

TECHNICAL SPECIFICATION

MODEL NO.: ED060SCM

The content of this information is subject to be changed without notice. Please contact E Ink or its agent for further information.

Customer's Confirmation

Customer

Date

By

E Ink's Confirmation

Dep	РМ	FAE	Panel Design	Electronic Design	Mechanical Design	Product Verification	Prepared
SIGN	金银数	夏れよ	連羅素	あるないく	ANA N	傳派自	侯来君

Rev.	Issued Date	Revised Contents				
0.1	March.30.2011	Preliminary				
0.2	April .8.2011	Page 5 4.Mechanical Drawing of EPD Module Modify barcode label location Glass sensor FPC width				
0.3	June. 13 2011	Page 4 3.Mechanical Specifications Add Module weight 57±5g Page 5 4.Mechanical Drawing of EPD Module Add AG Film Size Page 8 6.Touch Panel Characteristics Modify Pin7 \ 8 Modify 6-2)~6-5) all Page 17 6-7)Integration Design Guide Add Page 18 7-2)DC Characteristics Add Panel power and the max power pattern Page 25 9.Optical characteristics Add Reflectance (MIN)30 (TYP)35 Contrast Ratio (MIN)9 (TYP)11 Page 29 12.Bar code definition Add TYT FAB5:G ;TYT FAB4:H EPD model code:E5 Page 31 13.Border definition Delete Page 31 14.Packing Add				

Revision History

Se Ink Holdings Inc. TECHNICAL SPECIFICATION

CONTENTS

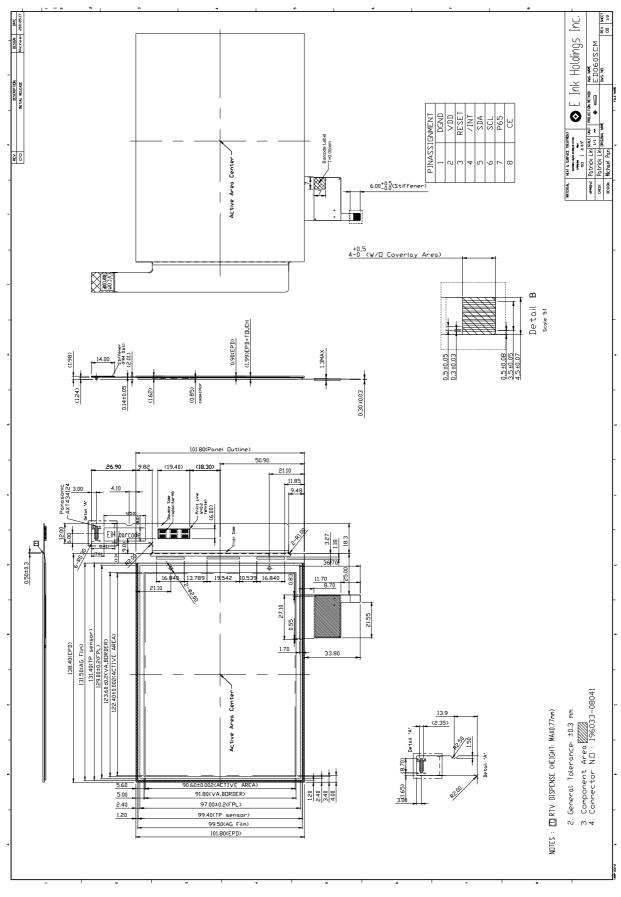
<i>NO</i> .	ITEM	PAGE
-	Cover	1
-	Revision History	2
-	Contents	3
1	Application	4
2	Features	4
3	Mechanical Specifications	4
4	Mechanical Drawing of EPD module	5
5	Input/Output Terminals	7
6	Touch Panel Characteristics	8
7	Electrical Characteristics	23
8	Power on Sequence	27
9	Optical Characteristics	30
10	Handling, Safety and Environment Requirements	32
11	Reliability test	33
12	Bar Code definition	34
13	Block Diagram	35
14	Packing	36

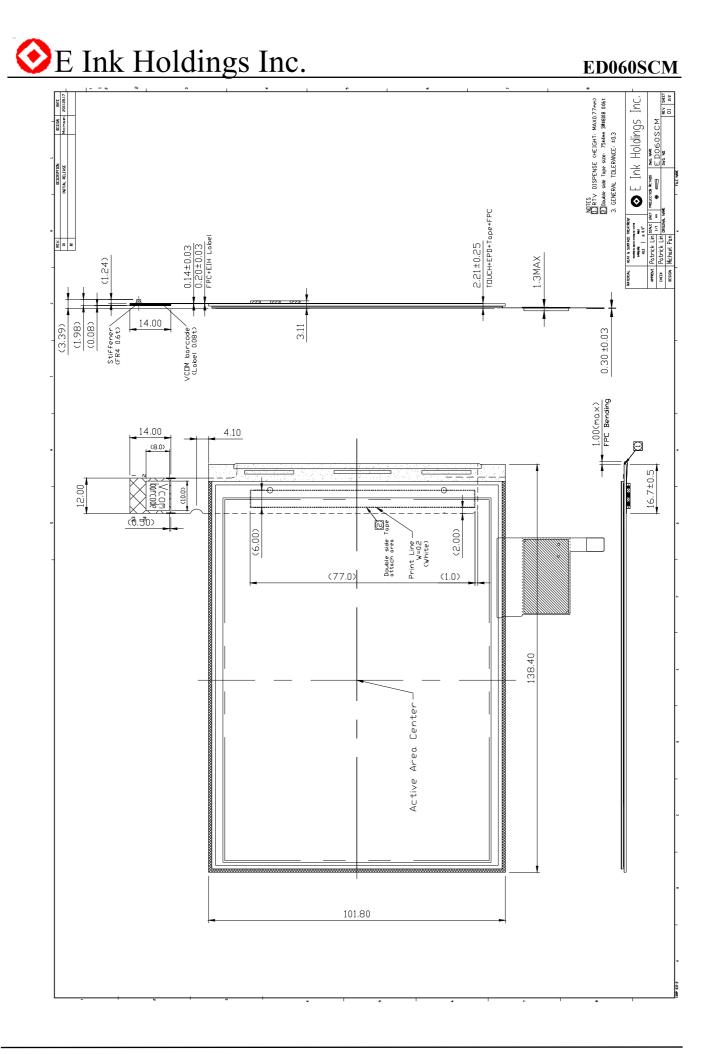
1. Application

The display is a TFT active matrix electrophoretic display, with associated interface and control logic, and a reference system design.

