# **HITACHI**

KAOHSIUNG HITACHI ELECTRONICS CO., LTD.

| FOR MESSRS: | DATE: Jul. 07 <sup>th</sup> 2009 |
|-------------|----------------------------------|
|             |                                  |

## CUSTOMER'S ACCEPTANCE SPECIFICATIONS

## TX26D12VM0AAA

### Contents

| No. | ITEM                       | SHEET No.                   | PAGE         |
|-----|----------------------------|-----------------------------|--------------|
| 1   | COVER                      | 7B64PS 2701-TX26D12VM0AAA-2 | 1-1/1        |
| 2   | RECORD OF REVISION         | 7B64PS 2702-TX26D12VM0AAA-2 | 2-1/1        |
| 3   | GENERAL DATA               | 7B64PS 2703-TX26D12VM0AAA-2 | 3-1/1        |
| 4   | ABSOLUTE MAXIMUM RATINGS   | 7B64PS 2704-TX26D12VM0AAA-2 | 4-1/1        |
| 5   | ELECTRICAL CHARACTERISTICS | 7B64PS 2705-TX26D12VM0AAA-2 | 5-1/2~2/2    |
| 6   | OPTICAL CHARACTERISTICS    | 7B64PS 2706-TX26D12VM0AAA-2 | 6-1/2~2/2    |
| 7   | BLOCK DIAGRAME             | 7B64PS 2707-TX26D12VM0AAA-2 | 7-1/1        |
| 8   | RELIABILITY TESTS          | 7B64PS 2708-TX26D12VM0AAA-2 | 8-1/1        |
| 9   | LCD INTERFACE              | 7B64PS 2709-TX26D12VM0AAA-2 | 9-1/11~11/11 |
| 10  | OUTLINE DIMENSIONS         | 7B63PS 2710-TX26D12VM0AAA-2 | 10-1/2~2/2   |
| 11  | APPEARANCE STANDARD        | 7B64PS 2711-TX26D12VM0AAA-2 | 11-1/3~3/3   |
| 12  | PRECAUTIONS                | 7B64PS 2712-TX26D12VM0AAA-2 | 12-1/2~2/2   |
| 13  | DESIGNATION OF LOT MARK    | 7B64PS 2713-TX26D12VM0AAA-2 | 13-1/1       |

ACCEPTED BY: PROPOSED BY: Dan Ching

| KAOHSIUNG HITACHI<br>ELECTRONICS CO., LTD. | SHEET<br>NO. | 7B64PS 2701-TX26D12VM0AAA-2 | PAGE | 1-1/1 |  |
|--------------------------------------------|--------------|-----------------------------|------|-------|--|
|--------------------------------------------|--------------|-----------------------------|------|-------|--|

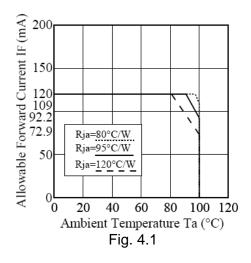
## 2. RECORD OF REVISION

| Jul.07,'09       7864PS 2703-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|
| TX26D12VM0AAA-2 PAGE 3-1/1 Power Consumption 7.68W → 8.04W  7B64PS 2705- TX26D12VM0AAA-2 PAGE 5-2/2    Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |
| 7B64PS 2705- TX26D12VM0AAA-2 PAGE 5-2/2    Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |        |
| TX26D12VM0AAA-2 PAGE 5-2/2    Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |
| PAGE 5-2/2   Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |
| LED Forward Current (660) (30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |        |
| (Dim Control) (30)    Item   Typ.     LED Forward Current   670     (Dim Control)   30     7864PS 2706-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |        |
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |        |
| LED Forward Current 670 (Dim Control) 30  7B64PS 2706- TX26D12VM0AAA-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |        |
| LED Forward Current 670 (Dim Control) 30  7B64PS 2706- TX26D12VM0AAA-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |        |
| (Dim Control) 30  7B64PS 2706-  TX26D12VM0AAA-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |
| 7B64PS 2706-  TX26D12VM0AAA-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |
| TX26D12\/M04 A A-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |
| PAGE 6-1/2  ITEM SYMBOL CONDITION MIN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TYP.   | MAX.   |
| x   (0.57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.61) | (0.67) |
| Red y (0.27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.36) | (0.37) |
| (0.25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.37) | (0.35) |
| Color Green $y \phi = 0^{\circ}$ , $\phi = 0^{\circ}$ , $\phi = 0^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.59) | (0.64) |
| Chromaticity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.15) | (0.19) |
| Blue   Constitution   Constitution | (0.10) | (0.15) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ` ′    | ` '    |
| White   \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.35) | (0.40) |
| y (0.32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.37) | (0.42) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Т      |        |
| ITEM SYMBOL CONDITION MIN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TYP.   | MAX.   |
| Red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.61   | 0.66   |
| y 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.36   | 0.41   |
| Green x 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.37   | 0.42   |
| Color $\phi = 0^{\circ}$ , 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.59   | 0.64   |
| Chromaticity $x \theta = 0^{\circ}$ 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.15   | 0.20   |
| Blue y 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.10   | 0.15   |
| 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.35   | 0.40   |
| White y 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.37   | 0.42   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 1      |
| 7B63PS 2710- 10.1 SURFACE SIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |        |
| TX26D12VM0AAA-2 All Sheet Revised. PAGE 10-1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |        |
| 7B63PS 2710- 10.2 BACK SIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |
| TX26D12VM0AAA-2 All Sheet Revised.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |
| PAGE 10-2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |

## 3. GENERAL DATA

#### 3.1 DISPLAY FEATURES

This module is a 10.4" SVGA of 4:3 format amorphous silicon TFT. The pixel format is vertical stripe and sub pixels are arranged as R(red), G(green), B(blue) sequentially. This display is RoHS compliant, and COG (chip on glass) technology and LED backlight are applied on this display.


