

Date; May. 29, 2009

TECHNICAL DATA

TMD54X110CBB

CONTENTS

No.	Item	Sheet No.	Page
	COVER	DPBCL0002037-1	1-1/1
	RECORD OF REVISION	DPBCL0002037-1	2-1/1
	APPLICATION	DPBCL0002037-1	3-1/1
	DESCRIPTION	DPBCL0002037-1	4-1/1
1	ABSOLUTE MAXIMUM RATINGS	DPBCL0002037-1	5-1/1
2	OPTICAL CHARACTERISTICS	DPBCL0002037-1	6-1/2 - 6-2/2
3	ELECTRICAL CHARACTERISTICS	DPBCL0002037-1	7-1/1
4	BLOCK DIAGRAM	DPBCL0002037-1	8-1/1
5	INTERFACE PIN ASSIGNMENT	DPBCL0002037-1	9-1/6 - 9-6/6
6	TIMING DIAGRAMS OF INTERFACE TIMING	DPBCL0002037-1	10-1/3 - 10-3/3
7	DIMENSIONAL OUTLINE	DPBCL0002037-1	11-1/2 - 11-2/2
6	DESIGNATION OF LOT MARK	DPBCL0002037-1	12-1/1
7	PRECAUTION	DPBCL0002037-1	13-1/3 - 13-3/3

The information described in this technical specification is tentative and it is possible to be changed without prior notice.

Hitachi Displays, Ltd.

Sh.

No.

			<u>RECO</u>	<u>RD (</u>	<u>)f RE</u>	<u>VISION</u>			
	The uppe	r sectio	n : Before r	evisi	on				
Date	The lower	r sectio	n : After rev	visior	n		Summary		
		Sheet N	No.	P	age				
L	l								
					Sh				
Hitachi Disp	lays, Ltd.	Date	May. 29, 2	2009	No.	DPBCL00	002037-1	Page	2-1/1

DECODD OF DEVISION

APPLICATION

In the case of applying this product for such as control and safety device of transportation facilities (airplane, train, automobile, ship, etc), equipments aiming for rescue and security, and the other safety related devices which should secure higher reliability and safety, please make it sure that proper countermeasure such as fail-safe functions and enough system design for the protection are mandatory.

Please do not apply this product for equipments or devices which need exceedingly high reliability, such as aerospace applications, telecommunication facilities (trunk lines), nuclear related equipments or plants, and critical life support devices or applications. Usage style of this product is limited to Landscape mode. Optical characteristics mentioned in this spec. sheet is applied for only initial stage after delivery, and the characteristics will be changed by long time usage. Reliability of this product is secured as normal office use.

Hitachi Displays, Ltd.	Date	May. 29, 2009	Sh. No.	DPBCL0002037-1	Page	3-1/1
------------------------	------	---------------	------------	----------------	------	-------

DESCRIPTION

The following specifications are applied to the following Super-TFT module.

Note : Inverter for back light unit is not built in this module.

Product Name : TMD54X110CBB

GENERAL SPECIFICATIONS

Effective Display Area	: (H) $432.0 \times (V) 324.0 \text{ (mm)}$
Number of Pixels	: (H) 1,600 × (V) 1,200 (pixels)
Pixel Pitch	: (H) $0.270 \times (V) 0.270$ (mm)
Color Pixel Arrangement	: R+G+B Vertical Stripe
Display Mode	 Transmissive Mode Normally Black Mode AS-IPS
Top Polarizer Type	: Anti-glare
Number of Colors	: 16,777,216 colors
Viewing Angle Range	: Super Wide Version
Input Signal	÷ 2-channel LVDS (LVDS: Low Voltage Differential Signaling)
Back Light	: 6 pcs. of CCFL
External Dimensions	: (H) $460.6 \times (V) 362 \times (t) 25 \text{ (mm)}$
Weight	: Max. 4,000 (g) (Typ.3,450 (g))
RoHS	: Compliance
Application	: Medical; Professional Desk-top Monitor

Hitachi Displays, Ltd.	Date	May. 29, 2009	Sh. No.	DPBCL0002037-1	Page	4-1/1
------------------------	------	---------------	------------	----------------	------	-------