The 6" active area contains 600 x 800 pixels, the display is capable to display images at 2-16 gray levels (1-4 bits) depending on the display controller and the associated waveform file used.

2. Features


- ➢ High contrast TFT electrophoretic
- ➢ 600 x 800 display
- ➢ High reflectance
- Ultra wide viewing angle
- ➢ Ultra low power consumption
- > Pure reflective mode
- ➢ Bi-stable
- Commercial temperature range
- Landscape, portrait mode
- Antiglare hard-coated front-surface
- > Module with two fingers capacitive touch sensor.
- ➤ Touchpad Module trace number (Tx * Ty):18×13


Parameter	Specifications	Unit	Remark
Screen Size	6.0 (3:4 diagonal)	Inch	
Display Resolution	600 (H)×800(V)	Pixel	
Active Area	90.6 (H)×122.4 (V)	mm	
Pixel Pitch	0.151 (H)×0.153 (V)	mm	
Pixel Configuration	Rectangle		
Outline Dimension	101.8(W)×138.4(H)×1.99(D) (Panel area height)	mm	
Module Weight	57±5	g	

3. Mechanical Specifications

4. Mechanical Drawing of EPD Module

5.Input/Ouput Interface

5-1) Connector type Pin Assignment

Pin #	Signal	Description	Remark
1	VNEG	Negative power supply source driver	
2	VPOS	Positive power supply source driver	
3	VNEG	Negative power supply source driver	
4	VPOS	Positive power supply source driver	
5	VDD	Digital power supply drivers	
6	VSS	Ground	
7	VDD	Digital power supply drivers	
8	VSS	Ground	
9	XCL	Clock source driver	
10	XLE	Latch enable source driver	
11	XOE	Output enable source driver	
12	XSTL	Start pulse source driver	
13	D0	Data signal source driver	
14	D1	Data signal source driver	
15	D2	Data signal source driver	
16	D3	Data signal source driver	
17	D4	Data signal source driver	
18	D5	Data signal source driver	
19	D6	Data signal source driver	
20	D7	Data signal source driver	
21	VCOM	Common connection	
22	NC	NC	
23	VCOM	Common connection	
24	NC	NC	
25	VGG	Positive power supply gate driver	
26	MODE1	Output mode selection gate driver	
27	VEE	Negative power supply gate driver	
28	CKV	Clock gate driver	
29	VEE	Negative power supply gate driver	
30	SPV	Start pulse gate driver	
31	VSS	Ground	
32	BORDER	Border connection	
33	NC	NC	
34	NC	NC	

6.Touch Panel Characteristics

6-1) Pin-Definition and Reference circuit:

FPC Down Connect ,8 pin , Pitch= 0.5mm , (P-Two , 196033-08041) , (Panasonic , AYF530835)

Pin	Symbol	I/O	Description
1	DGND		Ground
2	VDD		Power supply.
3	RESET	Ι	Reset Input. A low on this pin for resets the device.
4	/INT	0	Attention line(Typically active low, optional)
5	SDA	I/O	I2C data line.
6	SCL	I/O	I2C clock line.
7	PA3	I/O	NC pin
8	PA4	I/O	NC pin

6-2) DC Characteristics

Symbol	Description	Conditions	Min.	Тур.	Max.	Unit
VDD	Power supply voltage request	VDD including Power Ripple (which must be smaller than 100 mV).	3.0	3.3	3.6	V
I _{NORMAL}	Normal Operating current	3.3V power supply (report rate ~100Hz)	_	_	3.6	mA
I _{IDLE}	Idle Mode current	3.3V power supply	_	_	2	mA
I _{SLEEP}	Deep Sleep operating current	3.3V power supply	_	_	10	μΑ
V _{OL}	Output low level (Port60, Port70)	VIO= VDD	_	_	0.4VIO	V
VIH	Input high voltage level (Port60, Port70)	VIO= VDD	0.7*VI O	_	_	V
\mathbf{V}_{IL}	Input low voltage level (Port60, Port70)	VIO= VDD	_	_	0.3*VIO	V
\mathbf{I}_{IL}	Input pin leakage current	VIN = VDD, VSS	-10	_	10	μΑ

Symbol	Description	Min	Тур	Max	Unit
T_{PW}	Power-on Request (VDD 0V to 3.3V)	50	_	-	μs
T _{INITIAL}	Power-on to Hello Packet	-	100	—	ms

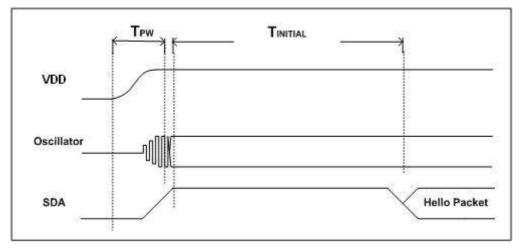


Figure 6-1 RC Power-on Initialization Timing Diagram

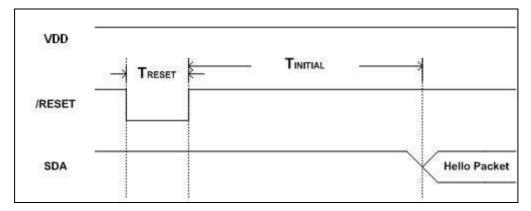


Figure 6-2 Reset Timing Diagram

Symbol	Description	Min	Тур	Max	Unit
Report rate (Normal Mode)	The frequency of report data(Normal mode,default 100Hz)	_	100	_	Hz
Scan rate (Normal Mode)	The frequency of TP scanning(Normal mode,default 160Hz)	_	160	_	Hz
Scan rate (IdleMode)	The frequency of TP scanning(Idle mode)	-	80	_	Hz

6-4) Interface

6-4.1) I²C Slave Mode

For I²C slave mode selection, the SDA, SCL, and /INT signal lines have to be pulled-high with a 4.7 K Ω resistor (See Figure6-3). When the touch pad is processing data on the I²C bus, it can be transferred at a rate of up to 100 Kbit/s in Standard mode, and 400 Kbit/s in Fast mode.

