Chunghwa Picture Tubes, Ltd.
Product Specification

To :
Date :

TFT LCD

CLAA057VA01CW

ACCEPTED BY : (V0.6)
Tentative

<table>
<thead>
<tr>
<th>APPROVED BY</th>
<th>CHECKED BY</th>
<th>PREPARED BY</th>
</tr>
</thead>
</table>

Prepared by :
Product Planning Management Division
Small & Medium TFT Product Business Unit
CHUNGHWA PICTURE TUBES, LTD.

Doc.No: SPEC_CLAA057VA01CW_V0.6_CPT_070419
Issue Date: 2007/04/19
REVISION STATUS

<table>
<thead>
<tr>
<th>Revision Notice</th>
<th>Description</th>
<th>Page</th>
<th>Rev. Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>First revision (Tentative)</td>
<td></td>
<td>2006/9/6</td>
</tr>
</tbody>
</table>

CONTENTS

1. OVERVIEW .. 4

2. ABSOLUTE MAXIMUM RATINGS ... 5

3. ELECTRICAL CHARACTERISTICS .. 6
 3.1 TFT LCD .. 6
 3.2 TFT-LCD current consumption ... 6
 3.3 Power \ Signal sequence .. 7

4. INTERFACE CONNECTION ... 8

5. INPUT SIGNAL(DE ONLY MODE) .. 10
 5.1 Timing Specification ... 10
 5.2 Timing sequence(Timing chart) ... 10
 5.3 Color Data Assignment ... 13

6. BLOCK DIAGRAM .. 14

7. MECHANICAL DIMENSION .. 15
 7.1 Front Side ... 15
 7.2 Rear Side ... 15

8. OPTICAL CHARACTERISTICS ... 17

9. RELIABILITY TEST .. 19
 9-1. Temperature and humidity .. 19
 9-2. Shock and Vibration ... 19
 9-3. Judgment standard ... 19
1. OVERVIEW

CLAA057VAO1CW is a 5.7" color TFT-LCD (Thin Film Transistor Liquid Crystal Display) module composed of LCD panel, driver ICs, control circuit, and LED backlight.

The 14.52cm (5.7") screen produces a high resolution image that is composed of 640×480 pixel elements in a stripe arrangement. Display 262K colors by 6 bit R.G.B signal input. Use 3.3 Voltage to drive the power of LCD system, and 5 Voltage to drive the LED backlight.

General specifications are summarized in the following table:

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel Size</td>
<td>5.7 inch (panel diagonal)</td>
</tr>
<tr>
<td>Display Area (mm)</td>
<td>116.16(W)×87.12(H)</td>
</tr>
<tr>
<td>Number of Pixels</td>
<td>640×3(H)×480(V)</td>
</tr>
<tr>
<td>Pixel Pitch (mm)</td>
<td>0.1815(H)×0.1815(V)</td>
</tr>
<tr>
<td>Color Pixel Arrangement</td>
<td>RGB vertical stripe</td>
</tr>
<tr>
<td>Display Mode</td>
<td>Normally white</td>
</tr>
<tr>
<td>Number of colors</td>
<td>262,144</td>
</tr>
<tr>
<td>Viewing Direction</td>
<td>6 o’clock</td>
</tr>
<tr>
<td>Response Time (Tr+Tf)</td>
<td>30ms</td>
</tr>
<tr>
<td>Brightness (cd/m²)</td>
<td>220nit (typ)</td>
</tr>
<tr>
<td>NTSC ratio</td>
<td>50%</td>
</tr>
<tr>
<td>Viewing Angle (BL on, CR ≥ 10)</td>
<td>140 degree(H) × 100degree(V)</td>
</tr>
<tr>
<td>Electrical Interface (data)</td>
<td>TTL</td>
</tr>
<tr>
<td>Power consumption (W)</td>
<td>2W</td>
</tr>
<tr>
<td>Outline Dimension (in mm)</td>
<td>127(W)×100(H)×6.6(D)</td>
</tr>
<tr>
<td>Weight (g)</td>
<td>110g</td>
</tr>
<tr>
<td>BL Unit</td>
<td>LED</td>
</tr>
<tr>
<td>Surface Treatment</td>
<td>Anti-Glare • Hardness: 3H</td>
</tr>
</tbody>
</table>
2. ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage</td>
<td>Vcc</td>
<td>-0.5</td>
<td>5.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Signal Input Voltage</td>
<td>DCLK,DE,R0,G0 ,B0~R5,G5,B5</td>
<td>-0.5</td>
<td>Vcc + 0.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Static Electricity</td>
<td>VESDc</td>
<td>-200</td>
<td>+200</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VESDm</td>
<td>-15K</td>
<td>+15K</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>ICC Rush Current</td>
<td>IRUSH</td>
<td>-</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Operation Temperature</td>
<td>T_{op}</td>
<td>-30</td>
<td>85</td>
<td>°C</td>
<td>*1)</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td>-40</td>
<td>95</td>
<td>°C</td>
<td>*1)</td>
</tr>
</tbody>
</table>

Remarks:

*1) If users use the product out of the environment operation range (temperature and humidity), it will concern for visual quality.