| Part Name               | TX26D12VM0AAA                                               |
|-------------------------|-------------------------------------------------------------|
| Module Dimensions       | 243.0(W) mm x 185.1(H) mm x 11.0max (D) mm                  |
| LCD Active Area         | 211.2(W) mm x 158.4(H) mm                                   |
| Dot Pitch               | 0.088(W) mm x 3(R, G, B)(W) x 0.264(H) mm                   |
| Resolution              | 800 x 3(RGB)(W) x 600(H) dots                               |
| Color Pixel Arrangement | R, G, B Vertical stripe                                     |
| LCD Type                | Transmissive Color TFT; Normally Black                      |
| Display Type            | Active Matrix                                               |
| Number of Colors        | 16777k Colors(8-bit RGB)                                    |
| Backlight               | 8 LEDs parallel x 3 serial (24 LEDs in total)               |
| Weight                  | (560) g (typ.)                                              |
| Interface               | 1ch-LVDS/Receiver ; 20 pins                                 |
| Power Supply Voltage    | 3.3V for LCD; 12V for Backlight                             |
| Power Consumption       | 1.221 W for LCD (SVGA) ;8.04W for backlight                 |
| Viewing Direction       | Super Wide Version (Horizontal and Vertical: 170°, CR ≥ 10) |

## 4. ABSOLUTE MAXIMUM RATINGS

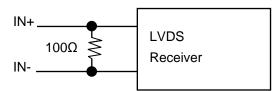
| Item                   |                 | Symbol | Min. | Max.    | Unit     | Remarks |
|------------------------|-----------------|--------|------|---------|----------|---------|
| Supp                   | ly Voltage      | VDD    | 0    | 4.0     | <b>V</b> | -       |
| Input Voltage of Logic |                 | VI     | -0.3 | VDD+0.3 | V        | Note 1  |
| Operating Temperature  |                 | Тор    | -20  | 70      | °C       | Note 2  |
| Storage Temperature    |                 | Tst    | -30  | 80      | °C       | Note 2  |
| LED Unit               | Forward Current | IF     | -    | 120     | mA       | Note 2  |
| LED Unit               | Reverse Voltage | VR     | -    | 3.65    | V        | Note 3  |

- Note 1: It shall be applied to pixel data signal and clock signal.
- Note 2: The maximum rating is defined as above based on the temperature on the panel surface, which might be different from ambient temperature after assembling the panel into the application. Moreover, some temperature-related phenomenon as below needed to be noticed:
  - Background color, contrast and response time would be different in temperatures other than 25°C.
  - Operating under high temperature will shorten LED lifetime.
- Note 3: Fig. 4.1 shows the maximum rating of LED forward current against temperature. The backlight unit in this display has been set to 80 mA per LED. This is within the range when operating the display between  $-20\sim70^{\circ}$ C.

For the dimming function, reducing the LED backlight voltage 12V to the expected brightness is recommended. Alternatively, using PWM signal with 10KHz and 3.3V amplitude to dim by adjusting the duty ratio.

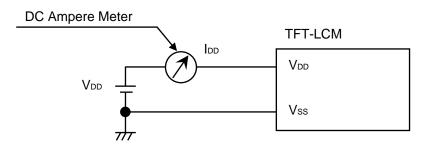


### 5. ELECTRICAL CHARACTERISTICS


#### 5.1 LCD CHARACTERISTICS

 $T_a = 25 \, ^{\circ}C, \, \text{VSS} = 0\text{V}$ 

| Item                                   | Symbol                     | Condition | Min.   | Тур. | Max.   | Unit | Remarks  |
|----------------------------------------|----------------------------|-----------|--------|------|--------|------|----------|
| Power Supply Voltage                   | VDD                        | -         | 3.0    | 3.3  | 3.6    | V    | -        |
| Differential Input                     |                            | "H" level | -      | -    | +100   |      |          |
| Voltage for LVDS<br>Receiver Threshold | VI                         | "L" level | -100   | -    | -      | mV   | Note 1   |
| DPS,FRC,AMODE                          | VI                         | "H" level | 0.7VDD | 1    | VDD    | V    | CMOS     |
| Signal Input Voltage                   | VI                         | "L" level | 0      | ı    | 0.3VDD | V    | LEVEL    |
| Power Supply Current                   | IDD                        | VDD-VSS   | -      | 270  | 550    | A    | Note 0.0 |
| Fower Supply Current                   | IDD                        | =3.3V     |        | 370  | 550    | mA   | Note 2,3 |
| Vsync Frequency                        | $f_{v}$                    | -         | -      | 60   | 75     | Hz   | Note 4,5 |
| Hsync Frequency                        | $f_{\scriptscriptstyle H}$ | -         | -      | 37.7 | 50.6   | KHz  | Note 4   |
| DCLK Frequency                         | $f_{\mathit{CLK}}$         | -         | -      | 40   | 43     | MHz  | Note 4   |

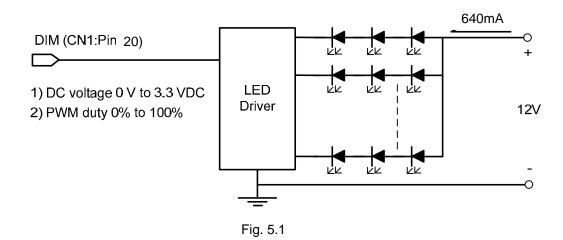

Notes 1: VCM=VDD / 2V

VCM is common mode voltage of LVDS transmitter / receiver. The input terminal of LVDS transmitter is terminated with  $100\Omega$ .



Notes 2: fV=60Hz,fCLK=40MHz,VDD=3.3V,DC Current.

Typical value is measured when displaying vertical 256 gray scale. Maximum is measured when displaying Vertical-stripe.




- Notes 3: As this module contains 0.8A fuse, prepare current source that is enough for cutting current fuse when a truble happens. (larger than 2.0A)
- Notes 4: For LVDS Transmitter Input
- Notes 5 : Vertical Frequency is encouraged to be used by 60Hz. The flicker level changes by the gap of the vertical frequency.

#### 5.2 BACKLIGHT CHARACTERISTICS

| Item                | Symbol | Condition         | Min. | Тур. | Max. | Unit | Remarks |
|---------------------|--------|-------------------|------|------|------|------|---------|
| LED Input Voltage   | VLED   | -                 | 11.7 | 12.0 | 12.3 | V    | Note1   |
| LED Forward Current | 11.50  | 0V; 0% duty       | -    | 670  | -    | Λ    | Note 0  |
| (Dim Control)       | ILED   | 3.3VDC; 100% duty | ı    | 30   | ı    | mA   | Note 2  |
| LED lifetime        | -      | 640 mA            | 1    | 70K  | -    | hrs  | Note 3  |

- Note 1: As Fig. 5.1 shown, LED current is constant, 640 mA, controlled by the LED driver when applying 12V VLED.
- Note 2: Dimming function can be obtained by applying DC voltage or PWM signal from the display interface CN1. The recommended PWM signal is 1K ~ 10K Hz with 3.3V amplitude.
- Note 3: The estimated lifetime is specified as the time to reduce 50% brightness by applying 640 mA at  $25^{\circ}$ C.