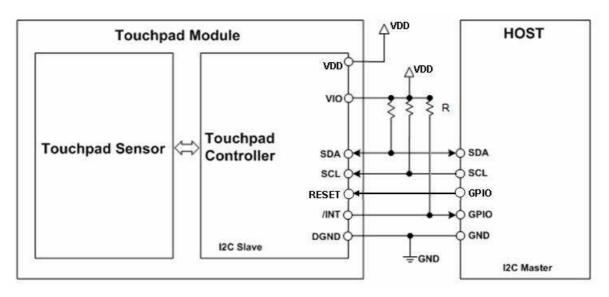


Figure 6-3 Touchpad to Host Connection in I²C Slave Mode

The data communication in $I^2C I^2C$ slave mode is shown below:

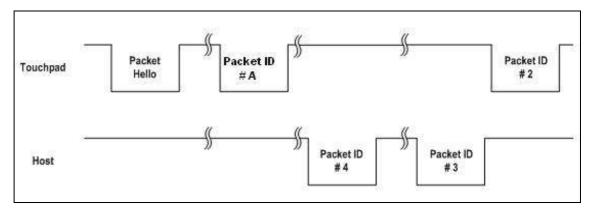


Figure6-4 Example for I²C Slave Data Communication

The touch pad can detect each change in X-Y position, and number of fingers touching the sensor. To inform the host that new data is available, will pull-low the /INT signal. When the host sends a command, the touchpad controller has to reply (Packet ID # 3). After data transmission, the touchpad controller will pull-high the /INT signal again.

Figure 6-5 I^2C slave mode timing diagram

6-4.2)I²C-Slave Timing

Figure 6-6 shows the timing condition of the I^2C interface. The characteristics of I^2C interface are given in Table 6-1. The touchpad adopts a bit rate of up to 400 Kbits/sec in Fast mode. The touchpad is defined as a slave I^2C interface. The Host (master) generates the clock signal through the serial clock (SCL) pin and data are transferred and received through the serial data (SDA) pin.

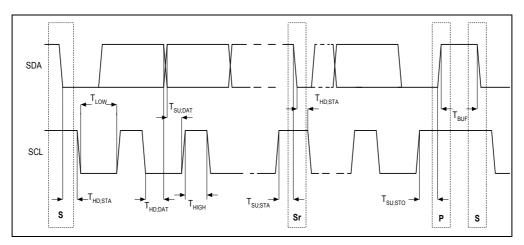


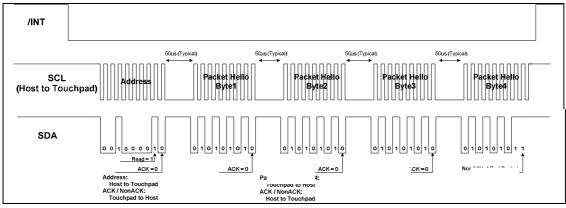
Figure 6-6 The Timing in I2C Interface

Symbol	Parameter		idard ode	Fast	Unit	
		Min.	Max.	Min.	Max.	
F _{SCL}	SCL clock frequency	0	100	0	400	kHz
T _{HD;STA}	Hold time (repeated) Start condition. After this period, the first clock pulse is generated.	4.0	_	0.6	_	μs
T _{LOW}	Low period of the SCL clock	4.7	_	1.3	—	μs
T _{HIGH}	High period of the SCL clock	4.0	_	0.6	—	μs
T _{SU;STA}	Set-up time for a repeated Start condition	4.7	_	0.6	_	μs
T _{HD;DAT}	Data hold time	0	_	0	—	μs
T _{SU;DAT}	Data set-up time	250	_	100	—	ns
T _{SU;STO}	Set-up time for Stop condition	4.0	_	0.6	_	μs
T _{BUF}	Bus free time between a Stop and Start condition	4.7	-	1.3	-	μs

				-)
Table 6-1	Characteristics	of the SDA	and SCL	nins for I ⁴	² C interface
1 4010 0 1	Characteristics		und DOL	pins for f	

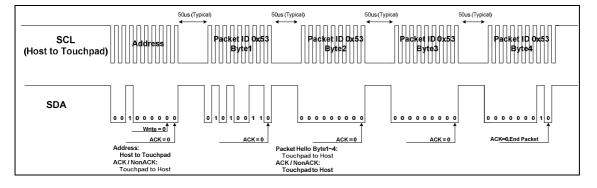
The touchpad controller is defined as a slave device of I^2C and the host is defined as a master. The device address of the touchpad controller is designed as 7-bit address format. The touchpad controller address is defined as 0x20 as shown below.

The 7-bit Addressing defined as shown below:

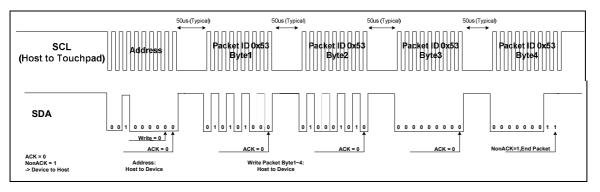

According to the 7-bit addressing, the first byte after the Start procedure is shown below:

Address	0	0	1	0	0	0	0	R/W

The first seven bits of the first byte make up the address and the 8th bit is the LSB (least significant bit, R (Read) = 1 and W (Write) = 0).

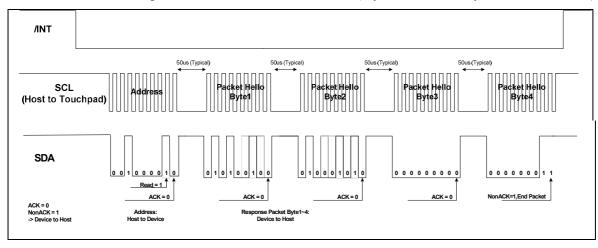

The I²C detailed timing for each packet transmission is shown as follows:

a. Hello Packet: Device to host, 4 Bytes (0x55 0x55 0x55 0x55)


b. Read Packet: Host to device and the packet ID is 0x53.