*2) Test Condition: IEC 61000-4-2,
VESDc: Contact discharge to input connector
VESDm: Contact discharge to module

*3) The input pulse-current measurement system as below:

![Diagram](image)

Control signal: High(+3.3V) → Low(GND)
Supply Voltage of rising time should be from R3 and C2 tune to 550 us.
3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ</th>
<th>Max.</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage For LCD</td>
<td>V_CCC</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
<td>*1)</td>
</tr>
<tr>
<td>Power Supply Voltage For LED</td>
<td>V_LED</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Logic Input Voltage</td>
<td>V_IH</td>
<td>VCC*0.7</td>
<td>--</td>
<td>VCC</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_IL</td>
<td>0</td>
<td>--</td>
<td>VCC*0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>ADJ Input Voltage</td>
<td>V_IH</td>
<td>3.0</td>
<td>--</td>
<td>3.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_IL</td>
<td>GND</td>
<td>--</td>
<td>0.3</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

*1) VCC – dip condition:
- When 2.7 V ≤ VCC < 3.0 V, td ≤ 10 ms.
- VCC > 3.0 V, VCC-dip condition should be same as VCC-turn-on condition.

3.2 TFT-LCD current consumption

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ</th>
<th>Max.</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD power current</td>
<td>I_CCC</td>
<td>--</td>
<td>140</td>
<td>190</td>
<td>mA</td>
<td>*1)</td>
</tr>
<tr>
<td>LED power current</td>
<td>I_LED</td>
<td>300</td>
<td>350</td>
<td>mA</td>
<td>*2)</td>
<td></td>
</tr>
</tbody>
</table>

*1) Typical: Under 64 gray pattern
 Maximum: Under black pattern

*2) Typical: When V_LED is 5.0V
 Maximum: When V_LED is 4.5V
3.3 Power・Signal sequence

$t1 \leq 10\text{ms}$
$50\text{ms} \leq t2$
$0 < t3 \leq 50\text{ms}$
$0 < t4 \leq 10\text{ms}$

