

TFT LCD Approval Specification

MODEL NO.: V460H1 - LH7

Customer:	
Approved by: _	
Note:	

Approved Dv	TV Product Marketing & Management Div				
Approved By	Chao-Chun Chung				
Reviewed By	QA Dept.	Product Development Div.			
Tieviewed by	Hsin-Nan Chen	WT Lin			
Dropored By	LCD TV Marketing and	Product Management Div.			
Prepared By	Josh Chi	Lynn Cheng			

- CONTENTS -

REVISION HISTORY		3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT INVERTER UNIT		5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT 3.2.1 CCFL(Cold Cathode Fluorescent Lamp) CHARACT 3.2.2 BALANCE BOARD CHARACTERISTICS	ERISTICS	7
4. BLOCK DIAGRAM OF INTERFACE 4.1 TFT LCD MODULE		13
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 BALANCE BOARD UNIT 5.4 BLOCK DIAGRAM OF INTERFACE 5.5 LVDS INTERFACE 5.6 COLOR DATA INPUT ASSIGNMENT		14
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		24
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		28
8. DEFINITION OF LABELS 8.1 CMO MODULE LABEL		32
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD		34
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS 10.3 SAFETY STANDARDS		37
11. MECHANICAL CHARACTERISTICS		38

Approval

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Version Ver 2.0 Ver 2.1	Date Nov. 19,'09 Dec. 21,'09	(New) All		Description Approval Specification was first issued. The packing information was verified. Box Dimensions: 1175(L)x 282(W)x 725(H)mm Container Dimenions: see Figure. 9-2

Approval

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V460H1-LH7 is a 46" TFT Liquid Crystal Display module with 14-CCFL Backlight unit and 4ch-LVDS interface. This module supports 1920 x 1080 full HDTV format and can display true 1.073G colors (8bit+Hi-FRC

-bit/color). The balance board module for backlight is built-in.

1.2 FEATURES

- High brightness (500nits)
- High contrast ratio (6500:1)
- Fast response time (Gray to Gray average 4.5 ms)
- High color saturation (72% NTSC)
- Full HDTV (1920 x 1080 pixels) resolution, true HDTV format
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Optimized response time for 100/120 Hz frame rate
- Ultra wide viewing angle: Super MVA technology

1.3 APPLICATION

- Standard Living Room TVs.
- Public Display Application.
- Home Theater Application.
- MFM Application.

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	1018.08(H) x 572.67(V) (46" diagonal)	mm	(1)
Bezel Opening Area	1024.4(H) x 579.2(V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920x R.G.B. x 1080	pixel	-
Pixel Pitch(Sub Pixel)	0.17675(H) x 0.53025(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	1.073G	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Glare coating, Hardness (3H)	-	(2)

Note (1) Please refer to the attached drawings in chapter 9 for more information about the front and back outlines.

Note (2) The spec of the surface treatment is temporarily for this phase. CMO reserves the rights to change this feature.

1.5 MECHANICAL SPECIFICATIONS

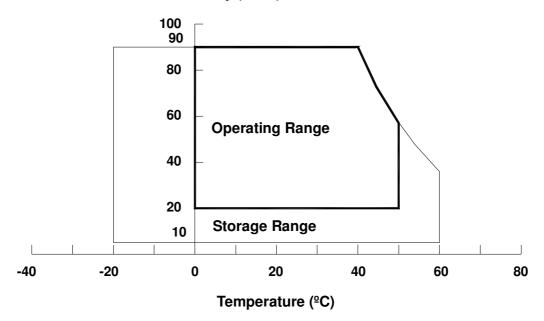
Item		Min.	Тур.	Max.	Unit	Note	
	Horizontal (H)	-	1083	-	mm		
Module Size	Vertical (V)	-	627	-	mm	(1), (2)	
	Depth (D)	-	53.8	-	mm		
Weight		-	13020	-	g	-	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Module Depth does not include connectors.

Approval

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol		Va	lue	Unit	Note	
item			Min.	Max.	Offic	Note	
Storage Temperature	T _{ST}		-20	+60	ºC	(1)	
Operating Ambient Temperature	T _{OP}		0	50	ºC	(1), (2)	
Shock (Non-Operating)	S _{NOP}	X, Y axis	-	50	G	(3), (5)	
Shock (Non-Operating)		Z axis	-	35	G	(3), (5)	
Vibration (Non-Operating)	ration (Non-Operating) V _{NOP}		-	1.0	G	(4), (5)	

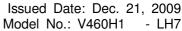
Note (1) Temperature and relative humidity range is shown in the figure below.

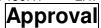
- (a) 90 %RH Max. (Ta \leq 40 ${}^{\circ}$ C).
- (b) Wet-bulb temperature should be 39 $^{\circ}$ C Max. (Ta > 40 $^{\circ}$ C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in your product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in your product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, and $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture. The module would not be twisted or bent by the fixture.

Relative Humidity (%RH)

Approval

2.2 ELECTRICAL ABSOLUTE RATINGS

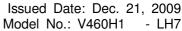

2.2.1 TFT LCD MODULE


Item	Symbol	Va	lue	Unit	Note	
	Cymbol	Min.	Max.	Offic	11010	
Power Supply Voltage	V _{CC}	-0.3	13.5	V	(1)	
Logic Input Voltage	V _{IN}	-0.3	3.6	V	(1)	

2.2.2 BACKLIGHT INVERTER UNIT

Item	Symbol	Va	lue	Unit	Note
Item	Symbol	Min.	Max.	O III	Note
Lamp Voltage	V _W		3000	V_{RMS}	

