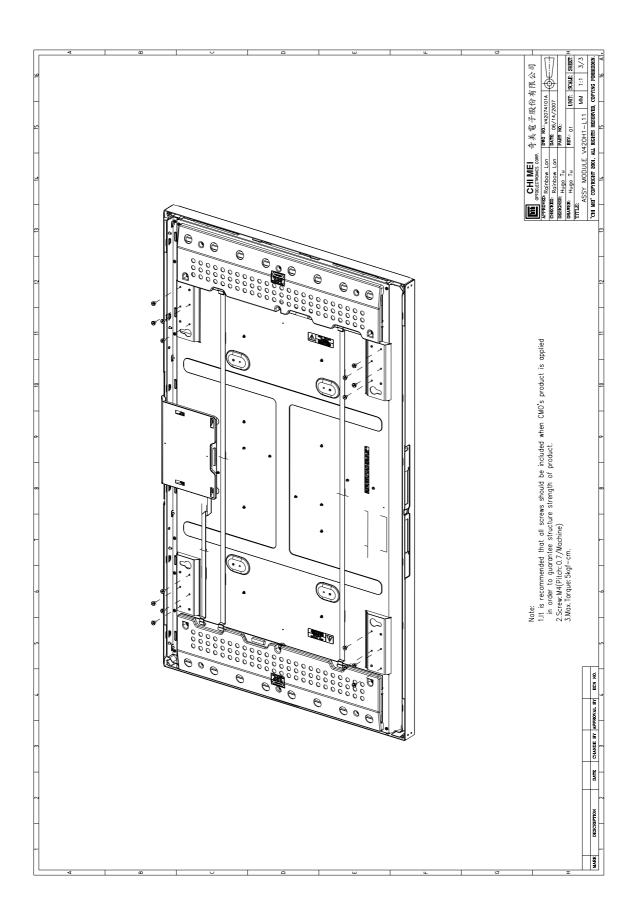



Approval

Air Transportation & Sea / Land Transportation (40ft Container)






11. MECHANICAL CHARACTERISTICS