1. ABSOLUTE MAXIMUM RATINGS

Item	Oper	ating	Sto	rage	Unit	Noto
	Min. Max.		Min.	Min. Max.		Note
Temperature	0	50	-20 65		°C	1)
Humidity	2	2)	2)		%RH	1)
Vibration	—	4.9 (0.5G)	_	14.7 (1.5G)	1- ²	3)
Shock		29.4 (3G)		294 (30G)	m/s	4)
Corrosive Gas	Not Acc	ceptable	Not Acceptable			
Illumination at		50 000		50 000	lx	
LCD Surface		33,000		30,000	IA	

1.1 ELECTRICAL ABSOLUTE MAXIMUM RATINGS

Notes 1) Temperature and Humidity should be applied to the center glass surface of a Super-TFT module, not to the system installed with a module.

The temperature at the center of rear surface should be less than 60°C on the condition of operating. Function of module is guaranteed in above operating temperature range, but optical characteristics is specified for only 25°C operating condition.

The brightness of a CCFL tends to drop at low temperature. Besides, the life-time becomes shorter at low temperature.

- 2) Ta $\leq 40^{\circ}$ C Relative humidity should be less than 85%RH max. Dew is prohibited. Ta $> 40^{\circ}$ C Relative humidity should be lower than the moisture of the 85%RH at 40°C.
- 3) Frequency of the vibration is between 15Hz and 100Hz. (Remove the resonance point)
- 4) Pulse width of the shock is 10 ms.

1.2 ELECTRICAL ABSOLUTE MAXIMUM RATINGS

(1) Super-TFT Module

(1) Super-1F1 Module					vss-ov
Item	Symbol	Min.	Max.	Unit	Note
Power Supply Voltage	VDD	0	13.5	V	_
Input Voltage for logic	VI	-0.3	3.6	V	1)
Electrostatic Durability	VESD0	±1	00	V	2),3)
Electrostatic Durability	VESD1	±	8	kV	2),4)

 $\mathbf{V}_{aa} = \mathbf{O} \mathbf{V}_{aa}$

Notes 1) It is applied to pixel data signal and clock signal.

2) Discharge Coefficient: 200pF-250Q, Environmental: 25°C-70%RH

3) It is applied to I/F connector pins.

4) It is applied to the surface of a metallic bezel and a LCD panel.

(2) Back-light

Item	Symbol	Min.	Max.	Unit	Note
Input Current	IL		7.5	mA	1)
Input Voltage	VL	—	1800	Vrms	2)

Notes 1) The specification shall be applied to each CFL. The specification is defined at ground line.

2) The specification shall be applied at connector pins for a CFL at start-up.

Hitachi Displays, Ltd.	Date	May. 29, 2009	Sh. No.	DPBCL0002037-1	Page	5-1/1
------------------------	------	---------------	------------	----------------	------	-------

2. OPTICAL CHARACTERISTICS

The following optical characteristics are measured when the LCD is set alone (apart from driving circuits and monitor cabinets) and under stable conditions. It takes about 30 minutes to reach stable conditions. The measuring point is the center of display area unless otherwise noted. The optical characteristics should be measured in a dark room or equivalent state.

Measuring equipment: Prichard 1980A, or equivalent [N.I.S.T (Standard Source A)]