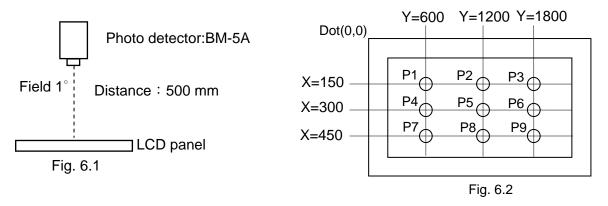


### 6. OPTICAL CHARACTERISTICS

The optical characteristics are measured based on the conditions as below:

- Supplying the signals and voltages defined in the section of electrical characteristics.
- The backlight unit needs to be turned on for 30 minutes.
- The ambient temperature is 25 °C.
- In the dark room around 500~1000 lx, the equipment has been set for the measurements as shown in

|                     |        |           |      | $T_a$ | = 25 ° $C, f_{v}$ | = 60 Hz, VDD      | = 3.3V |
|---------------------|--------|-----------|------|-------|-------------------|-------------------|--------|
| Item                | Symbol | Condition | Min. | Тур.  | Max.              | Unit              | Remark |
| Brightness of White | -      |           | 350  | 450   | -                 | cd/m <sup>2</sup> | Note 1 |

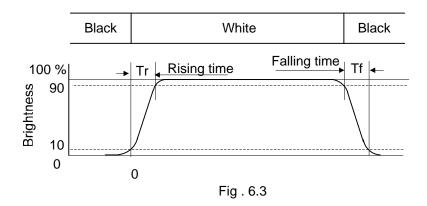

| Item          |               | Symbol      | Condition                                            | Min. | Тур. | Max. | Unit              | Remarks |
|---------------|---------------|-------------|------------------------------------------------------|------|------|------|-------------------|---------|
| Brightness o  | f White       | -           | 1 0° 0 0°                                            | 350  | 450  | -    | cd/m <sup>2</sup> | Note 1  |
| Brightness Ur | niformity     | -           | $\phi = 0^{\circ}, \theta = 0^{\circ},$ ILED= 640 mA | 75   | -    | -    | %                 | Note 2  |
| Contrast F    | Ratio         | CR          | ILED= 640 IIIA                                       | 500  | 800  | -    | -                 | Note 3  |
| Response      | Time          | Rise + Fall | $\phi = 0^{\circ}, \theta = 0^{\circ}$               | -    | 25   | 65   | ms                | Note 4  |
| NTSC R        | atio          | -           | $\phi = 0^{\circ}, \theta = 0^{\circ}$               | -    | 60   | -    | %                 | -       |
|               |               | $\theta$ x  | $\phi = 0^{\circ}, CR \ge 10$                        | -    | 85   | -    |                   |         |
| \/iavvina A   | n al a        | $\theta$ x' | $\phi = 180^{\circ}, CR \ge 10$                      | -    | 85   | -    | Dagwaa            | Note 5  |
| viewing A     | Viewing Angle |             | $\phi = 90^{\circ}, CR \ge 10$                       | -    | 85   | -    | Degree            | Note 5  |
|               |               | $\theta$ y' | $\phi = 270^{\circ}, CR \ge 10$                      | -    | 85   | -    |                   |         |
|               | Dod           | X           |                                                      | 0.56 | 0.61 | 0.66 |                   |         |
|               | Red           | Υ           |                                                      | 0.31 | 0.36 | 0.41 |                   |         |
|               | 0             | X           |                                                      | 0.32 | 0.37 | 0.42 |                   |         |
| Color         | Green         | Y           |                                                      | 0.54 | 0.59 | 0.64 |                   |         |
| Chromaticity  | Chromaticity  | Х           | $\phi = 0^{\circ}, \theta = 0^{\circ}$               | 0.10 | 0.15 | 0.20 | -                 | Note 6  |
|               | Blue          | Υ           |                                                      | 0.05 | 0.10 | 0.15 |                   |         |
|               | White         | Х           |                                                      | 0.30 | 0.35 | 0.40 |                   |         |
|               | vviiite       | Υ           |                                                      | 0.32 | 0.37 | 0.42 |                   |         |

Note 1: The brightness is measured from 9 point of the panel, P1~P9 in Fig. 6.2, for the average value.

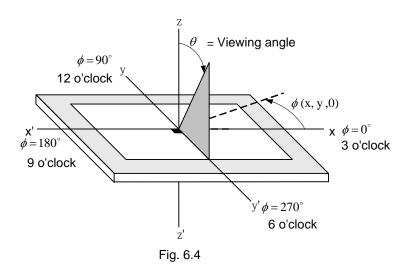
Note 2: The brightness uniformity is calculated by the equation as below:

Brightness uniformity = 
$$\frac{\text{Min. Brightness}}{\text{Max. Brightness}}$$
 X100%

, which is based on the brightness values of the 9 points measured by BM-5 as shown in Fig. 6.2.

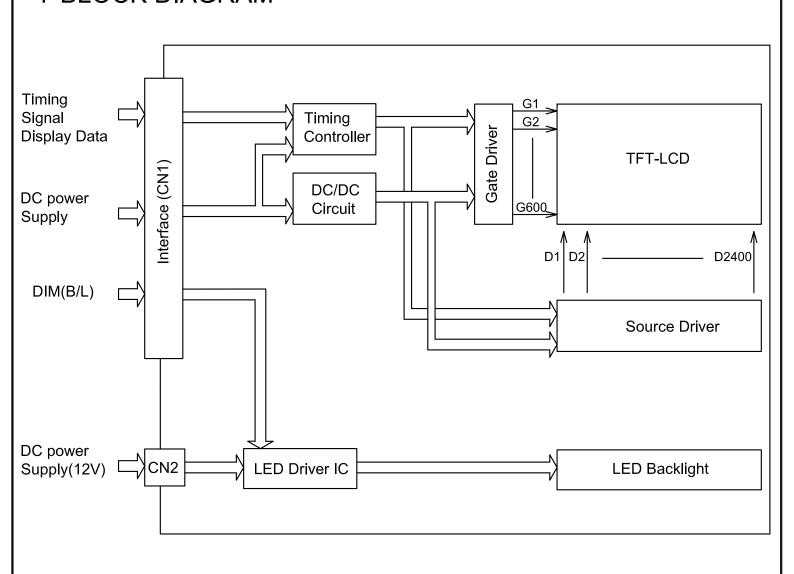



| KAOHSIUNG HITACHI<br>ELECTRONICS CO., LTD. | SHEET<br>NO. | 7B64PS 2706-TX26D12VM0AAA-2 | PAGE | 6-1/2 |  |
|--------------------------------------------|--------------|-----------------------------|------|-------|--|
|--------------------------------------------|--------------|-----------------------------|------|-------|--|