For example: host reads the Firmware version of the touchpad, the packet is 0x53 0x00 0x00 0x01

c. Write Packet: Host to device and the packet ID is 0x54.


For example: host sets the sensitivity level of the touchpad to 5, the packet is $0x54 \ 0x45 \ 0x00 \ 0x01$

d. Response Packet: Device to host and the packet ID is 0x52.

For example: touchpad responses with the sensitivity level after a correct read sensitivity command, the packet is $0x52 \ 0x45 \ 0x00 \ 0x01 \ (x,y-axis sensitivity level are 5 and 4)$

6-5) Command

6-5.1)Command List

0x	0x55 Declare that the Touchpad is ready to work		_
0x	52	Response to packet 0x53 from host.	_
	0x0 0	Read Firmware Version	Packet 0x52
0x53	0x5 0	Read Power status	Packet 0x52
	0xF 0	Read Firmwre ID	Packet 0x52
0x:	x5A Report the absolute coordinate		—

Default response data table:

	0x00			$0x52 \ 0x00 \ 0x00 \ 0x81$ for firmware version = 0.8
0x53	0x50	0x00	0x01	0x52 0x58 0x0A 0x01 for poewe status = Normal,100Hz
	0xF0			$0x52 \ 0xF8 \ 0x2F \ 0x81$ for firmware ID = $82F8$

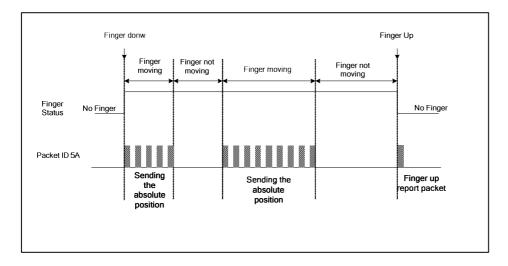
6-5.2)Hello Packet (Touchpad to Host)

01010101	01010101	01010101	01010101

After power-up and initialization, the touchpad sends the Hello Packet to declare that it is ready to work. The packet is also the first packet that the touchpad sends to the host.

6-5.3)Two-finger Mode Coordinate Packet (Touchpad to Host)

Byte 1	0	1	0	1	1	0	1	0
Byte 2	First Fi	nger X1 Hi	gh (X1 Bit	ts 11~8)	First Fi	nger Y1 Hi	igh (Y1 Bit	s 11~8)
Byte 3			First F	inger X1 L	ow (X1 Bi	ts 7~0)		
Byte 4			First F	inger Y1 L	ow (Y1 Bi	ts 7~0)		
Byte 5	Second F	Second Finger X2 High (X2 Bits 11~8) Second Finger Y2 High (Y2 Bits 11~					its 11~8)	
Byte 6			Second	Finger X2	Low (X2 F	Bits 7~0)		
Byte 7	Second Finger Y2 Low (Y2 Bits 7~0)							
Byte 8	0	0	0	0	0	Finger 1	Finger 0	1



Packet ID: 0x5A

- ✓ X1 Position, X1 Bits 11~0: The first finger-coordinate at the X-axis.
- ✓ Y1 Position, Y1 Bits 11~0: The first finger-coordinate at the Y-axis.
- \checkmark X2 Position, X2 Bits 11~0: The second finger-coordinate at the X-axis.
- ✓ Y2 Position, Y2 Bits 11~0: The second finger-coordinate at the X-axis.
- ✓ Fingers 1~0: number of fingers
 - \blacksquare 00 = no finger
 - 01 = one finger
 - $\blacksquare \quad 10 = \text{two fingers}$

When finger lifts touchpad, it sends finger up report packet with "0x5A 0x00 0x00 0x00 0x00 0x00 0x00 0x01" to host.

When the finger touches the touchpad, moves on the touchpad, all these actions will send the absolute coordinates. When one finger operates in the touchpad then releases, the touchpad will send the coordinate packet of last position. The following figure shows the timing:

The distance between each finger should be at least one cell of sensor (Typical: 8 mm).

#==									-	-
#f=	 	 _	_	_	_	_	_	_	\rightarrow	H
11.									- 11	
Ш.										
li-										
li									Í.	
li-									- i	
li-									- i	
Ľ.								(0	0)	
ŧ	 	 _	_	_	_			_	<u> </u>	
111 -										

6-5.4) Firmware Version Packet

	Firmware version						
		Packet Transmis	sion Definition				
Command	Byte 1	Byte 2	Byte 3	Byte 4	Description		
Туре	Packet ID	Register Number Definition / Data	Data	Data / Reserve	Description		
Read Command Packet	0x53	0x00	0x00	0x01	NA		

The host uses this packet to get the firmware version of the touchpad.

After receiving the read Firmware Version Packet, the touchpad will respond to this packet by sending the packet ID of 0x52.

			Firmware	version		
			Packet Transmis	sion Definition	-	
Comm		Byte 1	Byte 2	Byte 3	Byte 4	Description
Туре		Packet ID	Register Number Data		Data / Reserve	Description
Respo Comm Pack	and	0x52	0x00	0x0 X	0x Y 1	Refer to # 1
			Descrip	tion		
	Low	nibble of Byte 3 + H	igh nibble of Byte 4: M	linor firmware version	on	
	FW V	Version is defined as	0.1 (XY = 01)			
# 1						
	FW V	Version is defined as	0.7 (XY = 07)			
	FW V	Version is defined as	0.8 (XY = 08)			

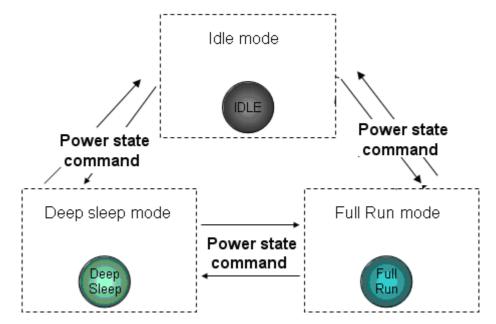
6-5.5) Power State Packet

The Host uses this Packet to get the Power State of the Touchpad.