$t1$
$t2$
$t3$
$t4$
$t5$
$t6$
$t7$

$\text{Vin}=3.3\text{V}$

LCD Power Supply

Logic Signal

Backlight Power Supply

Data: RGB DATA, DCLK, DENA
4. INTERFACE CONNECTION

(a) **CN1**: Starconn 089N40-000R00-G2

<table>
<thead>
<tr>
<th>Pin NO.</th>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U/D</td>
<td>Up / Down Display Control</td>
</tr>
<tr>
<td>2</td>
<td>DMS</td>
<td>DE / SYNC Mode Selection</td>
</tr>
<tr>
<td>3</td>
<td>Hsync</td>
<td>Horizontal SYNC.</td>
</tr>
<tr>
<td>4</td>
<td>V_{LED}</td>
<td>Power Supply for LED</td>
</tr>
<tr>
<td>5</td>
<td>V_{LED}</td>
<td>Power Supply for LED</td>
</tr>
<tr>
<td>6</td>
<td>V_{LED}</td>
<td>Power Supply for LED</td>
</tr>
<tr>
<td>7</td>
<td>Vcc</td>
<td>Power Supply for LCD</td>
</tr>
<tr>
<td>8</td>
<td>Vsync</td>
<td>Vertical SYNC.</td>
</tr>
<tr>
<td>9</td>
<td>DE</td>
<td>Data Enable</td>
</tr>
<tr>
<td>10</td>
<td>V_{SS}</td>
<td>Power Ground</td>
</tr>
<tr>
<td>11</td>
<td>V_{SS}</td>
<td>Power Ground</td>
</tr>
<tr>
<td>12</td>
<td>ADJ</td>
<td>Adjust for LED brightness</td>
</tr>
<tr>
<td>13</td>
<td>B5</td>
<td>Blue Data 5 (MSB)</td>
</tr>
<tr>
<td>14</td>
<td>B4</td>
<td>Blue Data 4</td>
</tr>
<tr>
<td>15</td>
<td>B3</td>
<td>Blue Data 3</td>
</tr>
<tr>
<td>16</td>
<td>V_{SS}</td>
<td>Power Ground</td>
</tr>
<tr>
<td>17</td>
<td>B2</td>
<td>Blue Data 2</td>
</tr>
<tr>
<td>18</td>
<td>B1</td>
<td>Blue Data 1</td>
</tr>
<tr>
<td>19</td>
<td>B0</td>
<td>Blue Data 0 (LSB)</td>
</tr>
<tr>
<td>20</td>
<td>V_{SS}</td>
<td>Power Ground</td>
</tr>
<tr>
<td>21</td>
<td>G5</td>
<td>Green Data 5 (MSB)</td>
</tr>
<tr>
<td>22</td>
<td>G4</td>
<td>Green Data 4</td>
</tr>
<tr>
<td>23</td>
<td>G3</td>
<td>Green Data 3</td>
</tr>
<tr>
<td>24</td>
<td>V_{SS}</td>
<td>Power Ground</td>
</tr>
<tr>
<td>25</td>
<td>G2</td>
<td>Green Data 2</td>
</tr>
<tr>
<td>26</td>
<td>G1</td>
<td>Green Data 1</td>
</tr>
<tr>
<td>27</td>
<td>G0</td>
<td>Green Data 0 (LSB)</td>
</tr>
<tr>
<td>28</td>
<td>V_{SS}</td>
<td>Power Ground</td>
</tr>
<tr>
<td>29</td>
<td>R5</td>
<td>Red Data 5 (MSB)</td>
</tr>
<tr>
<td>30</td>
<td>R4</td>
<td>Red Data 4</td>
</tr>
<tr>
<td>31</td>
<td>R3</td>
<td>Red Data 3</td>
</tr>
<tr>
<td>32</td>
<td>V_{SS}</td>
<td>Power Ground</td>
</tr>
<tr>
<td>33</td>
<td>R2</td>
<td>Red Data 2</td>
</tr>
<tr>
<td>34</td>
<td>R1</td>
<td>Red Data 1</td>
</tr>
<tr>
<td>35</td>
<td>R0</td>
<td>Red Data 0 (LSB)</td>
</tr>
<tr>
<td>36</td>
<td>V_{SS}</td>
<td>Power Ground</td>
</tr>
<tr>
<td>37</td>
<td>V_{SS}</td>
<td>Power Ground</td>
</tr>
<tr>
<td>38</td>
<td>DCLK</td>
<td>Clock Signals</td>
</tr>
<tr>
<td>39</td>
<td>V_{SS}</td>
<td>Power Ground</td>
</tr>
<tr>
<td>40</td>
<td>L/R</td>
<td>Left / Right Display Control</td>
</tr>
</tbody>
</table>
Remarks:
1) ADJ adjust brightness to control Pin, Pulse duty the bigger the brighter.

2) ADJ signal =0~3.3V, operation frequency:20±10KHZ

3) VSS Pin must ground contact, can not be floating.

4) U/D and L/R are controled function

<table>
<thead>
<tr>
<th>L/R</th>
<th>U/D</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Normally display</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Left and Right opposite</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Up and Down opposite</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Left and Right opposite, Up and Down opposite</td>
</tr>
</tbody>
</table>

*5) DMS (Selection DE/SYNC mode)

<table>
<thead>
<tr>
<th>DMS</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DE Mode</td>
</tr>
<tr>
<td>0</td>
<td>SYNC Mode</td>
</tr>
</tbody>
</table>
5. INPUT SIGNAL (DE ONLY MODE)

5.1 Timing Specification

<table>
<thead>
<tr>
<th>characteristics</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
<th>REMARK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dot Clock</td>
<td>F_{Osc}</td>
<td>23</td>
<td>25</td>
<td>30</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Horizontal Period</td>
<td>T_H</td>
<td>750</td>
<td>800</td>
<td>900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal Valid</td>
<td>T_{HV}</td>
<td>640</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal Blank</td>
<td>T_{HBlank}</td>
<td>110</td>
<td>160</td>
<td>260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Period</td>
<td>T_V</td>
<td>515</td>
<td>525</td>
<td>560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Valid</td>
<td>T_{VV}</td>
<td>480</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Blank</td>
<td>T_{VBlank}</td>
<td>35</td>
<td>45</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Frequency</td>
<td>F_v</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>Hz</td>
<td></td>
</tr>
</tbody>
</table>