Note 3: The Contrast ratio is measured from the center point of the panel, P5, and defined as the following equation:

 $CR = \frac{Brightness of White}{Brightness of Black} X100\%$ 

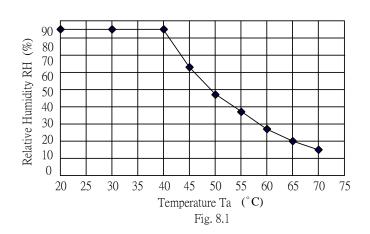
Note 4: The definition of response time is shown in Fig. 6.3. The rising time is the period from 10% brightness to 90% brightness when the data is from white to black. Oppositely, Falling time is the period from 90% brightness rising to 10% brightness.




Note 5: The definition of viewing angle is shown in Fig. 6.4. Angle  $\phi$  is used to represent viewing directions, for instance,  $\phi = 270^{\circ}$  means 6 o'clock, and  $\phi = 0^{\circ}$  means 3 o'clock. Moreover, angle  $\theta$  is used to represent viewing angles from axis Z toward plane XY.



Note 6: The color chromaticity is measured from the center point of the panel, P5, as shown in Fig. 6.2.


## 7 BLOCK DIAGRAM



## 8. RELIABILITY TESTS

| Test Item                   | Condition                                                                                                                                                                                                |                                                                    |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| High Temperature            | 1) Operating<br>2) 70 °C                                                                                                                                                                                 | 240 hrs                                                            |  |
| Low Temperature             | 1) Operating<br>2) -20 °C                                                                                                                                                                                | 240 hrs                                                            |  |
| High Temperature            | 1) Storage<br>2) 80 °C                                                                                                                                                                                   | 240 hrs                                                            |  |
| Low Temperature             | 1) Storage<br>2) -30 ° C                                                                                                                                                                                 | 240 hrs                                                            |  |
| Heat Cycle                  | 1) Operating 2) -20 °C ~70 °C 3) 3hrs~1hr~3hrs                                                                                                                                                           | 240 hrs                                                            |  |
| Thermal Shock               | <ol> <li>Non-Operating</li> <li>-35 ° C ↔ 85 ° C</li> <li>0.5 hr ↔ 0.5 hr</li> </ol>                                                                                                                     | 240 hrs                                                            |  |
| High Temperature & Humidity | 1) Operating 2) 40°C & 85%RH 3) Without condensation 4) Note 3                                                                                                                                           | 240 hrs                                                            |  |
| Vibration                   | 1) Non-Operating 2) 20~200 Hz 3) 2G 4) X, Y, and Z directions                                                                                                                                            | 1 hr for each direction                                            |  |
| Mechanical Shock            | 1) Non-Operating                                                                                                                                                                                         |                                                                    |  |
| ESD                         | <ol> <li>Operating</li> <li>Tip: 200 pF, 250 Ω</li> <li>Air discharge for glass: ± 8KV</li> <li>Contact discharge for metal frame: ± 8KV</li> <li>Contact discharge for LCD interface: ± 100V</li> </ol> | 1) Glass: 9 points 2) Metal frame: 8 points 3) Connector: all pins |  |

- Note 1: Display functionalities are inspected under the conditions defined in the specification after the reliability tests.
- Note 2: The display is not guaranteed for use in corrosive gas environments.
- Note 3: Under the condition of high temperature & humidity, if the temperature is higher than  $40^{\circ}$ C, the humidity needs to be reduced as Fig. 8.1 shown.



| KAOHSIUNG HITACHI<br>ELECTRONICS CO., LTD. | SHEET<br>NO. | 7B64PS 2708-TX26D12VM0AAA-2 | PAGE | 8-1/1 |  |
|--------------------------------------------|--------------|-----------------------------|------|-------|--|
|--------------------------------------------|--------------|-----------------------------|------|-------|--|

## 9. LCD INTERFACE

#### 9.1 INTERFACE PIN CONNECTIONS

The display interface connector is FI-SEB20P-HF13E made by JAE and more details of the connector are shown in the section of outline dimension.

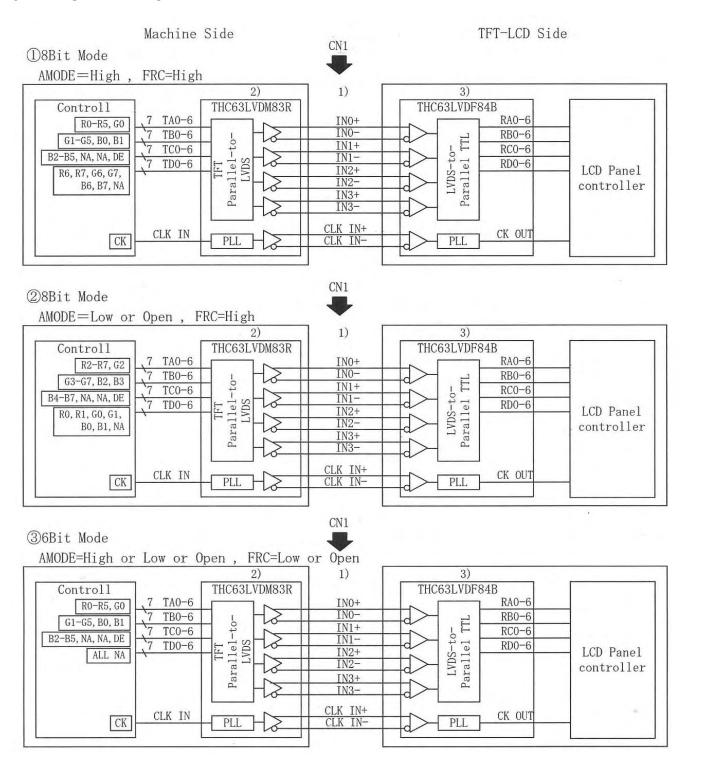
Pin assignment of LCD interface is as below:

| Pin No. | Symbol  | Description                                                                                 | Note |
|---------|---------|---------------------------------------------------------------------------------------------|------|
| 1       | VDD     | Power Supply for Logic                                                                      | 1)   |
| 2       | VDD     | Power Supply for Logic                                                                      | 1)   |
| 3       | DPS     | Scan Direction Control (High: Reverse, Low: STD)                                            | 3)   |
| 4       | VSS     | Ground (0V)                                                                                 | 2)   |
| 5       | INO-    | Pixel Data                                                                                  |      |
| 6       | IN0+    | r ixei Data                                                                                 |      |
| 7       | VSS     | Ground (0V)                                                                                 | 2)   |
| 8       | IN1-    | Pixel Data                                                                                  |      |
| 9       | IN1+    | Fixel Data                                                                                  |      |
| 10      | VSS     | Ground (0V)                                                                                 | 2)   |
| 11      | IN2-    | Divel Date                                                                                  |      |
| 12      | IN2+    | Pixel Data                                                                                  |      |
| 13      | VSS     | Ground (0V)                                                                                 | 2)   |
| 14      | CLK IN- | Clask                                                                                       |      |
| 15      | CLK IN+ | Clock                                                                                       |      |
| 16      | FRC     | High: 8bit, Low: 6bit                                                                       |      |
| 17      | IN3-    | Divel Date                                                                                  |      |
| 18      | IN3+    | Pixel Data                                                                                  |      |
| 19      | AMODE   | LVDS Format Setting (Refer to P9-2/11)                                                      |      |
| 20      | DIM     | Normal Brightness:0V or 0% PWM Duty Brightness Control:0V to 3.3VDC or 0% to 100% PWM Duty. |      |

Note 1) All VDD pins should be connected to +3.3V.

Note 2) All VSS pins should be connected to GND(0V), Metal bezel is connected internally to VSS.

Note3) Vertical Display Inode and Horizontal Display mode control


DPS : Low DPS : High

The backlight interface connector is SM08B-SRSS-TB made by JST, and pin assignment of backlight is as below:

| Pin No. | Signal             | Level | Function                  |
|---------|--------------------|-------|---------------------------|
| 1~3     | $V_{LED}$ +        | -     | Power Supply for LED(12V) |
| 4~5     | NC                 | -     | No Connection             |
| 6~8     | V <sub>LED</sub> - | -     | GND                       |

| KAOHSIUNG HITACHI<br>ELECTRONICS CO., LTD. | SHEET<br>NO. | 7B64PS 2709-TX26D12VM0AAA-2 | PAGE | 9-1/11 |
|--------------------------------------------|--------------|-----------------------------|------|--------|
|--------------------------------------------|--------------|-----------------------------|------|--------|

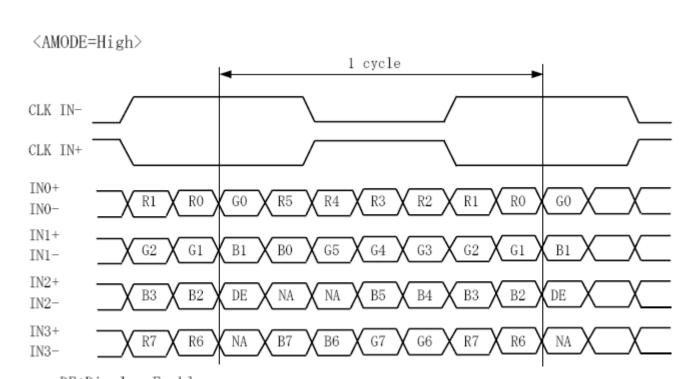
#### 9.2 LVDS INTERFACE



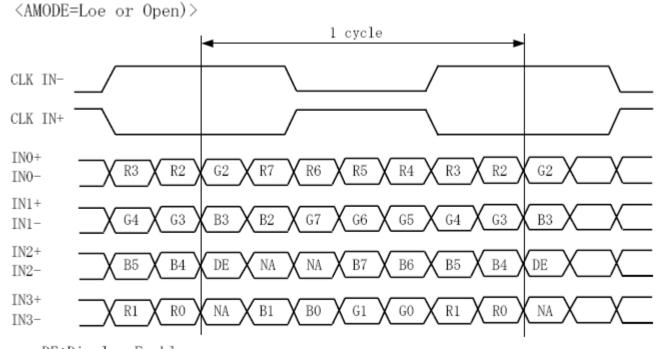
Note 1) LVDS cable impedance should be 100 ohms per signal line when each 2-lines(+,-) is used in differential mode.

Note 2) Transmitter Made by Thine: THC63LVDM83R equivalent.

Transmitter is not contained in Module.


Note 3) Receiver: with built-in TCON IC.

#### 9.3 DATA MAPPING

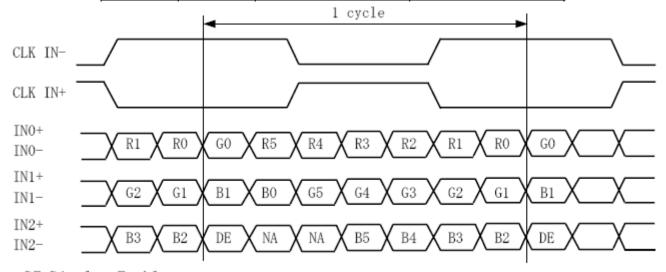

## 1) 8 Bit Mode

Note: Assignment in the Mode A(THC63LVDM83R)