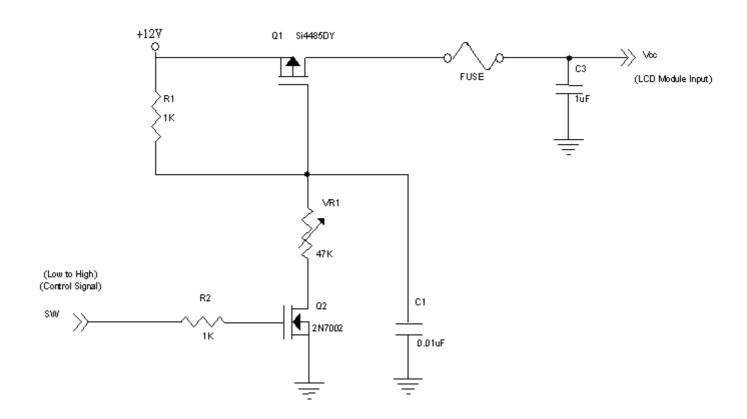
Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

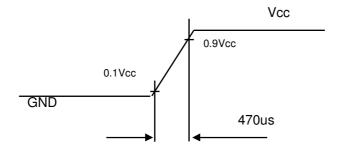


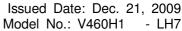
3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE (Ta = 25 ± 2 $^{\circ}$ C)

Parameter		Symbol	Value			Unit	Note		
Parameter			Syllibol	Min.	Тур.	Max.	Offic	Note	
Power Sup	oply Voltage		V_{CC}	10.8	12	13.2	V	(1)	
Rush Curr	ent		I_{RUSH}	-	-	5	Α	(2)	
		White Pattern	-	-	0.51	0.663	Α		
Power Sup	oply Current	Horizontal Stripe	-	-	0.98	1.274	Α	(3)	
		Black Pattern	-	-	0.45	0.585	Α		
		Differential Input High Threshold Voltage		+100	-	-	mV		
LVDS	Differential In Threshold Vo		V _{LVTL}	ı	ı	-100	mV		
interface	Common Inp	out Voltage	V_{CM}	1.0	1.2	1.4	V	(4)	
	Differential input voltage		V _{ID}	200	-	600	mV		
	Terminating Resistor		R_{T}	-	100	-	ohm		
CMOS	Input High T	hreshold Voltage	V_{IH}	2.7	-	3.3	V		
interface	Input Low Th	reshold Voltage	$V_{\rm IL}$	0	-	0.7	V		

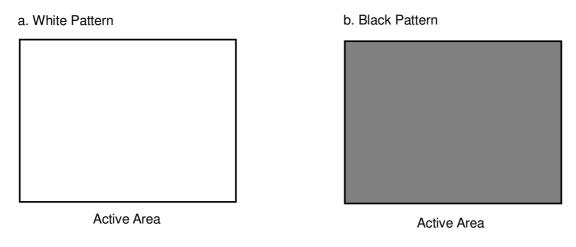

Note (1) The module should be always operated within the above ranges.

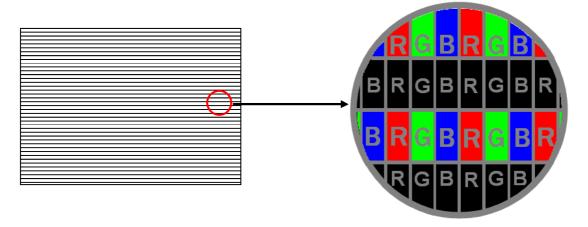


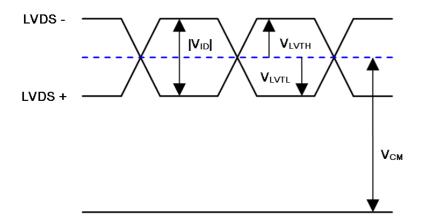


Note (2) Measurement condition:

Vcc rising time is 470us






Note (3) The specified power supply current is under the conditions at Vcc = 12V, $Ta = 25 \pm 2$ $^{\circ}C$, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

c. Horizontal Pattern

Note (4) The LVDS input characteristics are as follows:

Approval

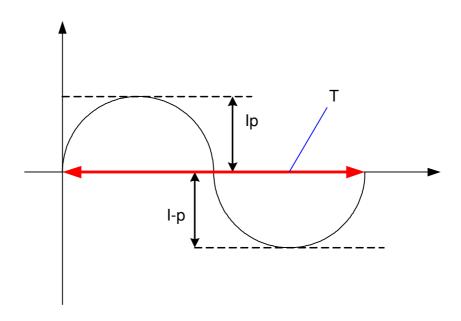
3.2 BACKLIGHT UNIT

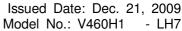
3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

-			. ,	•		•
Doromotor	Cumbal		Value	Unit	Note	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Lamp Input Voltage	V_L	-	1050	-	V_{RMS}	-
Lamp Current	ΙL	11.5	12.0	12.5	mA _{RMS}	(1)
Laurana Tauran Ora Malka ara	Vs	-	-	1820	V _{RMS}	(2), Ta = 0 ^o C
Lamp Turn On Voltage		-	-	1650	V_{RMS}	(2), Ta = 25 ^o C
Operating Frequency	FL	30	-	80	KHz	(3)
Lamp Life Time	L_BL	50,000	-	-	Hrs	(4)

- Note (1) Lamp current is measured by utilizing AC current probe and its value is average by measuring master and slave board.:
- Note (2) The lamp starting voltage V_S should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency of the display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point of lamp.) as the time in which it continues to operate under the condition at Ta = 25 \pm 2 \pm 2 and I_L = 11.5~12.5 mArms.