	Power State							
		Packet Transmis	sion Definition					
Command	Byte 1	Byte 2	Byte 3	Byte 4	Description			
Туре	Packet ID	Register Number Definition / Data	Data	Data / Reserve	Description			
Read Command Packet	0x53	0x50	0x00	0x01	NA			

After receiving the Read **Power State** Packet, the Touchpad will respond to this Packet by sending Packet 0x52.

	Power State								
		Packet Transmis	sion Definition						
Command	Byte 1	Byte 2	Byte 3	Byte 4	Decemintion				
Туре	Packet ID	Register Number Definition / Data	Data	Data / Reserve	Description				
Response Command Packet	0x52	0x5 X	0x0 Y	0x01	Refer to # 1				


The host uses the Write Power State Packet to change the Power State of the Touchpad.

	Power State								
		Packet Transmis	sion Definition						
Command	Byte 1	Byte 2	Byte 3	Byte 4	Decerintian				
Туре	Packet ID	Register Number Definition / Data	Data	Data / Reserve	Description				
Write Command Packet	0x54	0x5 X	0x0 Y	0x01	Refer to # 2				

		Description					
	X: Low nibble of Byt	e 2, defines as Power State.					
	Bit 3,2 = Power	State					
	\rightarrow 10 = Norm	al mode(Default)					
	\rightarrow 01 = Idle mode						
	→ 00 = Deep	Sleep mode					
	Bit $1,0 = Rc$	eserve, 0					
	Y: Low nibble of Byt	e 3, defines as Report rate of No	ormal mode				
	In Normal mode:						
# 1	Bit $3 \sim 0 = \text{Report}$	trate	-				
	Bit 3,2,10	Report rate	-				
	0xF	~80Hz					
	0xA	~100Hz(default)					
	0x7	~115Hz					
	0x5	~130Hz					
	0x3	~150Hz					
	In Idle and Deep Sle	ep mode:					
	Bit $3 \sim 0 = Re$	eserve, 0					
	X: Low nibble of Byt	e 2, defines as Power State.					
	Bit $3,2 =$ Power						
		al mode(Default)					
	\rightarrow 01 = Idle n						
	→ 00 = Deep	1					
	Bit $1,0 = Rc$						
		e 3, defines as Report rate of No	ormal mode				
	In Normal mode:						
#2	Bit $3 \sim 0 = \text{Report}$		1				
	Bit 3,2,10	Report rate					
	0xF	~80Hz	-				
	0xA	~100Hz(default)					
	0x7	~115Hz					
	0x5	~130Hz	-				
		~150Hz					
	In Idle and Deep Sle						
	Bit $3 \sim 0 = Re$	eserve, U					

Note:

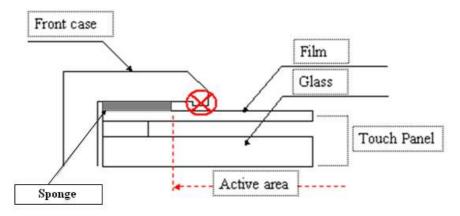
- 1. **Full Run mode**: when your finger touch at touchpad mean in "Full run mode". You can issue "Power state command" to enter "Deep sleep mode". or "Idle mode"
- 2. **Idle mode**: The "Idle mode" mean saving power mode. You can issue "Power state command" to enter "Deep sleep mode" or "Full run mode"
- 3. **Deep sleep mode**: This mode mean sleep mode. You can issue command from "Full Run mode or idle mode" to enter "sleep mode" or wake-up form "Deep sleep mode".

6-5.6) Firmware ID (Project ID) Packet

Firmware ID						
		Packet Transmis	sion Definition			
Command	Byte 1	Byte 2	Byte 3	Byte 4	Description	
Туре	Packet ID	Register Number Definition / Data	Data	Data / Reserve	Description	
Read Command Packet	0x53	0xF0	0x00	0x01	NA	

The host uses this packet to get the Firmware ID of the touchpad.

After receiving the read Firmware ID Packet, the Touchpad will respond to this packet by sending the packet ID of 0x52.


Firmware ID								
		Packet Transmis	sion Definition					
Command	Byte 1	Byte 2	Byte 3	Byte 4	Decemintion			
Туре	Packet ID	Register Number Definition / Data	Data	Data / Reserve	Description			
Response Command Packet	0x52	0xF 8	0x 2F	0x 8 1	Refer to # 1			

6-6) Integration Design Guide

Avoid the design that Front-case overlap and press on the active area of the touch-panel.

Give enough gap (over 0.5mm at compressed) between the front case and touch-panel to protect wrong operating.

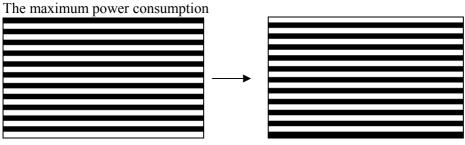
Use a buffer material (Gasket) between the touch-panel and front-case to protect damage and wrong operating. Avoid the design that buffer material overlap and press on the inside of touch-panel viewing area.

Note6-1: We strongly suggest to follow above design guide to avoid the linear defect happened on the touch panel.