Environmental Temperature = 25°C, VDD=12.0V, fV=60Hz,

Item	1	Symbol	Condition	Min.	Typ.	Max.	Unit	Note
Contrast	Ratio	CR		300	550		_	2)
Response	Rise	ton			16	20		2)
Time	Fall	toff			14	19	ms	3)
Brightness	of white	Bwh		220	280		cd/m^2	
Brightness u	niformity	Buni			_	25	%	4)
	Rod	х	$\theta = 0^{\circ}$	0.61	0.64	0.67		
Color	neu	У	1)	0.30	0.33	0.36		
	Groop	х		0.26	0.29	0.32		
Chromaticity	Green	У		0.57	0.60	0.63	—	Gray scale
(CIE)	Blue	x		0.12	0.15	0.18		$\left(\begin{array}{c} = 255 \end{array} \right)$
		У		0.03	0.06	0.09		
	White	x		0.28	0.31	0.34		
	WIIIte	У		0.30	0.33	0.36		
	Red	$\Delta \mathbf{x}$				0.04		
	neu	Δy				0.04		
Variation of	Green	$\Delta \mathbf{x}$	$\theta = +50^{\circ}$		—	0.04		5)
Color Position	Green	Δy	$\phi = 0^{\circ}, 90^{\circ}$		—	0.04	—	
(CIE)	Blue	$\Delta \mathbf{x}$	180°, 270°		—	0.04		Gray scale
	Dide	Δy	1)		—	0.04		(=255)
	White	$\Delta \mathbf{x}$			—	0.04		
	willing.	Δy				0.04		
			$\theta = +85^{\circ}$					
Contrast Rat	Contrast Ratio at 85°		$\phi = 0^{\circ}, 90^{\circ}$	10	—		—	—
			180°, 270° 1)					

IL=7.0mA (average of 6 pieces of CFLs)

Hitachi Displays, Ltd.	Date	May. 29, 2009	Sh. No.	DPBCL0002037-1	Page	6-1/2
------------------------	------	---------------	------------	----------------	------	-------

3. ELECTRICAL CHARACTERISTICS

3.1 TFT-LCD MODULE

3.1 TFT-LCD MODULE Ta=25°C, Vss=0V								
Item	Symbol	Min.	Typ.	Max.	Unit	Note		
Power Supply Voltage	VDD	11.0	12.0	13.0	V	—		
Power Supply Current	IDD		0.5	(0.7)	А	1),2),3)		
Vsync Frequency	fV	57	60	63	Hz	—		
Hsync Frequency	fH		72	(75)	kHz	—		
DCLK Frequency	fCLK	40	67.5	(81)	MHz	—		

Dimensions in parentheses are reference value.

Notes 1) DC current at fv=60Hz, fCLK=67.5MHz and VDD=12V

- 2) Current capacity of power supply for VDD should be larger than 5A, so that the fuse can be opened at the trouble of power supply.
- 3) The picture on maximum current is white picture.

3.2 BACK LIGHT

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Input Current	IL	3.0	6.5	7.0	mArms	1)
Input Voltage	VL		800		Vrms	
Frequency	fO	40	54	65	kHz	2)
Kick-Off Voltage	Vs	1,500		1,750	V	3)

Notes 1) The specification shall be applied to each CFL. The specification is defined at ground line.

2) Frequency of power supply for a CFL may cause the interference with HSYNC frequency and cause beat or flicker on the display. Therefore, lamp frequency shall be as different as possible from HSYNC frequency in order to avoid the interference.

3) Ta = 0°C

	r	i			i i	
Hitachi Displays, Ltd.	Date	May. 29, 2009	Sh. No.	DPBCL0002037-1	Page	7-1/1

4. BLOCK DIAGRAM

5. INTERFACE PIN ASSIGNMENT

5.1 TFT-LCD MODULE

CN1: JAE: FI-X30S-HF

(Matching connector: JAE FI-X30H or FI-X30M)

Pin No.	Symbol	Function	Note
1	RAIN0-	ODD pixel data	2)
2	RAIN0+		
3	RAIN1-	ODD pixel data	2)
4	RAIN1+		
5	RAIN2-	ODD pixel data	2)
6	RAIN2+		
7	Vss	GND (0V)	1)
8	RACLKIN-	ODD pixel clock	2)
9	RACLKIN+		
10	RAIN3-	ODD pixel data	2)
11	RAIN3+		
12	RBIN0-	EVEN pixel data	2)
13	RBIN0+		
14	Vss	GND (0V)	1)
15	RBIN1-	EVEN pixel data	2)
16	RBIN1+		
17	Vss	GND (0V)	1)
18	RBIN2-	EVEN pixel data	2)
19	RBIN2+		
20	RBCLKIN-	EVEN pixel clock	2)
21	RBCLKIN+		
22	RBIN3-	EVEN pixel data	2)
23	RBIN3+		
24	Vss	GND (0V)	1)
25	NC	No connection	3)
26	DE	No connection	3)
27	NC	No connection	3)
28	VDD		
29	VDD	Power supply (12V)	4)
30	VDD		

Notes 1) All Vss pins should be grounded.