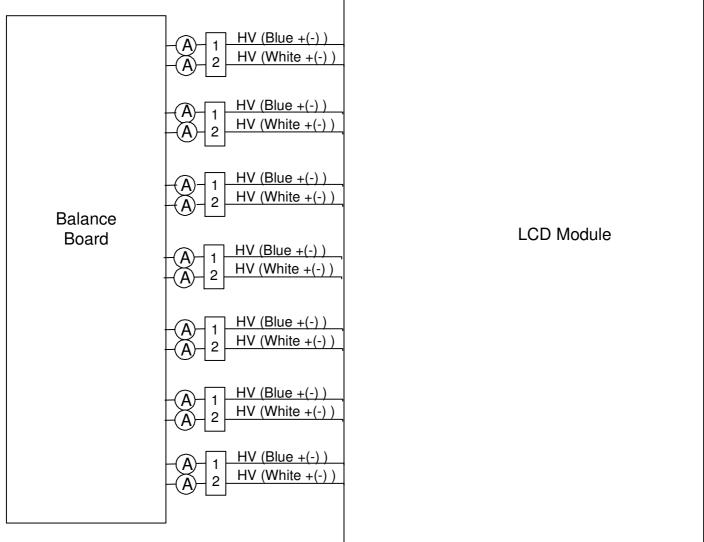
Approval

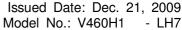

3.2.2 BALANCE BOARD CHARACTERISTICS (Ta = 25 ± 2 °C)


Parameter		Symbol	Value			Unit	Note
Falali	Parameter		Min.	Тур.	Max.	Offic	Note
Input High	Voltage	V_{HV}	-	1050	-	٧	(6)
Protection Circuit	Supply Voltage	Vcc	10	12	15	V	
Input C	Input Current			168		mArms	No Dimming
Oscillating F	Oscillating Frequency		-	-	-	kHz	
Individual La	mp Current	ΙL	11.5	12.0	12.5	mA	H.V (5)
Lamp Detection	High (LD)	LD	5			V	Normal Operation
Lamp Detection	Low (LD)	LD			1.5	V	Lamp Connector Open
Dimming frequency		F _B	135	150	165	Hz	
Minimum D	outy Ratio	D _{MIN}	-	15	-	%	

Note (5) Lamp current is measured master board by utilizing high frequency current meters as shown below:

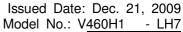

Note (6) Input voltage Hv based on spec. +-7% tolerance.


Note (7) Asymmetric ratio must be from 90% to 110% (0.9<Ip/ $I_{rms@T/2X^{/}2}<$ 1.1)



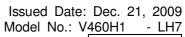
Approval





4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

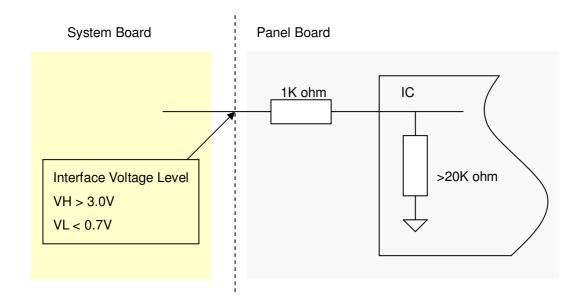


5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD Module

CNF1 Connector Pin Assignment (40550-8210,UJU(宇宙) or equivalent)

Pin	Name	Description	Note
1	VCC	+12V power supply	
2	VCC	+12V power supply	
3	VCC	+12V power supply	
4	VCC	+12V power supply	
5	VCC	+12V power supply	
6	N.C.	No Connection	(1)
7	GND	Ground	
8	GND	Ground	
9	GND	Ground	
10	CH1[0]-	First pixel Negative LVDS differential data input. Pair 0	
11	CH1[0]+	First pixel Positive LVDS differential data input. Pair 0	
12	CH1[1]-	First pixel Negative LVDS differential data input. Pair 1	
13	CH1[1]+	First pixel Positive LVDS differential data input. Pair 1	
14	CH1[2]-	First pixel Negative LVDS differential data input. Pair 2	
15	CH1[2]+	First pixel Positive LVDS differential data input. Pair 2	
16	GND	Ground	
17	CH1CLK-	First pixel Negative LVDS differential clock input.	
18	CH1CLK+	First pixel Positive LVDS differential clock input.	
19	GND	Ground	
20	CH1[3]-	First pixel Negative LVDS differential data input. Pair 3	
21	CH1[3]+	First pixel Positive LVDS differential data input. Pair 3	
22	CH1[4]-	First pixel Negative LVDS differential data input. Pair 4	
23	CH1[4]+	First pixel Positive LVDS differential data input. Pair 4	
24	GND	Ground	
25	CH3[0]-	Third pixel Negative LVDS differential data input. Pair 0	
26	CH3[0]+	Third pixel Positive LVDS differential data input. Pair 0	
27	CH3[1]-	Third pixel Negative LVDS differential data input. Pair 1	
28	CH3[1]+	Third pixel Positive LVDS differential data input. Pair 1	
29	CH3[2]-	Third pixel Negative LVDS differential data input. Pair 2	
30	CH3[2]+	Third pixel Positive LVDS differential data input. Pair 2	
31	GND	Ground	
32	CH3CLK-	Third pixel Negative LVDS differential clock input.	
33	CH3CLK+	Third pixel Positive LVDS differential clock input.	


34	GND	Ground	
35	CH3[3]-	Third pixel Negative LVDS differential data input. Pair 3	
36	CH3[3]+	Third pixel Positive LVDS differential data input. Pair 3	
37	CH3[4]-	Third pixel Negative LVDS differential data input. Pair 4	
38	CH3[4]+	Third pixel Positive LVDS differential data input. Pair 4	
39	GND	Ground	
40	SCL	I2C Bus	
41	N.C.	No Connection	(1)
42	N.C.	No Connection	(1)
43	WP	Write Protection for EEPROM	
44	SDA	I2C Bus	
45	LVDS_SEL	LVDS Data Format Selection	(2)
46	N.C.	No Connection	(1)
47	N.C.	No Connection	(1)
48	N.C.	No Connection	(1)
49	N.C.	No Connection	(1)
50	N.C.	No Connection	(1)
51	N.C.	No Connection	(1)
52	GND	Ground	
53	CH4[4]+	Fourth pixel Positive LVDS differential data input. Pair 4	
54	CH4[4]-	Fourth pixel Negative LVDS differential data input. Pair 4	
55	CH4[3]+	Fourth pixel Positive LVDS differential data input. Pair 3	
56	CH4[3]-	Fourth pixel Negative LVDS differential data input. Pair 3	
57	GND	Ground	
58	CH4CLK+	Fourth pixel Positive LVDS differential clock input.	
59	CH4CLK-	Fourth pixel Negative LVDS differential clock input.	
60	GND	Ground	
61	CH4[2]+	Fourth pixel Positive LVDS differential data input. Pair 2	
62	CH4[2]-	Fourth pixel Negative LVDS differential data input. Pair 2	
63	CH4[1]+	Fourth pixel Positive LVDS differential data input. Pair 1	
64	CH4[1]-	Fourth pixel Negative LVDS differential data input. Pair 1	
65	CH4[0]+	Fourth pixel Positive LVDS differential data input. Pair 0	
66	CH4[0]-	Fourth pixel Negative LVDS differential data input. Pair 0	
67	GND	Ground	
68	CH2[4]+	Second pixel Positive LVDS differential data input. Pair 4	
69	CH2[4]-	Second pixel Negative LVDS differential data input. Pair 4	
70	CH2[3]+	Second pixel Positive LVDS differential data input. Pair 3	