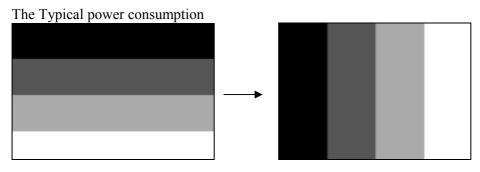
7.Electrical Characteristics

7-1) Absolute maximum rating

Parameter	Symbol	Rating	Unit
Logic Supply Voltage	VDD	-0.3 to +7	V
Positive Supply Voltage	V _{POS}	-0.3 to +18	V
Negative Supply Voltage	V _{NEG}	+0.3 to -18	V
Max .Drive Voltage Range	V_{POS} - V_{NEG}	36	V
Supply Voltage	VGG	-0.3 to +45	V
Supply Voltage	VEE	-25.0 to +0.3	V
Supply Range	VGG-VEE	-0.3 to +45	V
Operating Temp. Range	TOTR	0 to +50	°C
Storage Temperature	TSTG	-25 to +70	°C

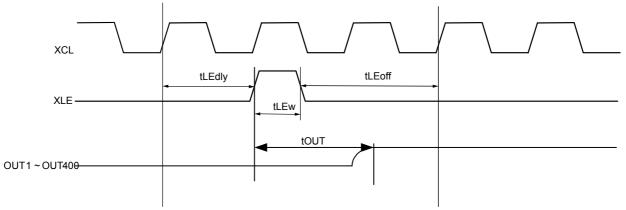

7-2) Panel DC characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Signal ground	V _{SS}		-	0	-	V
T ' T7 1/ 1	V _{DD}		3.0	3.3	3.6	V
Logic Voltage supply	I _{VDD}	$V_{DD}=3.3V$	-	0.7	3.0	mA
Cata Nagativa gupply	V _{EE}		-21	-20	-19	V
Gate Negative supply	\mathbf{I}_{EE}	$V_{EE} = -20V$	-	0.6	1.2	mA
Coto Dogitivo gupply	V _{GG}		21	22	23	V
Gate Positive supply	I _{GG}	$V_{GG} = 22V$	-	0.7	1.2	mA
Source Negative gunnly	V _{NEG}		-15.4	-15	-14.6	V
Source Negative supply	I _{NEG}	$V_{\rm NEG} = -15V$	-	6.5	43	mA
Course Desitive sugaly	V _{POS}		14.6	15	15.4	V
Source Positive supply	I _{POS}	$V_{POS} = 15V$	-	6.5	43	mA
	N 7	$V_{POS} = 15V$	14.6	15	15.4	V
Border supply	V_{Border}	$V_{\rm NEG} = -15V$	-15.4	-15	-14.6	V
Asymmetry source	V _{Asym}	$V_{POS} + V_{NEG}$	-800	0	800	mV
Common voltage	V _{COM}		-2.5	Adjusted	-0.3	V
	I _{COM}		-	0.20	-	mA
Panel Power	Р		-	230	1350	mW
Standby power panel	P _{STBY}		-	-	0.4	mW
Operating temperature			0	-	50	°C
Storage temperature			-25	-	70	°C


E Ink Holdings Inc.

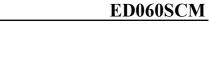
- The maximum power consumption is measured by ISIS system at 85Hz operation waveform with following pattern transition: from pattern of repeated 1 consecutive black scan lines followed by 1 consecutive white scan line to that of repeated 1 consecutive white scan lines followed by 1 consecutive black scan lines.(Note 7-1)
- The Typical power consumption is measured by ISIS system at 85Hz waveform with following pattern transition: from horizontal 4 gray scale pattern to vertical 4 gray scale pattern. (Note 7-2)
- The standby power is the consumed power when the panel controller is in standby mode.
- The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by E Ink.
- Vcom is recommended to be set in the range of assigned value $\pm 0.1V$
- The maximum I_{COM} inrush current is about 800 mA

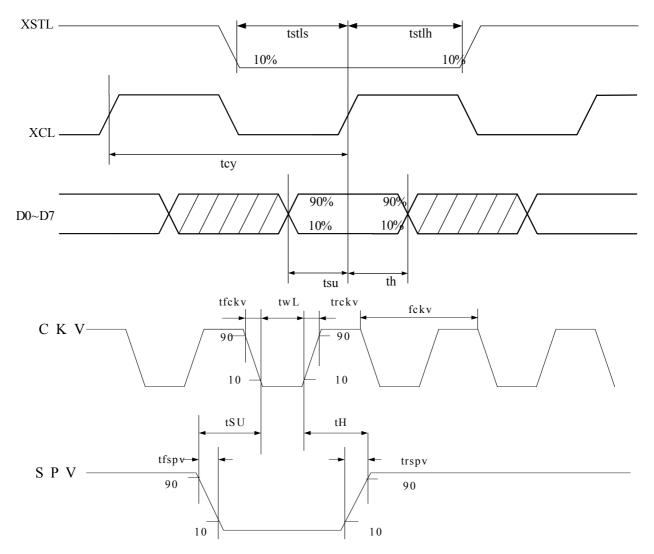
Note 7-2



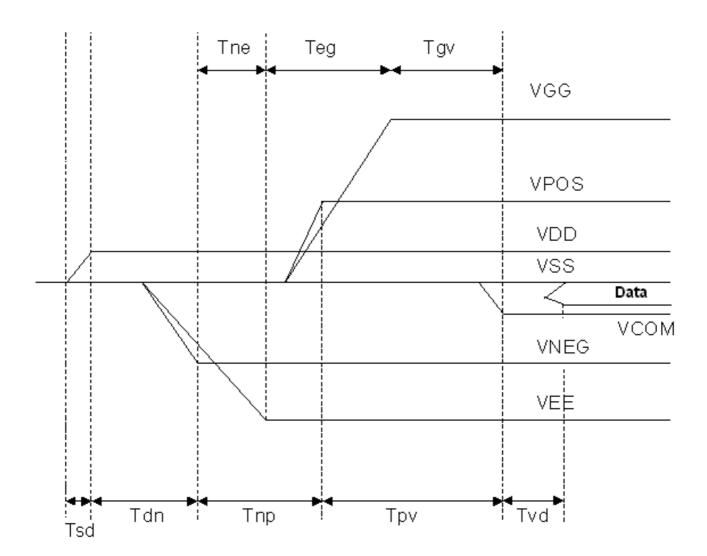
7-3) Panel AC characteristics

VDD=3.0V to 3.6V, unless otherwise specified.