2) RnINm+ and RnINm- (n=A,B m=0,1,2,3) should be wired by twist-pairs or side-by-side FPC patterns, respectively.

- 3) Please keep open.
- 4) All VDD pins should be connected to +12.0 V (typ.).
- 5) Pin assignment is as follows.

Hitachi Displays, Ltd.	Date	May. 29, 2009	Sh. No.	DPBCL0002037-1	Page	9-1/6
------------------------	------	---------------	------------	----------------	------	-------

5.2 BACK-LIGHT UNIT

CN3, CN5: JST XHP-7

(Matching connector: S7B-HX-A, JST B7B-XH-A or B7B-XH-2)

Pin No.	Symbol	Function	Note
1	VL	Power Supply	1)
2	NC	No connection	
3	NC	No connection	
4	VL	Power Supply	1)
5	NC	No connection	
6	NC	No connection	
7	VL	Power Supply	1)

CN4, CN6: JST BHR-03VS-1

(Matching connector: SM03(4.0)B-BHS-1-TB)

Pin No.	Symbol	Function	Note
1	GND	GND	1)
2	GND	GND	1)
3	GND	GND	1)

Notes 1) There are parasitic capacitors between 3CCFLs. The different capacitance of these parasitic capacitors send the one-sided electric current to the specific CCFL. This phenomenon causes the drop of the optical characteristics.

To avoid this phenomenon, The inverter driving CCFLs should be applied as follows;

(1) One transformer should cover to supply VL and IL for only one CCFL.

(2) Providing detector to monitor IL current level for every each CCFL is recommended, but monitoring of only maximum current level among the 3CCFLs is also acceptable if the recommendation is not easily implemented at design of a inverter.

Hitachi Displays, Ltd.	Date	May. 29, 2009	Sh. No.	DPBCL0002037-1	Page	9-2/6
------------------------	------	---------------	------------	----------------	------	-------