Approval

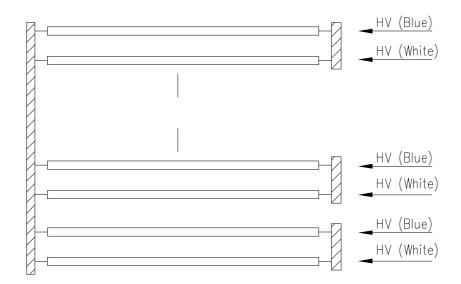
71	CH2[3]-	Second pixel Negative LVDS differential data input. Pair 3
72	GND	Ground
73	CH2CLK+	Second pixel Positive LVDS differential clock input.
74	CH2CLK-	Second pixel Negative LVDS differential clock input.
75	GND	Ground
76	CH2[2]+	Second pixel Positive LVDS differential data input. Pair 2
77	CH2[2]-	Second pixel Negative LVDS differential data input. Pair 2
78	CH2[1]+	Second pixel Positive LVDS differential data input. Pair 1
79	CH2[1]-	Second pixel Negative LVDS differential data input. Pair 1
80	CH2[0]+	Second pixel Positive LVDS differential data input. Pair 0
81	CH2[0]-	Second pixel Negative LVDS differential data input. Pair 0
82	GND	Ground

- Note (1) Reserved for internal use. Please leave it open.
- Note (2) High=connect to +3.3V or Open: VESA Format ; Low= connect to GND: JEIDA Format.
- Note (3) Interface optional pin has internal scheme as following diagram. Customer should keep the interface voltage level requirement as below.

Note (4) LVDS 4-port Data Mapping

Port	Channel of LVDS	Data Stream
1st Port	First Pixel	1, 5, 9,1913, 1917
2nd Port	Second Pixel	2, 6, 10,1914, 1918
3rd Port	Third Pixel	3, 7, 11,1915, 1919
4th Port	Fourth Pixel	4, 8, 12,1916, 1920

Approval


5.2 BACKLIGHT UNIT

The pin configuration for the housing and the leader wire is shown in the table below.

CN101-CN107: CP042ESFA00 (Cvilux)

Pin	Name	Description	Wire Color
1	HV	High Voltage	Blue
2	HV	High Voltage	White

Note (1) The backlight interface housing for high voltage side is a model CP042ESFA00, manufactured by Cvilux. The mating header on inverter part number is CP042EP1MFB-LF (Cvilux)

Approval

5.3 BALANCE BOARD UNIT

CN127 (Header) (Master): 130001WR-02E (YEONHO)

Pin No.	Symbol	Description							
1	HV+(-)	High Voltage Input							
2	HV+(-)	High Voltage Input							

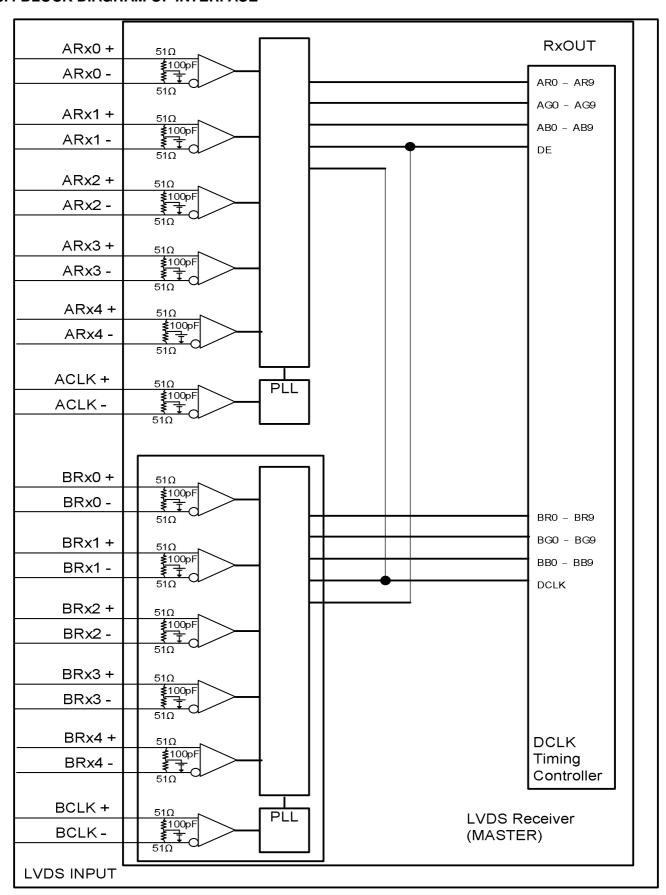
CN227 (Header) (Slave): 130001WR-02E (YEONHO)

Pin No.	Symbol	Description
1	HV-(+)	High Voltage Input
2	HV-(+)	High Voltage Input

CN101-CN108 (Header) (Master): CP042EP1MFB-LF (CviLux)

Pin No.	Symbol	Description
1	CCFL HOT	CCFL High voltage
2	CCFL HOT	CCFL High voltage

CN125 (Header): KN30-7P-1.25H (Hirose).