SYNC MODE

<table>
<thead>
<tr>
<th>characteristics</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
<th>REMARK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Period</td>
<td>T_H</td>
<td>750</td>
<td>800</td>
<td>900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal Pulse Width</td>
<td>T_{hP}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>T_{Osc}</td>
<td></td>
</tr>
<tr>
<td>Horizontal Pulse Width + Back Proch</td>
<td>T_{hPb}</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>T_{Osc}</td>
<td></td>
</tr>
<tr>
<td>Horizontal Front Proch</td>
<td>T_{f}</td>
<td>64</td>
<td>114</td>
<td>214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal Valid</td>
<td>T_{vP}</td>
<td>640</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Period</td>
<td>T_v</td>
<td>515</td>
<td>525</td>
<td>560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Pulse Width</td>
<td>T_{vP}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>T_{h}</td>
<td></td>
</tr>
<tr>
<td>Vertical Pulse Width + Back Proch</td>
<td>T_{vPb}</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>T_{h}</td>
<td></td>
</tr>
<tr>
<td>Vertical Front Proch</td>
<td>T_v</td>
<td>1</td>
<td>11</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Valid</td>
<td>T_{vV}</td>
<td>480</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Frequency</td>
<td>F_v</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>Hz</td>
<td></td>
</tr>
</tbody>
</table>

5.2 Timing sequence (Timing chart)
Horizontal Timing Sequence

- **CLK**: Clock signal
- **DATA (R, G, B)**: Signal with data for Red, Green, and Blue
- **DEN**: Data enable signal
- **Tosc**: Oscillation time
- **Tsu**: Sync pulse rise time
- **Tnd**: Sync pulse fall time
- **Thbk**: Back porch time
- **Thv**: Front porch time
- **Nh**: Horizontal period

Vertical Timing Sequence

- **LINE DATA**: Line data signal
- **Tvk**: Vertical blanking time
- **Tv**: Vertical period
- **Tvbk**: Back porch time
- **Tvv**: Front porch time

DE mode Timing
Sync mode Timing
5.3 Color Data Assignment

<table>
<thead>
<tr>
<th>COLOR</th>
<th>INPUT</th>
<th>R DATA</th>
<th>G DATA</th>
<th>B DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DATA</td>
<td>MSE</td>
<td>LSE</td>
<td>MSE</td>
</tr>
<tr>
<td>BLACK</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RED(63)</td>
<td>1 1 1 1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BASIC</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GREEN(63)</td>
<td>0 0 0 0 0 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>COLOR</td>
<td>BLUE(63)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CYAN</td>
<td>0 0 0 0 0 0 0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MAGENTA</td>
<td>1 1 1 1 1 1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>YELLOW</td>
<td>1 1 1 1 1 1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>WHITE</td>
<td>1 1 1 1 1 1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RED(0)</td>
<td>0 0 0 0 0 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RED(1)</td>
<td>0 0 0 0 0 0 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RED(2)</td>
<td>0 0 0 0 1 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RED(62)</td>
<td>1 1 1 1 1 1 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RED(63)</td>
<td>1 1 1 1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GREEN(0)</td>
<td>0 0 0 0 0 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GREEN(1)</td>
<td>0 0 0 0 0 0 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GREEN(2)</td>
<td>0 0 0 0 0 1 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GREEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREEN(62)</td>
<td>0 0 0 0 0 0 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GREEN(63)</td>
<td>0 0 0 0 0 0 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>BLUE(0)</td>
<td>0 0 0 0 0 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BLUE(1)</td>
<td>0 0 0 0 0 0 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BLUE(2)</td>
<td>0 0 0 0 0 1 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BLUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLUE(62)</td>
<td>0 0 0 0 0 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BLUE(63)</td>
<td>0 0 0 0 0 0 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Remarks:
(1) Definition of Gray Scale
 color(n) : n is series of Gray Scale
 The more n value is, the bright Gray Scale.
(2) Data: 1-High, 0-Low
6. BLOCK DIAGRAM
7. MECHANICAL DIMENSION

7.1 Front Side

[Unit : mm]