Parameter	Symbol	Min.	Typ.	Max.	Unit	App Pin
Clock frequency	fckv	-	-	200	kHz	
Minimum "L" clock pulse width	twL	0.5	-	-	us	CHAN
Clock rise time	trckv	-	-	100	ns	CKV
Clock fall time	tfckv	-	-	100	ns	
Data setup time	tSU	100	-	-	ns	CHAR OD I
Data hold time	tH	100	-	-	ns	CKV, SPV
Pulse rise time	trspv	-	-	100	ns	CDV
Pulse fall time	tfspv	-	-	100	ns	SPV
Clock XCL cycle time	tcy	50	-	DC	ns	
D0 D7 setup time	tsu	8	-	-	ns	
D0 D7 hold time	th	1	-	-	ns	D 1
XLE on delay time	tLEdly	40	-	-	ns	Below
XLE high-level pulse width	tLEw	40	-	-	ns	table
XLE off delay time	tLEoff	200	-	-	ns	
Output setting time to +/- 30mV(C _{load} =200pF)	tout	-	-	12	us	


CLOCK & DATA TIMING

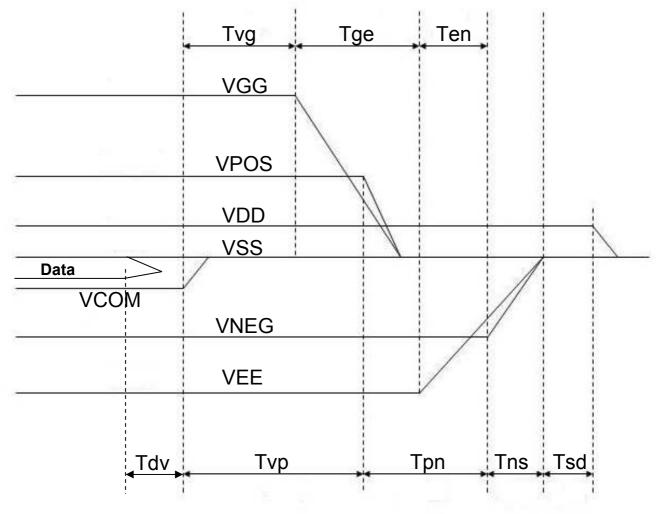
OUTPUT LATCH CONTROL SIGNALS


E Ink Holdings Inc.

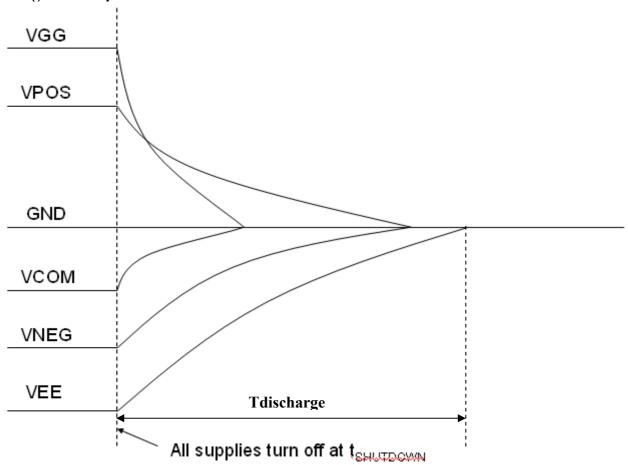
8. Power on Sequence

Power Rails must be sequenced in the following order : 1. VSS \rightarrow VDD \rightarrow VNEG \rightarrow VPOS (Source driver) \rightarrow VCOM

2. VSS \rightarrow VDD \rightarrow VEE \rightarrow VGG (Gate driver)


POWER ON

	Min	Max
Tsd	100us	-
Tdn	100us	-
Tnp	1000us	-
Tpv	100us	-
Tvd	100us	-
Tne	Ous	-
Teg	1000us	-
Tgv	100us	-


POWER DOWN

	141111	IVIAA
Tdv	$100 \mu\mathrm{s}$	-
Tvp	0 μ s	-
Tpn	0 μ s	-
Tns	-	1000ms
Tsd	$100\mu\mathrm{s}$	-
Tvg	0 μ s	-
Tge	0μs	-
Ten	0 μ s	-

Note8-1 : Supply voltages decay through pulldown resistors.

Note8-2: VEE must remain negative of all other supplies during decay period.

8-1) Refresh Rate

The module ED060SCM is applied at a maximum screen refresh rate of 85Hz.

	Min	Max
Refresh Rate	-	85Hz

9. Optical characteristics

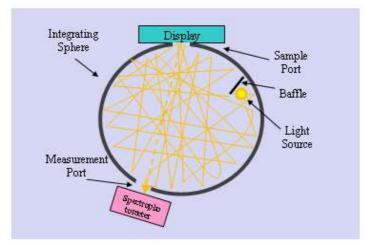
9-1) Specifications

Measurements are made with diffuse illumination.

 $T = 25^{\circ}C$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNIT	Note
R	Reflectance	White	30	35	-	%	Note 9-1
Gn	N _{th} Grey Level	-	-	DS+(WS-DS)×n/(m-1)	-	L*	-
CR	Contrast Ratio	-	9	11	-		-

WS: White state , DS: Dark state, Gray state from Dark to White :DS $\$ G1 $\$ G2... $\$ Gn... $\$ Gm-2 $\$ WS


m: $4 \cdot 8 \cdot 16$ when $2 \cdot 3 \cdot 4$ bits mode

Note 9-1: Luminance meter: MIINOLTA Spectrophotometer CM-2600d

9-2) Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (Rl) and the reflectance in a dark area (Rd):

CR = Rl / Rd

9-3) Reflection Ratio

The reflection ratio is expressed as:

 $R = Reflectance \ Factor_{white \ board} \quad x \quad (\ L_{center} \ / \ L_{white \ board})$

 L_{center} is the luminance measured at center in a white area (R=G=B=1). $L_{white board}$ is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

10.HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronics components.

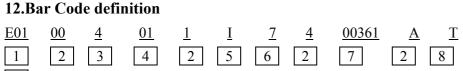
Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status							
Product	This data sheet contains final product specifications.						
specification							
Limiting value	28						
Limiting value	s given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress						
above one or m	nore of the limiting values may cause permanent damage to the device. These are stress						
ratings only and operation of the device at these or at any other conditions above those given in the							
Characteristics sections of the specification is not implied. Exposure to limiting values for extended							
periods may affect device reliability.							
Application in	Application information						

Where application information is given, it is advisory and does not form part of the specification.