Pin No.	Symbol	Description
1	VCC	Power Supply for Protection Circuit
2	FB1	Lamp Current Feedback 1
3	FB2	Lamp Current Feedback 2
4	GND	Signal Ground
5	GND	Signal Ground
6	LD	CCFL Connector Open & Non-lighting signal
7	LD	CCFL Connector Open & Non-lighting signal

Model No.: V460H1 - LH7

Approval

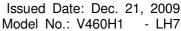
5.4 BLOCK DIAGRAM OF INTERFACE

Approval

AR0~AR9: First pixel R data
AG0~AG9: First pixel G data
AB0~AB9: First pixel B data

BR0~BR9: Second pixel R data BG0~BG9: Second pixel G data BB0~BB9: Second pixel B data

DE: Data enable signal DCLK: Data clock signal

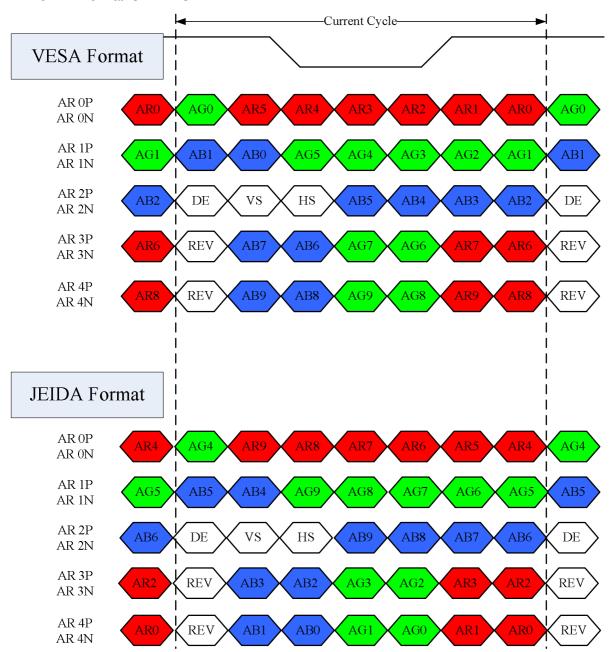

The third and fourth pixel are followed the same rules.

CR0~CR9: Third pixel R data CG0~CG9: Third pixel G data CB0~CB9: Third pixel B data DR0~DR9: Fourth pixel R data DG0~DG9: Fourth pixel G data DB0~DB9: Fourth pixel B data

Note (1) A ~ D channel are first, second, third and fourth pixel respectively.

Note (2) The system must have the transmitter to drive the module.

Note (3) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.


Approval

5.5 LVDS INTERFACE

VESA Format: SELLVDS = H or Open

JEIDA Format: SELLVDS = L

AR0~AR9: First Pixel R Data (9; MSB, 0; LSB) AG0~AG9: First Pixel G Data (9; MSB, 0; LSB) AB0~AB9: First Pixel B Data (9; MSB, 0; LSB)

DE: Data enable signal DCLK: Data clock signal

RSV: Reserved

Approval

5.6 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

ata inp	uı.																														
			Data Signal																												
	Color					R	ed									Gre	en									ВІ	ue				
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	В9	B8	В7	В6	B5	B4	ВЗ	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (2)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	;	:	:	:	:	:	:	:	:	:
	Red (1021)	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (1021)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0
Green	Green (1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue (1021)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1
	Blue (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0

Approval

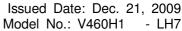
Note (1) 0: Low Level Voltage, 1: High Level Voltage

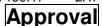
Approval

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

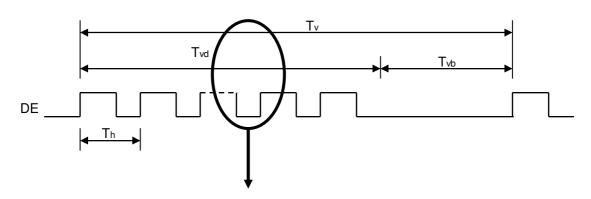
The input signal timing specifications are shown as the following table and timing diagram.

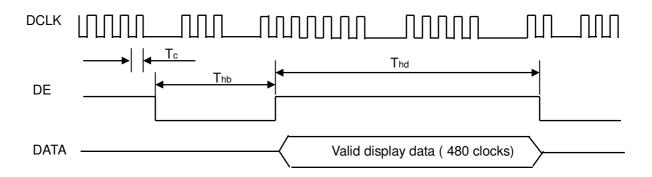

				_				
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz		
LVDS Receiver	Input cycle to cycle jitter	T _{rcl}	1	-	200	ps	(3)	
Clock	Spread spectrum modulation range	Fclkin_mo	F _{clkin} -2%	ı	F _{clkin} +2%	MHz	(4)	
	Spread spectrum modulation frequency	F _{SSM}	-	-	200	KHz	(4)	
LVDS	Setup Time	Tlvsu	600	-	-	ps		
Receiver Data	Hold Time	Tlvhd	600	-	-	ps	(5)	
	Frame Rate	F _{r5}	97	100	103	Hz	(6)	
Vertical	Traine riate	F _{r6}	117	120	123	Hz	(0)	
Active Display	Total	Tv	1115	1125	1135	Th	Tv=Tvd+Tvb	
Term	Display	Tvd	1080	1080	1080	Th	_	
	Blank	Tvb	35	45	55	Th	_	
Horizontal	Total	Th	540	550	575	Тс	Th=Thd+Thb	
Active Display	Display	Thd	480	480	480	Tc	_	
Term	Blank	Thb	60	70	95	Tc	_	

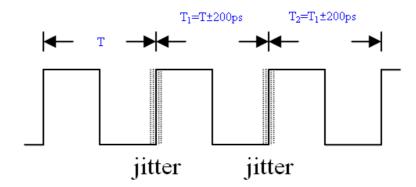

Note (1) Since the module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

Note (2) Please make sure the range of pixel clock has follow the below equation:

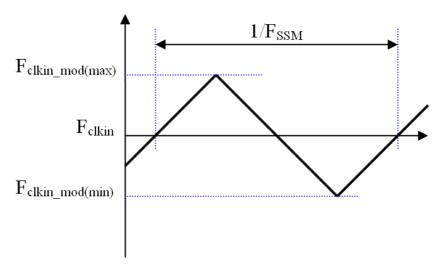
$$Fclkin(max) \ge Fr_6 \times Tv \times Th$$