7.2 Rear Side
Remark : Un-indication tolerance is ±0.3mm
8. OPTICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SYMBOL</th>
<th>CONDITION</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constrast Ratio</td>
<td>CR</td>
<td>Point-5</td>
<td>200</td>
<td>300</td>
<td>--</td>
<td></td>
<td>*1)*2)*3)</td>
</tr>
<tr>
<td>Luminance</td>
<td>Lw</td>
<td>Point-5</td>
<td>180</td>
<td>220</td>
<td>--</td>
<td>cd/m²</td>
<td>*1)*3)</td>
</tr>
<tr>
<td>Luminance Uniformity</td>
<td>ΔL</td>
<td></td>
<td>70</td>
<td>80</td>
<td>--</td>
<td>%</td>
<td>*1)*3)</td>
</tr>
<tr>
<td>Response Time</td>
<td>Tr+ Tf</td>
<td>Point-5</td>
<td>--</td>
<td>30</td>
<td>50</td>
<td>ms</td>
<td>*1)*3)*5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viewign Angle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>Wx</td>
<td>CR ≥ 10</td>
<td>120</td>
<td>140</td>
<td>--</td>
<td>°</td>
<td>*1)*2)*4)</td>
</tr>
<tr>
<td></td>
<td>Wy</td>
<td></td>
<td>80</td>
<td>100</td>
<td>--</td>
<td>°</td>
<td>*1)*2)*4)</td>
</tr>
<tr>
<td>Red</td>
<td>Rx</td>
<td></td>
<td>0.580</td>
<td>0.610</td>
<td>0.640</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ry</td>
<td></td>
<td>0.306</td>
<td>0.336</td>
<td>0.366</td>
<td></td>
<td>*1)*3)</td>
</tr>
<tr>
<td>Green</td>
<td>Gx</td>
<td>Point-5</td>
<td>0.300</td>
<td>0.330</td>
<td>0.360</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gy</td>
<td></td>
<td>0.544</td>
<td>0.574</td>
<td>0.604</td>
<td></td>
<td>*1)*3)</td>
</tr>
<tr>
<td>Blue</td>
<td>Bx</td>
<td></td>
<td>0.116</td>
<td>0.146</td>
<td>0.176</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>By</td>
<td></td>
<td>0.080</td>
<td>0.110</td>
<td>0.140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

*1) Measure condition: 25°C ±2°C, 60±10%RH, under 10 Lux in the dark room, BM-5A (TOPCON), viewing angle 2°, VCC=3.3V, VDD=3.3V.

*2) Definition of contrast ratio:

Contrast Ratio (CR) = (White) Luminance of ON ÷ (Black) Luminance of OFF

*3) Definition of luminance:

\[L = 500 \text{mm} \]
Definition of Luminance Uniformity:
Measure white luminance on the point 5 as figure8-1
Measure white luminance on the point 1~9 as figure8-1
\[\Delta L = \frac{L_{(MIN)}}{L_{(MAX)}} \times 100\% \]

*4) Definition of Viewing Angle(θ, ψ), refer to Fig8-2 as below:

*5) Definition of Response Time (White-Black)
9. RELIABILITY TEST

9-1. Temperature and humidity

<table>
<thead>
<tr>
<th>TEST ITEMS</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Temperature Operation</td>
<td>85°C • 240H</td>
</tr>
<tr>
<td>High Temperature Storage</td>
<td>95°C • 240H</td>
</tr>
<tr>
<td>High Temperature High Humidity Operation</td>
<td>60°C • 90%RH • 240H (No condensation)</td>
</tr>
<tr>
<td>Low Temperature Operation</td>
<td>-30°C • 240H, Backlight unit always turn on</td>
</tr>
<tr>
<td>Low Temperature Storage</td>
<td>-40°C • 240H</td>
</tr>
<tr>
<td>Thermal Shock</td>
<td>-30°C (0.5Hr) ~ 85°C (0.5Hr) 200 cycles</td>
</tr>
</tbody>
</table>

9-2. Shock and Vibration

<table>
<thead>
<tr>
<th>TEST ITEMS (Non-operation)</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shock</td>
<td>• Shock level:980m/s² (equal to 100G)</td>
</tr>
<tr>
<td></td>
<td>• Waveform: half sinusoidal wave, 6ms.</td>
</tr>
<tr>
<td></td>
<td>• Number of shocks: one shock input in each direction of three mutually perpendicular axes for a total of three shock inputs.</td>
</tr>
<tr>
<td>Vibration</td>
<td>• Frequency range: 8~33.3Hz</td>
</tr>
<tr>
<td>(Non-operation)</td>
<td>• Stoke: 1.3mm</td>
</tr>
<tr>
<td></td>
<td>• Vibration: sinusoidal wave, perpendicular axis (both x, y, z axis: 2Hrs).</td>
</tr>
<tr>
<td></td>
<td>• Sweep: 2.9G, 33.3Hz-400Hz</td>
</tr>
<tr>
<td></td>
<td>• Cycle: 15 min</td>
</tr>
</tbody>
</table>

9-3. Judgment standard

The Judgment of the above test should be made as follow:
Pass: Normal display image with no obvious non-uniformity and no line defect. Partial transformation of the module parts should be ignored.
Fail: No display image, obvious non-uniformity, or line defect.