BLOCK DIAGRAM OF INTERFACE

LVDS INTERFACE

	Input	Tı	ransmitter	Interface	e connector		Receiver	TI	T
	Signal	Pin	Input	System side	Super-TFT module	Pin	Output	Contro	l input
	RA0	51	TAIN0			27	RAOUT0	RAC)
	RA1	52	TAIN1			29	RAOUT1	RA1	
	RA2	54	TAIN2	TA OUT0+	RA IN0+	30	RAOUT2	RA2	2
	RA3	55	TAIN3			32	RAOUT3	RAE	3
	RA4	56	TAIN4			33	RAOUT4	RA4	
	RA5	3	TAIN6	TA OUTO-	RA IN0-	35	RAOUT6	RAS)
	GA0	4	TAIN7			37	RAOUT7	GAU)
	GAL	67	TAIN8			38	RAOUT8 RAOUT0	GAL)
	GA2 CA2	/ 11	TAIN9 TAIN19	$TA \cap UT1 +$	DA IN1+	39 49	RAOUT9 PAOUT19	CAS	2)
	GA5 GA4	11 19	TAIN12 TAIN13	TAOUTIŦ	na ini+	45	RAOUT12 RAOUT13	GA/)
	GA5	14	TAIN15 TAIN14			40	RAOUT15 RAOUT14	GAE	r K
	BAO	15	TAIN14	TA OUT1-	RA IN1-	40	RAOUT14 RAOUT15	BAC)
LVDS	BA1	19	TAIN18			51	RAOUT18	BA1	
Odd	BA2	20	TAIN19			53	RAOUT19	BA2	2
	BA3	22	TAIN20			54	RAOUT20	BA3	3
	BA4	23	TAIN21	TA OUT2+	RA IN2+	55	RAOUT21	BA4	ŀ
	BA5	24	TAIN22			1	RAOUT22	BA5	5
	RSVD 1)	27	TAIN24			3	RAOUT24	RSV	D/D
	RSVD 1)	28	TAIN25	TA OUT2-	RA IN2-	5	RAOUT25	RSV	'D
	DTMG	30	TAIN26			6	RAOUT26	DTN	ЛG
	RA6	50	TAIN27			7	RAOUT27	RA	5
	RA7	2	TAIN5	m L OTTMO		34	RAOUT5	RA7	7
	GA6	8	TAIN10	TA OUT3+	RA IN3+	41	RAOUT10	GAG	; -
	GA7	10	TAIN11			42	RAOUT11	GAT	7
	BA6	16	TAIN16		DA INO	49	RAOUT16	BAG	5
	BA7 DCVD 1)	18	TAIN17 TAIN99	TA OUT3-	RA IN3-	50	RAOUT17	BAT	
	DCLK	20 21	TAIN25 TCLKA IN		DCI KA IN+	2 96	RAUU123		V D
	DULK	51	IULKAIN	TCLKA OUT-	RCLKA IN+	20	NOLKA OU I	DUI	
	RB0	51	TBIN0	101111001	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	27	RBOUT0	RBC)
	RB1	52	TBIN1	TB OUT0+		29	RBOUT1	RB1	-
	RB2	54	TBIN2		RB IN0+	30	RBOUT2	RB2	2
	RB3	55	TBIN3			32	RBOUT3	RB3	3
	RB4	56	TBIN4			33	RBOUT4	RB4	ŀ
	RB5	3	TBIN6	TB OUT0-	RB IN0-	35	RBOUT6	RB5	5
	GB0	4	TBIN7			37	RBOUT7	GB0)
	GB1	6	TBIN8			38	RBOUT8	GB1	L
	GB2	7	TBIN9			39	RBOUT9	GB2	2
	GB3	11	TBIN12	TB OUT1+	RB IN I+	43	RBOUT12	GB3	
	GB4	12	TBIN13			45	RBOUT13	GB4	ł ,
	GB5 PP0	14	TBIN14 TDIN15		DD IN1.	46	RBOUT14)
IVDS	BB1	10	TBIN15 TBIN18	IBOUII	ND IN I	47 51	RBOUT15	BB1)
Even	BB9	20	TBIN10 TRIN19			53	RBOUT19	BB9	-
LIVEII	BB3	$\frac{20}{22}$	TBIN20			54	RBOUT20	BBS	2
	BB4	$\frac{11}{23}$	TBIN21	TB OUT2+	RB IN2+	55	RBOUT21	BB4	
	BB5	24	TBIN22			1	RBOUT22	BB	5
	RSVD 1)	$2\overline{7}$	TBIN24			3	RBOUT24	RSV	D/D
	RSVD 1)	28	TBIN25	TB OUT2-	RB IN2-	5	RBOUT25	RSV	D/D
	RSVD 1)	30	TBIN26			6	RBOUT26	RSV	D/D
	RB6	50	TBIN27			7	RBOUT27	RB6	;
	RB7	2	TBIN5			34	RBOUT5	RB7	7
	GB6	8	TBIN10	TB OUT3+	RB IN3+	41	RBOUT10	GB6	3
	GB7	10	TBIN11			42	RBOUT11	GB7	7
	BB6	16	TBIN16	mp	D-	49	RBOUT16	BBe	5
	BB7	18	TBIN17	TB OUT3-	RB IN3-	50	RBOUT17	BB7	
	KSVD I)	25 21	TBIN23 TCI KR IN	TOLKROUT	BUIKBINT	2 96	RCI KR OUT		<u>עי</u> ג
	DOUV	01	TOTIND III	TCLKB OUT-	RCLKB IN-	20			717
<u> </u>		·					<u>.</u>		
Hitach	i Displays,	, Ltd.	Date Ma	ay. 29, 2009	Sh. DPBO	CL00	02037-1	Page	9-4/6

CORRESPONDENCE BETWEEN INPUT DATA AND DISPLAY IMAGE

	(1, 1)			(1, 2)	i
RA	GA	BA	RB	GB	BB

Odd pixel:	RA0~RA7	: R data
	GA0~GA7	:G data
	BA0~BA7	: B data
Even pixel:	$RB0 \sim RB7$: R data
	$GB0\sim GB7$:G data
	$BB0\sim BB7$: B data

ĺ	1, 1	1, 2) 1, 3	 1, 1600
	2, 1	2, 2	2, 3	 2, 1600
	3, 1	3, 2	3, 3	 3, 1600
	1200, 1	1200, 2	1200, 3	 1200, 1600