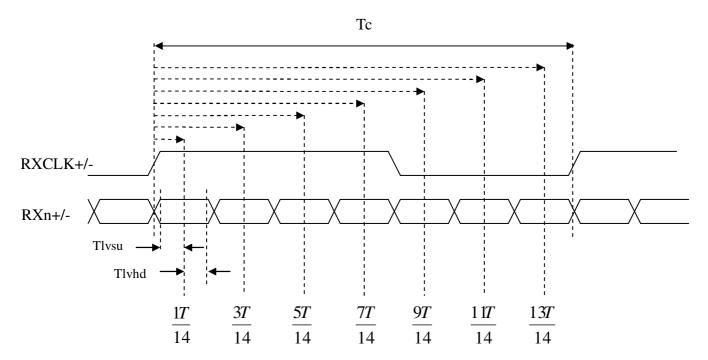

$$Fr5 \times Tv \times Th \ge Fclkin(min)$$



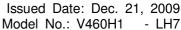


INPUT SIGNAL TIMING DIAGRAM


Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = IT1 - TI


Approval

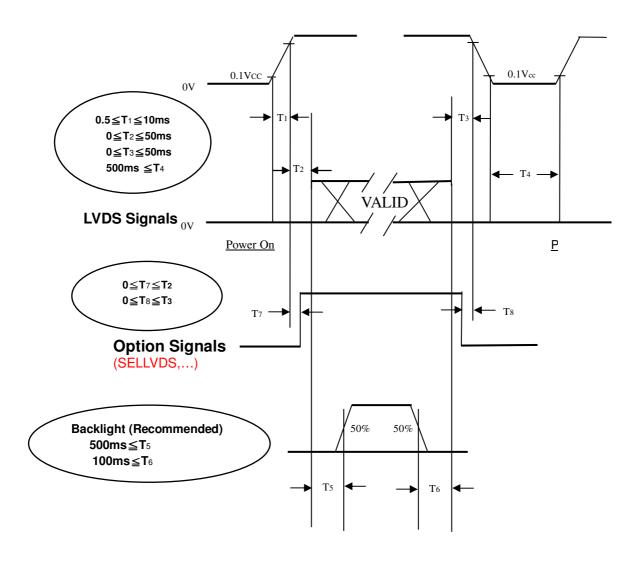
Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.



Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Note (6): (ODSEL) = H/L or open for 100/120Hz frame rate. Please refer to 5.1 for detail information



6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the diagram below.

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0,that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

Approval

7. OPTICAL CHARACTERISTICS

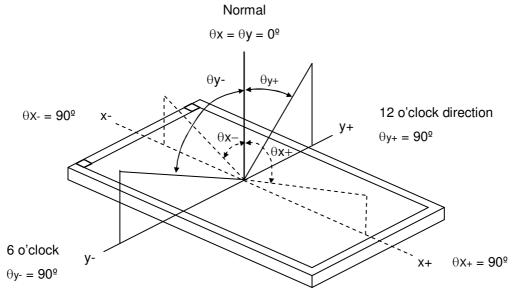
7.1 TEST CONDITIONS

Item	Symbol	Value	Unit	
Ambient Temperature	Ta	25±2	°C	
Ambient Humidity	Ha	50±10	%RH	
Supply Voltage	V_{CC}	12V	V	
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"			
Lamp Current	I_L	12.0±0.5	mA	
Oscillating Frequency (Inverter)	F_W	47±2	KHz	
Vertical Frame Rate	Fr	60	Hz	

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		4500	6500	-	-	Note (2)
Response Time		Gray to gray		-	4.5	8	ms	Note (3)
Center Luminance of White		L _C		400	500	-	cd/ m²	Note (4)
White Variation		δW		-	-	1.3	-	Note (7)
Cross Talk		CT		-	-	4	%	Note (5)
Color Chromaticity	Red	Rx	$\theta_x=0^\circ, \ \theta_Y=0^\circ$		0.633		-	
		Ry	Viewing angle at		0.324		-	
	Green	Gx	normal direction		0.284		-	
		Gy		Тур	0.599	Тур.+	-	Note (6)
	Blue	Bx		0.03	0.147	0.03	-	Note (6)
		Ву			0.048		-	
	White	Wx			0.280		-	
		Wy			0.290		-	
	Color Gamut				72	-	%	NTSC
Viewing Angle	Horizontal	θ_{x} +		80	88	-		
		θ_{x} -	CR≥20	80	88	-	Deg.	Note (1)
	Vertical	θ _Y +		80	88	-		
		θ _Y -		80	88	-		


HI ME

Issued Date: Dec. 21, 2009 Model No.: V460H1 - LH7

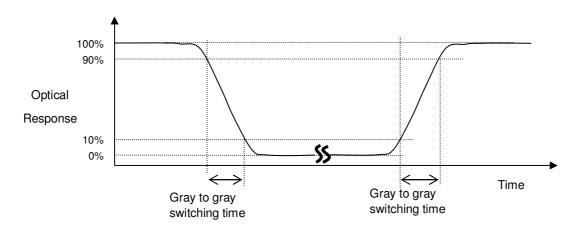
Approval

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7)

Note (3) Definition of Gray to Gray Switching Time:

The driving signal means the signal of gray level 0, 63, 127, 191, and 255.

Gray to gray average time means the average switching time of gray level 0,63,127,191,255 to each other.

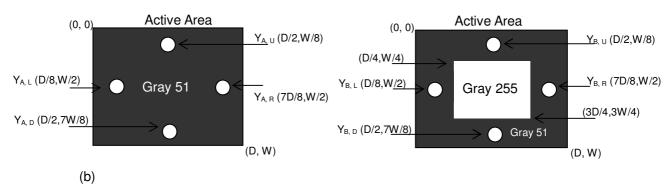
Approval

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point.