| Transm  | nitter | AM       | ODE      |
|---------|--------|----------|----------|
| Pin No. | Data   | =High    | =Low     |
| 51      | TAO    | R0 (LSB) | R2       |
| 52      | TA1    | R1       | R3       |
| 54      | TA2    | R2       | R4       |
| 55      | TA3    | R3       | R5       |
| 56      | TA4    | R4       | R6       |
| 3       | TA5    | R5       | R7 (MSB) |
| 4       | TA6    | G0 (LSB) | G2       |
| 6       | TB0    | G1       | G3       |
| 7       | TB1    | G2       | G4       |
| 11      | TB2    | G3       | G5       |
| 12      | TB3    | G4       | G6       |
| 14      | TB4    | G5       | G7 (MSB) |
| 15      | TB5    | B0 (LSB) | B2       |
| 19      | TB6    | B1       | В3       |
| 20      | TC0    | B2       | B4       |
| 22      | TC1    | В3       | B5       |
| 23      | TC2    | B4       | В6       |
| 24      | TC3    | В5       | B7 (MSB) |
| 27      | TC4    | (NA)     | (NA)     |
| 28      | TC5    | (NA)     | (NA)     |
| 30      | TC6    | DE       | DE       |
| 50      | TD0    | R6       | R0 (LSB) |
| 2       | TD1    | R7 (MSB) | R1       |
| 8       | TD2    | G6       | GO (LSB) |
| 10      | TD3    | G7 (MSB) | G1       |
| 16      | TD4    | В6       | B0 (LSB) |
| 18      | TD5    | B7 (MSB) | B1       |
| 25      | TD6    | (NA)     | (NA)     |



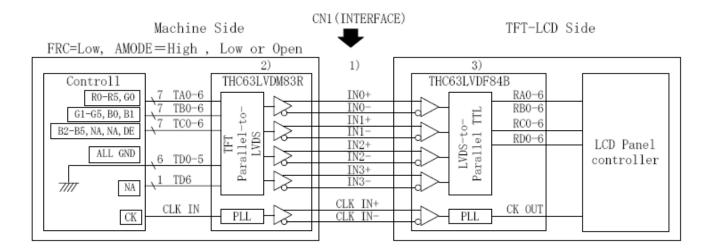
DE:Display Enable NA:Not Available



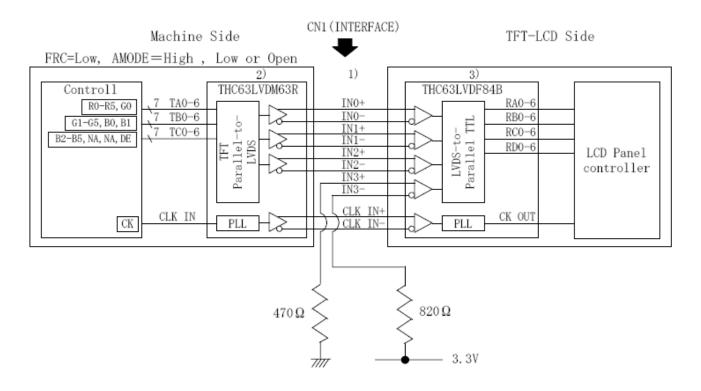

DE:Display Enable NA:Not Available

### 2) 6 Bit Mode

Note: Assignment in the Mode A(THC63LVDM83R)


| Transm  | itter | A        | MODE         |
|---------|-------|----------|--------------|
| Pin No. | Data  | =High    | =Low or Open |
| 51      | TAO   | R0 (LSB) | R0 (LSB)     |
| 52      | TA1   | R1       | R1           |
| 54      | TA2   | R2       | R2           |
| 55      | TA3   | R3       | R3           |
| 56      | TA4   | R4       | R4           |
| 3       | TA5   | R5 (MSB) | R5 (MSB)     |
| 4       | TA6   | G0 (LSB) | GO (LSB)     |
| 6       | TB0   | G1       | G1           |
| 7       | TB1   | G2       | G2           |
| 11      | TB2   | G3       | G3           |
| 12      | TB3   | G4       | G4           |
| 14      | TB4   | G5 (MSB) | G5 (MSB)     |
| 15      | TB5   | B0 (LSB) | B0 (LSB)     |
| 19      | TB6   | B1       | B1           |
| 20      | TC0   | B2       | B2           |
| 22      | TC1   | В3       | В3           |
| 23      | TC2   | B4       | B4           |
| 24      | TC3   | B5 (MSB) | B5 (MSB)     |
| 27      | TC4   | (NA)     | (NA)         |
| 28      | TC5   | (NA)     | (NA)         |
| 30      | TC6   | DE       | DE           |
| 50      | TD0   | GND      | GND          |
| 2       | TD1   | GND      | GND          |
| 8       | TD2   | GND      | GND          |
| 10      | TD3   | GND      | GND          |
| 16      | TD4   | GND      | GND          |
| 18      | TD5   | GND      | GND          |
| 25      | TD6   | (NA)     | (NA)         |
|         |       |          |              |




DE:Display Enable NA:Not Available

| KAOHSIUNG HITACHI<br>ELECTRONICS CO., LTD. | SHEET<br>NO. | 7B64PS 2709-TX26D12VM0AAA-2 | PAGE | 9-5/11 |  |
|--------------------------------------------|--------------|-----------------------------|------|--------|--|
|--------------------------------------------|--------------|-----------------------------|------|--------|--|

- \* Connection circuit of IN3-, IN3+ for 6 bit mode
- ① Connect TD0~TD5 to GND



② Connect IN3+ by 3.3V resistor 820  $\Omega$  and connect IN3- to GND by resistor 470  $\Omega$  as below circuit. Never turn on LCD when IN3+ and IN3- are Open.



Note 1: The impedance between differential signal pair showld be 100 ohws.

Note 2: Transmitter is not contained in module.

The recommended transmitter is Thine THC63LVDM83R or eqwivalant.