Hitachi Displays, Ltd.	Date	May. 29, 2009	Sh. No.	DPBCL0002037-1	Page	9-5/6
------------------------	------	---------------	------------	----------------	------	-------

RELATIONSHIP BETWEEN DISPLAY COLORS AND INPUT SIGNALS

	Input data				R d	lata							G d	lata							Βd	ata			
		RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	GA7	GA6	GA5	GA4	GA3	GA2	GA1	GA0	BA7	BA6	BA5	BA4	BA3	BA2	BA1	BA0
		RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	GB7	GB6	GB5	GB4	GB3	GB2	GB1	GB0	BB7	BB6	BB5	BB4	BB3	BB2	BB1	BB0
Color	\sim	MSE	3						LSB	MSE	6						LSB	MSE	}						LSB
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
BASIC COLOR	BLUE (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	CYAN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	MAGENTA	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	YELLOW	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	WHITE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED	RED (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	•	÷	:	:	÷	:		:	÷	:	÷	÷	:	:	÷	:	÷	:	:	:	÷	÷	:	÷	:
	•	÷	:	:	:	:		:	:	:	:	÷	:	:	÷	:	:	:	:	:	:	÷	:	÷	:
	RED (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	GREEN (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
GREEN	•	÷	÷	:	÷	:		:	÷	:	÷	÷	÷	÷	÷	:	÷	÷	:	÷	÷	÷	:	÷	:
	•	÷	÷	:	÷	:		:	÷	:	÷	÷	÷	÷	÷	:	÷	÷	:	÷	÷	÷	:	÷	:
	GREEN (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	BLUE (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
BLUE		÷	:	:	÷	:	÷	:	÷	:	÷	÷	:	:	÷	:	÷	÷	:	÷	:	:	:	:	÷
	:	÷	÷	:	÷	:	÷	÷	÷	÷	÷	÷	:	÷	÷	÷	÷	÷	:	÷	1	÷	:	:	÷
	BLUE (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	BLUE (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Notes 1) Definition of gray scale: Color (n)

n indicates gray scale level. Higher n means brighter level.

2) Data signals: 1: High, 0: Low

Hitachi Displays, Ltd.	Date	May. 29, 2009	Sh. No.	DPBCL0002037-1	Page	9-6/6
------------------------	------	---------------	------------	----------------	------	-------

6. TIMING DIAGRAMS OF INTERFACE TIMING

6.1 TIMING DIAGRAMS OF INTERFACE SIGNAL

6.2 TIMING PARAMETERS

						:	2pxl/clk
Signal	Item	Symbol	Min.	Typ.	Max.	Unit	Note
	Frequency	1/Tc	40	67.5	(81)	MHz	
Clock	High Time	TCH	4	_	_	nsec	
	Low Time	TCL	4	_	_	nsec	
Dete	Setup Time	TDS	4	—	—	nsec	—
Data	Hold Time	TDH	4	_	_	nsec	
DTMG	Setup Time	TES	4	_	_	nsec	
Enomo Enoquencu	Cuelo	T V	(15.9)	16.7	(17.5)	msec	
Frame Frequency	Cycle	1 V	1,203	1,203	(1,270)	lines	
Vartical Asting	Display Period	TVD	1,200	1,200	1,200	lines	
Display Term	Vertical Blank Period	TVB	3	3	(70)	lines	_
One Line Scanning Time	Cycle	TH	840	936	(1,080)	clocks	_
Horizontal Active Display Term	Display Period	THD	800	800	880	clocks	

Hitachi Displays, Ltd.	Date	May. 29, 2009	Sh. No.	DPBCL0002037-1	Page	10-2/3
------------------------	------	---------------	------------	----------------	------	--------

6.3 TIMING BETWEEN INTERFACE SIGNALS AND POWER SUPPLY

$0 \mathrm{ms}$	\leq	TPR	\leq	$10 \mathrm{ms}$
$0 \mathrm{ms}$	\leq	TDR	\leq	$50 \mathrm{ms}$
$0 \mathrm{ms}$	\leq	TDF	\leq	$50 \mathrm{ms}$
		TIN	\geq	1s
		TBR	\leq	$500 \mathrm{ms}$
		TBF	\leq	100ms

	Hitachi Displays, Ltd.	Date	May. 29, 2009	Sh. No.	DPBCL0002037-1	Page	10-3/3
--	------------------------	------	---------------	------------	----------------	------	--------

DPBCL0002037-I	Page	- /2
----------------	------	------

Rear View

Hitachi Displays, Ltd.	Date	May.29,2009	Sh. No.