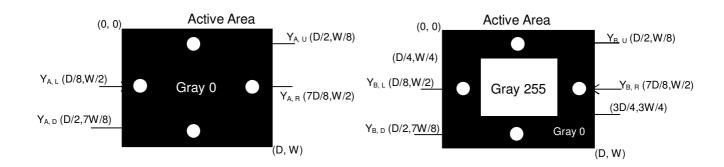
 $L_C = L$ (5), where L (x) is corresponding to the luminance of the point X at the figure in Note (7).

Note (5) Definition of Cross Talk (CT):


$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

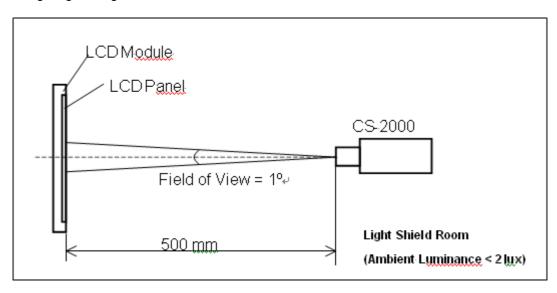
(a)


Y_A = Luminance of measured location without gray level 255 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 255 pattern (cd/m²)

Y_A = Luminance of measured location without gray level 255 pattern (cd/m²)

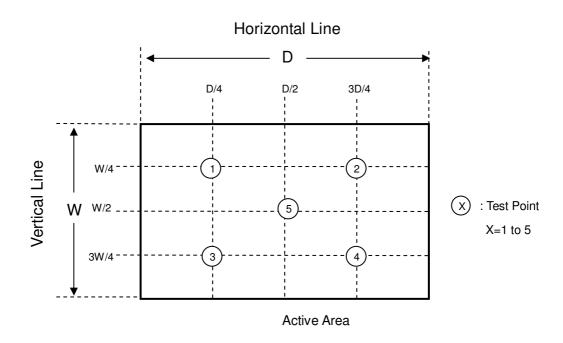
Y_B = Luminance of measured location with gray level 255 pattern (cd/m²)

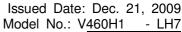

CHIMEI OPTOELECTRONICS CORP.

Issued Date: Dec. 21, 2009 Model No.: V460H1 - LH7

Approval

Note (6) Measurement Setup:

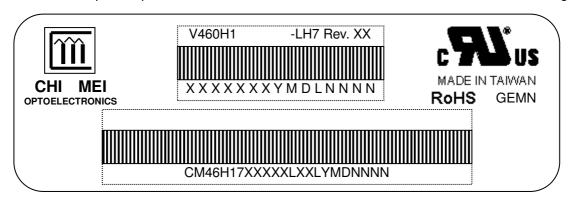

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

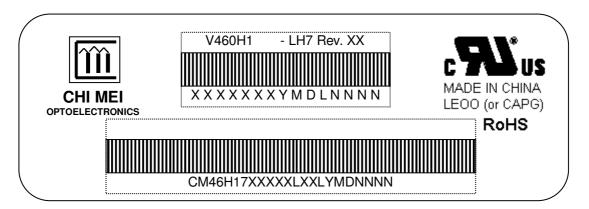


Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$





8. DEFINITION OF LABELS

8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

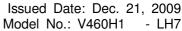
(a) Model Name: V460H1-LH7

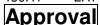
(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

(c) CMO barcode definition:

Serial ID: XX-XX-XX-YMD-L-NNNN

Code	Meaning	Description
XX	CMO internal use	-
XX	Revision	Cover all the change
X-XX	CMO internal use	-
YMD		Year: 2001=1, 2002=2, 2003=3, 2004=4 Month: Jan. ~ Dec.=1, 2, 3, ~, 9, A, B, C Day: 1 st to 31 st =1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U
L	Product line #	Line 1=1, Line 2=2, Line 3=3,
NNNN	Serial number	Manufacturing sequence of product




Approval

(d) Customer's barcode definition:

Serial ID: CM-46H17-X-X-X-XX-L-XX-L-YMD-NNNN

Code	Meaning	Description	
CM	Supplier code	CMO=CM	
46H17	Model number	V460H1-LH7=46H17	
Х	Revision code	C1=A, C2=B,	
Х	Source driver IC code	Century=1, CLL=2, Demos=3, Epson=4, Fujitsu=5, Himax=6, Hitachi=7, Hynix=8, LDI=9, Matsushita=A, NEC=B, Novatec=C,	
Х	Gate driver IC code	OKI=D, Philips=E, Renasas=F, Samsung=G, Sanyo=H, Sharp=I, TI=J, Topro=K, Toshiba=L, Windbond=M	
XX	Cell location	Tainan, Taiwan=TN	
L	Cell line #	1~12=0~C	
XX	Module location	Tainan, Taiwan=TN	
L	Module line #	1~12=0~C	
YMD	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4 Month: Jan. ~ Dec.=1, 2, 3, ~, 9, A, B, C Day: 1 st to 31 st =1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U	
NNNN	Serial number	By LCD supplier	

9. PACKAGING

9.1 PACKING SPECIFICATIONS

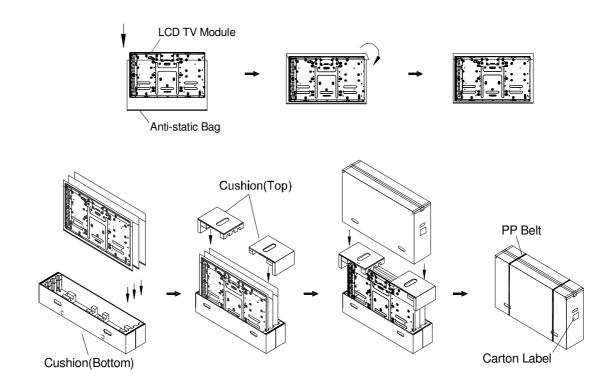
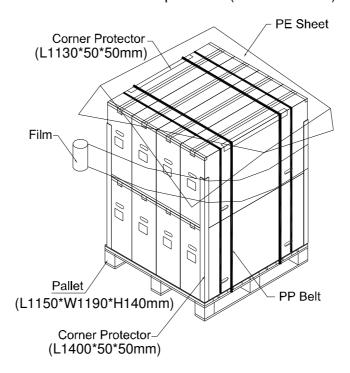
(1) 3 LCD TV modules / 1 Box