Note 3: The built in receiver is Thine THC63LVDF84B.

| KAOHSIUNG HITACHI<br>ELECTRONICS CO., LTD. | SHEET<br>NO. | 7B64PS 2709-TX26D12VM0AAA-2 | PAGE | 9-6/11 |  |
|--------------------------------------------|--------------|-----------------------------|------|--------|--|
|--------------------------------------------|--------------|-----------------------------|------|--------|--|

## 9.4 DATA INPUT for DISPLAY COLOR(8BIT MODE)

|       |            |     |    |    | Red | Data | ı  |    |     |     |    | G  | reen | Dat | а  |    |     |     |    | I  | Blue | Data | ì  |    |     |
|-------|------------|-----|----|----|-----|------|----|----|-----|-----|----|----|------|-----|----|----|-----|-----|----|----|------|------|----|----|-----|
| Input |            | R7  | R6 | R5 | R4  | R3   | R2 | R1 | R0  | G7  | G6 | G5 | G4   | G3  | G2 | G1 | G0  | В7  | B6 | B5 | B4   | В3   | B2 | B1 | В0  |
| color |            | MSB |    |    |     |      |    |    | LSB | MSB |    |    |      |     |    |    | LSB | MSB |    |    |      |      |    |    | LSB |
|       | Black      | 0   | 0  | 0  | 0   | 0    | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0    | 0  | 0  | 0   |
|       | Red(255)   | 1   | 1  | 1  | 1   | 1    | 1  | 1  | 1   | 0   | 0  | 0  | 0    | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0    | 0  | 0  | 0   |
|       | Green(255) | 0   | 0  | 0  | 0   | 0    | 0  | 0  | 0   | 1   | 1  | 1  | 1    | 1   | 1  | 1  | 1   | 0   | 0  | 0  | 0    | 0    | 0  | 0  | 0   |
| Basic | Blue(255)  | 0   | 0  | 0  | 0   | 0    | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0   | 0  | 0  | 0   | 1   | 1  | 1  | 1    | 1    | 1  | 1  | 1   |
| Color | Cyan       | 0   | 0  | 0  | 0   | 0    | 0  | 0  | 0   | 1   | 1  | 1  | 1    | 1   | 1  | 1  | 1   | 1   | 1  | 1  | 1    | 1    | 1  | 1  | 1   |
|       | Magenta    | 1   | 1  | 1  | 1   | 1    | 1  | 1  | 1   | 0   | 0  | 0  | 0    | 0   | 0  | 0  | 0   | 1   | 1  | 1  | 1    | 1    | 1  | 1  | 1   |
|       | Yellow     | 1   | 1  | 1  | 1   | 1    | 1  | 1  | 1   | 1   | 1  | 1  | 1    | 1   | 1  | 1  | 1   | 0   | 0  | 0  | 0    | 0    | 0  | 0  | 0   |
|       | White      | 1   | 1  | 1  | 1   | 1    | 1  | 1  | 1   | 1   | 1  | 1  | 1    | 1   | 1  | 1  | 1   | 1   | 1  | 1  | 1    | 1    | 1  | 1  | 1   |
|       | Black      | 0   | 0  | 0  | 0   | 0    | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0    | 0  | 0  | 0   |
|       | Red(1)     | 0   | 0  | 0  | 0   | 0    | 0  | 0  | 1   | 0   | 0  | 0  | 0    | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0    | 0  | 0  | 0   |
|       | Red(2)     | 0   | 0  | 0  | 0   | 0    | 0  | 1  | 0   | 0   | 0  | 0  | 0    | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0    | 0  | 0  | 0   |
| Red   | :          | :   | :  | :  | :   | :    | :  | :  | :   | :   | :  | :  | :    | :   | :  | :  | :   | :   | :  | :  | :    | :    | :  | :  | :   |
|       | :          | :   | :  | -  | :   | :    | :  | :  | :   | :   | :  | :  | :    | :   | :  | :  | :   | :   | :  | :  | :    | :    | :  | :  | :   |
|       | Red(253)   | 1   | 1  | 1  | 1   | 1    | 1  | 0  | 1   | 0   | 0  | 0  | 0    | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0    | 0  | 0  | 0   |
|       | Red(254)   | 1   | 1  | 1  | 1   | 1    | 1  | 1  | 0   | 0   | 0  | 0  | 0    | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0    | 0  | 0  | 0   |
|       | Red(255)   | 1   | 1  | 1  | 1   | 1    | 1  | 1  | 1   | 0   | 0  | 0  | 0    | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0    | 0  | 0  | 0   |
|       | Black      | 0   | 0  | 0  | 0   | 0    | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0    | 0  | 0  | 0   |
|       | Green(1)   | 0   | 0  | 0  | 0   | 0    | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0   | 0  | 0  | 1   | 0   | 0  | 0  | 0    | 0    | 0  | 0  | 0   |
|       | Green(2)   | 0   | 0  | 0  | 0   | 0    | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0   | 0  | 1  | 0   | 0   | 0  | 0  | 0    | 0    | 0  | 0  | 0   |
| Green | :          | :   | :  | :  | :   | :    | :  | :  | :   | :   | :  | :  | :    | :   | :  | :  | :   | :   | :  | :  | :    | :    | :  | :  | :   |
|       | :          | :   | :  | :  | :   | :    | :  | :  | :   | :   | :  | :  | :    | :   | :  | :  | :   | :   | :  | :  | :    | :    | :  | :  | :   |
|       | Green(253) | 0   | 0  | 0  | 0   | 0    | 0  | 0  | 0   | 1   | 1  | 1  | 1    | 1   | 1  | 0  | 1   | 0   | 0  | 0  | 0    | 0    | 0  | 0  | 0   |
|       | Green(254) | 0   | 0  | 0  | 0   | 0    | 0  | 0  | 0   | 1   | 1  | 1  | 1    | 1   | 1  | 1  | 0   | 0   | 0  | 0  | 0    | 0    | 0  | 0  | 0   |
|       | Green(255) | 0   | 0  | 0  | 0   | 0    | 0  | 0  | 0   | 1   | 1  | 1  | 1    | 1   | 1  | 1  | 1   | 0   | 0  | 0  | 0    | 0    | 0  | 0  | 0   |
|       | Black      | 0   | 0  | 0  | 0   | 0    | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0    | 0  | 0  | 0   |
|       | Blue(1)    | 0   | 0  | 0  | 0   | 0    | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0    | 0  | 0  | 1   |
|       | Blue(2)    | 0   | 0  | 0  | 0   | 0    | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0    | 0  | 1  | 0   |
| Blue  | :          | :   | :  | :  | :   | :    | :  | :  | :   | :   | :  |    | :    | :   | :  | :  | :   | :   | :  | :  | :    | :    | :  | :  | :   |
|       | :          | :   | :  | :  | :   | :    | :  | :  | :   | :   | :  | :  | :    | :   | :  | :  | :   | :   | :  | :  | :    | :    | :  | :  | :   |
|       | Blue(253)  | 0   | 0  | 0  | 0   | 0    | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0   | 0  | 0  | 0   | 1   | 1  | 1  | 1    | 1    | 1  | 0  | 1   |
|       | Blue(254)  | 0   | 0  | 0  | 0   | 0    | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0   | 0  | 0  | 0   | 1   | 1  | 1  | 1    | 1    | 1  | 1  | 0   |
|       | Blue(255)  | 0   | 0  | 0  | 0   | 0    | 0  | 0  | 0   | 0   | 0  | 0  | 0    | 0   | 0  | 0  | 0   | 1   | 1  | 1  | 1    | 1    | 1  | 1  | 1   |

Note 1) Definition of gray scale : Color(n) Number in parenthesis indicates gray scale level. Larger number corresponds to brighter level.