11. Reliability test


	TEST	CONDITION	METHOD
1	High-Temperature Operation	T = +50°C, RH = 30% for 240 hrs	IEC 60 068-2-2Bp
2	Low-Temperature Operation	T = 0°C for 240 hrs	IEC 60 068-2-2Ab
3	High-Temperature Storage	T = +70°C, RH=23% for 240 hrs (Test In White Pattern)	IEC 60 068-2-2Bp
4	Low-Temperature Storage	T = -25°C for 240 hrs (Test In White Pattern)	IEC 60 068-2-1Ab
5	High-Temperature, High-Humidity Operation	T = +40°C, RH = 90% for 168 hrs	IEC 60 068-2-3CA
6	High Temperature, High- Humidity Storage	$T = +60^{\circ}C$, RH=80% for 240hrs (Test In White Pattern)	IEC 60 068-2-3CA
7	Temperature Cycle	$-25^{\circ}C \rightarrow +70^{\circ}C$, 100 Cycles 30mins 30 mins (Test In White Pattern)	IEC 60 068-2-14
8	Solar radiation test	765 W/m ² for 168hrs,40°C (Test In White Pattern)	IEC60 068-2-5Sa
9	Package Vibration	1.04G, Frequency: 10~500Hz Direction: X,Y,Z Duration: 1 hours in each direction	Full packed for shipment
10	Package Drop Impact	Drop from height of 122 cm on concrete surface. Drop sequence: 1 corner, 3 edges, 6 faces One drop for each.	Full packed for shipment
11	Electrostatic Effect (non-operating)	(Machine model)+/- 250V 0Ω, 200pF	IEC 62179, IEC 62180
12	Altitude test Operation	700hPa (= 3000m) 48Hr	
13	Altitude test Storage	260hPa (= 10000m) 48Hr (Test In White Pattern)	

Actual EMC level to be measured on customer application Note: The protective film must be removed before temperature test.

< Criteria >

Main display module should no defect of function, screen quality and appearance (including : Line, no image)

OE Ink Holdings Inc.

1 : EPD model code:

ED060SCM: E58;E5A

2 : Internal control codes:

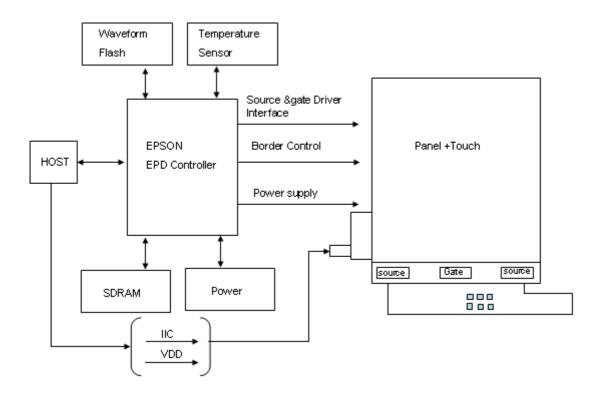
3 : FPL reversion code

V220C:6 V220E:8

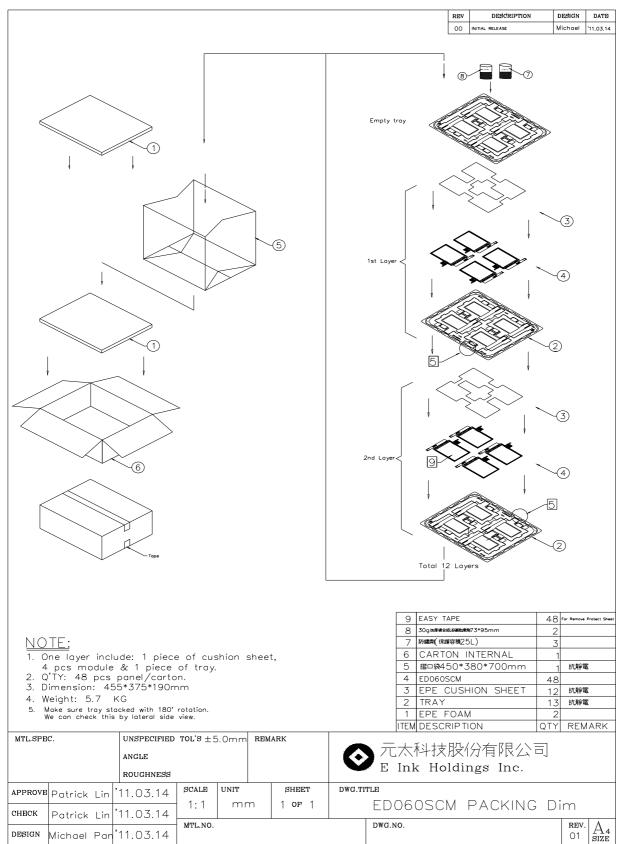
4 : FPL batch code:

01~99	001~099	G0~G9	160~169	Q0~Q9	230~239	X0~X9	300~309
A0~A9	100~109	Н0~Н9	170~179	R0~R9	240~249	Y0~Y9	310~319
B0~B9	110~119	J0~J9	180~189	S0~S9	250~259	Z0~Z9	320~329
С0~С9	120~129	K0~K9	190~199	т0~т9	260~269		
D0~D9	130~139	L0~L9	200~209	U0~U9	270~279		
Е0~Е9	140~149	M0~M9	210~219	V0~V9	280~289		
F0~F9	150~159	N0~N9	220~229	W0~W9	290~299		

5 : Year:


 $F{:}2005\ /\ G{:}2006\ /\ H{:}2007\ /\ I{:}2008\ /...\ /\ Z{:}2025$

- 6 : Month:
 - 1:Jan. 2:Feb. ... 9:Sep. A:Oct. B:Nov. C:Dec.
- 7 : Serial number
- 8 : MFG code:


TOC Feb1: K ; TOC Feb2: Y ; TOC Feb3: T ; EIH :P; MOS:S ; Microview:V ;TYT FAB 5:G ;TYT FAB 4:H

13.Block Diagran

OE Ink Holdings Inc.