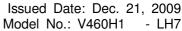
(2) Box dimensions : 1175(L)x 282(W)x 725(H)mm

(3) Weight: approximately 45Kg (3 modules per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method


Figure.9-1 packing method

Approval

Sea / Land Transportation (40ft HQ Container)

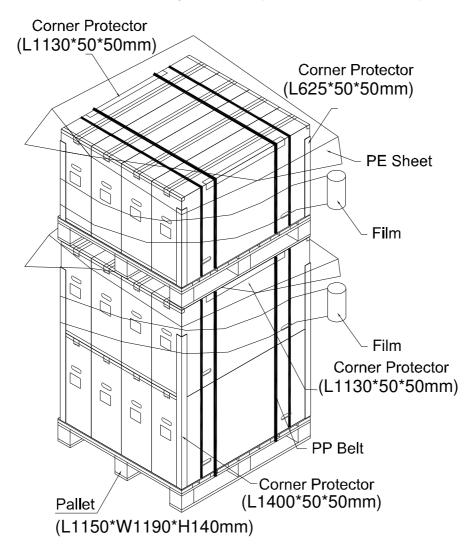


Figure.9-2 packing method

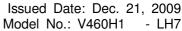
Approval

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

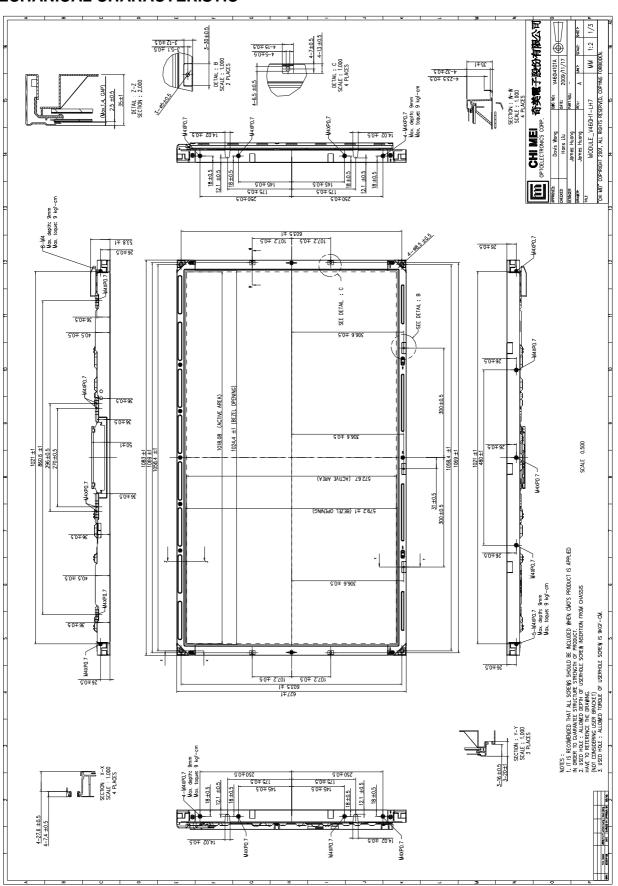
10.2 SAFETY PRECAUTIONS

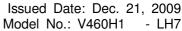

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

10.3 SAFETY STANDARDS

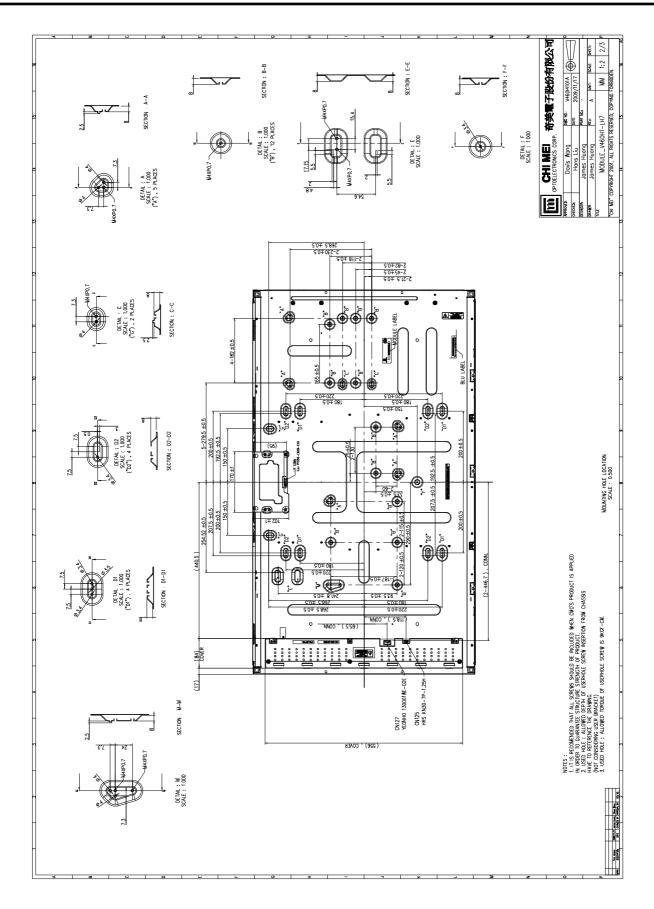
The LCD module should be certified with safety regulations as follows:

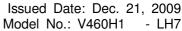
Regulatory	Item	Standard
Information Technology equipment	UL	UL 60950-1: 2003
	cUL	CAN/CSA C22.2 No.60950-1-03
	СВ	IEC 60950-1:2001
Audio/Video Apparatus	UL	UL 60065: 2003
	cUL	CAN/CSA C22.2 No.60065-03
	СВ	IEC 60065:2001


If the module displays the same pattern for a long period of time, the phenomenon of image sticking may be occurred.



Approval


11. MECHANICAL CHARACTERISTIC



Approval