8. DESIGNATION OF LOT MARK

8.1 LOT MARK

11

12

11

12

 $29 \sim 31$

 $\mathbf{5}$

4) It is the mark that was opened up by production person to take correspondence with production number.

 $\mathbf{5}$

6

8.2 LOCATION OF LOT MARK

Lot mark is printed on a label. The label is on the metallic bezel as shown in 7. External Dimensional. The style of character will be changed without notice.

05

06

10. PRECAUTION

Please pay close attention to the following precautions whilst using, handling and mounting the TFT module.

10.1 PRECAUTION FOR HANDLING AND MOUNTING

- (1) Applying excessive force to any part of the module may result in partial deformation of the frame or mould, which could result in permanent damage to the display.
- (2) The module should be held gently and firmly using both hands. In order to avoid internal damage never hold the module by just one hand. Also never drop or hit the module.
- (3) The module should be installed using the mounting holes of the module.
- (4) Uneven force such as twisted stress should not be applied directly to the module once it is mounted within the cover case. The cover case must have sufficient strength such that any external forces are not transmitted directly to the module.
- (5) It is recommended that you maintain a gap between the display module and the rear chassis so as to avoid any mechanical stress being passed to the module.

Fig.1 Cross sectional view of a monitor set above precaution (5)

- (6) The edge of the cover case should be positioned with more than a 1mm overlap from the edge of the module's upper frame.
- (7) A transparent protective plate should be added to the front of the display in order to protect both the polarizer and TFT cell. The transparent protective plate should have sufficient strength such that the plate can not be deformed, due to external forces, and touch the module. Polarizer surface hardness is H.
- (8) Materials containing acetic acid and chlorine should not be used for the cover case nor for other parts which are positioned in close proximity to the module. This is because the Acetic acid will attack the polarizer, whilst the chlorine will attack the electric circuits by way of electro-chemical reaction.
- (9) The front polarizer on the TFT cell should be handled carefully, due to its softness, and must not be touched, pushed or rubbed with glass, tweezers or anything harder than an HB pencil lead. The surface of the polarizer should not be touched nor rubbed with bare hands, greasy or dusty clothes.
- (10) If the surface of polarizer becomes dirty, it should be softly wiped off by absorbent cotton, chamois or other soft material with recommended potion. Do not rub strongly to avoid damaging the surface. IPA (isopropyl alcohol) is recommended to clean away the traces of adhesive which is used to attach the front/rear polarizers to the TFT cell. Other cleaning chemicals such as acetone, toluene and alcohol should not be used to clean adhesives because they cause chemical damage to the polarizer.
- (11) Saliva or water drops should be immediately wiped off. Otherwise, the affected portion of the polarizer may become deformed and its color may fade.
- (12) The module should not be opened or modified, under any circumstances, as this may cause it to

Hitachi Displays, Ltd.	Date	May. 29, 2009	Sh. No.	DPBCL0002037-1	Page	13-1/3
------------------------	------	---------------	------------	----------------	------	--------

- (13) The metallic bezel of the module should not be handled with bare hand or dirty gloves. Otherwise, the color of the metallic frame may become dirty during its storage. It is recommended to use clean soft gloves and clean finger stalls whilst the module is handled during incoming inspection and production assembly processes.
- (14) CCFL cables should not be used to hold the module or pulled.

10.2 PRECAUTION TO OPERATION

- (1) Heat from the backlight could raise the temperature of TFT-LCD module (TFT-LCD panel). Therefore, the mechanism of radiating heat is necessary to satisfy environmental specification of this module.
- (2) Spike noise could result in the miss-operation of this module. The level of spike noise should be as follows: -200mV \leq over- and under- shoot of VDD \leq +200mV

VDD including over- and under- shoot should not exceed the absolute maximum ratings.

- (3) Optical response times, luminance and chromaticity depend on the temperature of the TFT module. Response times and saturation times of CCFL luminance become longer at lower operating temperatures.
- (4) The starting characteristic of the lamp will become worse at the low temperature.(Loss time to obtain stable luminescence after inputting power will become long.)
- (5) Sudden temperature changes may cause dew on and/or in the module. Dew can cause damage to the polarizer and/or electrical contacting areas of the module. Dew causes fading of the image quality.
- (6) If same pattern is displayed for a long time, the image sticking might remain. But it will become weak as a time goes on after displaying another image.
- (7) This module has high frequency circuits. Sufficient suppression to electromagnetic interference should be done by the system manufacturers. Grounding and shielding methods may be effective to minimize such interference.
- (8) Noise may be heard when the back-light is operated. If necessary, sufficient suppression should be done by the system manufacturers.
- (9) Connecting or disconnecting the I/F cables, whilst the power and data signals are present, could result in permanent damage to the module. The I/F connectors should only be connected and disconnected after the power supply and data signal have been turned off.

10.3 ELECTROSTATIC DISCHARGE CONTROL

- (1) This module consists of a TFT cell and electronic circuits with CMOS-ICs, which are very susceptible to electrostatic discharge. Persons who are handling the module should be grounded through adequate methods such as a wrist band. I/F connector pins should not be touched directly with bare hands.
- (2) The polarizer protective film should be removed slowly so as to avoid an excessive build-up of electrostatic charge.

10.4 PRECAUTION TO STRONG LIGHT EXPOSURE

(1) The module should not be exposed to strong light. Otherwise, characteristics of the polarizer and color filter, may be degraded.

10.5 PRECAUTION TO STORAGE

When modules are stored, for long period's of time, the following precautions should be taken:

- (1) Modules should be stored in a dark place. It is prohibited to apply direct sunlight or fluorescent light during storage. Modules should be stored between 15 to 35°C at normal humidity (60%RH or less).
- (2) The surface of the polarizer should not come into direct contact with other objects.

It is recommended that modules should be stored in the original shipping box.

Hitachi Displays, Ltd.	Date	May. 29, 2009	Sh. No.	DPBCL0002037-1	Page	13-2/3
------------------------	------	---------------	------------	----------------	------	--------

10.6 PRECAUTION TO HANDLING PROTECTION FILM

(1) The protective sheet for polarizers should be peeled off slowly and carefully by people who are electrically grounded with adequate methods such as wrist bands. Also ionized air should be blown over the module during the peeling action.

Dust on the polarizer should be blown off gently using an ionized nitrogen gun.

10.7 SAFETY

- (1) Since both the TFT cell and CCFL lamps are made of glass, handling of any broken module's should be carried out with the utmost care so as to avoid any injury. Hands which have come into direct contact with liquid crystal material should be washed immediately and thoroughly.
- (2) The module should not be taken apart during operation so that back-light drives by high voltage.
- (3) The inverter for driving CCFL should have over current/voltage detect circuit in case back-light failure happens. Also protection circuit (open, short, spark, etc) should be verified on inverter and system side.

10.8 ENVIRONMENTAL PROTECTION

(1) The TFT module contains cold cathode fluorescent lamps. Please follow local ordinance or regulations for its disposal.

10.9 USE RESTRICTIONS AND LIMITATIONS

- (1) In no event shall Hitachi Displays, Ltd. be liable for any incidental, indirect or consequential damages in connection with the installation or use of this product, even if informed of the possibility there of in advance. These limitations apply to all causes action in aggregate, including without limitation breach of contract, breach of warranty, negligence, strict liability, misrepresentation and other torts.
- (2) This product is not authorized for military applications or other applications which pose a significant risk of personal injury.

10.10 OTHERS

(1) Electronic parts that do not influence the electrical specification might be changed without notice.

(2) Limited current circuit must be required for the inverter output.

Hitachi Displays, Ltd.	Date	May. 29, 2009	Sh. No.	DPBCL0002037-1	Page	13-3/3
------------------------	------	---------------	------------	----------------	------	--------