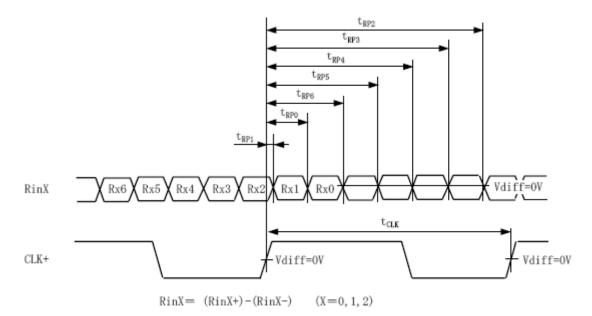
Note 2) Data Signal : 1 : High, 0 : Low

| KAOHSIUNG HITACHI<br>ELECTRONICS CO., LTD. | SHEET<br>NO. | 7B64PS 2709-TX26D12VM0AAA-2 | PAGE | 9-7/11 |  |
|--------------------------------------------|--------------|-----------------------------|------|--------|--|
|--------------------------------------------|--------------|-----------------------------|------|--------|--|

## (6BIT MODE)

| Input  |           |     | R  | ed | Dat | ta |     |     | Gr | een | Da | ata |     |     | В  | lue | Da | ta |     |
|--------|-----------|-----|----|----|-----|----|-----|-----|----|-----|----|-----|-----|-----|----|-----|----|----|-----|
|        |           | R5  | R4 | R3 | R2  | R1 | R0  | G5  | G4 | G3  | G2 | G1  | G0  | B5  | B4 | В3  | B2 | В1 | В0  |
| color  |           | MSB |    |    |     |    | LSB | MSB |    |     |    |     | LSB | MSB |    |     |    |    | LSB |
| Red(6  | Black     | 0   | 0  | 0  | 0   | 0  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0   | 0  | 0  | 0   |
|        | Red(63)   | 1   | 1  | 1  | 1   | 1  | 1   | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0   | 0  | 0  | 0   |
|        | Green(63) | 0   | 0  | 0  | 0   | 0  | 0   | 1   | 1  | 1   | 1  | 1   | 1   | 0   | 0  | 0   | 0  | 0  | 0   |
| Basic  | Blue(63)  | 0   | 0  | 0  | 0   | 0  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 1   | 1  | 1   | 1  | 1  | 1   |
| Color  | Cyan      | 0   | 0  | 0  | 0   | 0  | 0   | 1   | 1  | 1   | 1  | 1   | 1   | 1   | 1  | 1   | 1  | 1  | 1   |
|        | Magenta   | 1   | 1  | 1  | 1   | 1  | 1   | 0   | 0  | 0   | 0  | 0   | 0   | 1   | 1  | 1   | 1  | 1  | 1   |
|        | Yellow    | 1   | 1  | 1  | 1   | 1  | 1   | 1   | 1  | 1   | 1  | 1   | 1   | 0   | 0  | 0   | 0  | 0  | 0   |
|        | White     | 1   | 1  | 1  | 1   | 1  | 1   | 1   | 1  | 1   | 1  | 1   | 1   | 1   | 1  | 1   | 1  | 1  | 1   |
|        | Black     | 0   | 0  | 0  | 0   | 0  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0   | 0  | 0  | 0   |
|        | Red(1)    | 0   | 0  | 0  | 0   | 0  | 1   | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0   | 0  | 0  | 0   |
|        | Red(2)    | 0   | 0  | 0  | 0   | 1  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0   | 0  | 0  | 0   |
| Red    | :         | :   |    | :  | :   | :  | ••  | :   |    | :   | :  | :   | :   | :   | :  | :   | :  | :  | :   |
| Neu    |           | :   |    |    | :   | :  | :   | :   | :  |     |    | • • | :   |     | •• | ••  | :  | :  | :   |
|        | Red(61)   | 1   | 1  | 1  | 1   | 0  | 1   | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0   | 0  | 0  | 0   |
|        | Red(62)   | 1   | 1  | 1  | 1   | 1  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0   | 0  | 0  | 0   |
|        | Red(63)   | 1   | 1  | 1  | 1   | 1  | 1   | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0   | 0  | 0  | 0   |
|        | Black     | 0   | 0  | 0  | 0   | 0  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0   | 0  | 0  | 0   |
|        | Green(1)  | 0   | 0  | 0  | 0   | 0  | 0   | 0   | 0  | 0   | 0  | 0   | 1   | 0   | 0  | 0   | 0  | 0  | 0   |
|        | Green(2)  | 0   | 0  | 0  | 0   | 0  | 0   | 0   | 0  | 0   | 0  | 1   | 0   | 0   | 0  | 0   | 0  | 0  | 0   |
| Green  |           | :   |    |    | :   | :  | :   | :   | :  |     |    | • • | :   |     | •• | ••  | :  | :  | :   |
| Gleen  |           | :   |    |    | :   | :  | :   | :   | :  |     |    | • • | :   |     | •• | ••  | :  | :  | :   |
|        | Green(61) | 0   | 0  | 0  | 0   | 0  | 0   | 1   | 1  | 1   | 1  | 0   | 1   | 0   | 0  | 0   | 0  | 0  | 0   |
|        | Green(62) | 0   | 0  | 0  | 0   | 0  | 0   | 1   | 1  | 1   | 1  | 1   | 0   | 0   | 0  | 0   | 0  | 0  | 0   |
|        | Green(63) | 0   | 0  | 0  | 0   | 0  | 0   | 1   | 1  | 1   | 1  | 1   | 1   | 0   | 0  | 0   | 0  | 0  | 0   |
|        | Black     | 0   | 0  | 0  | 0   | 0  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0   | 0  | 0  | 0   |
|        | Blue(1)   | 0   | 0  | 0  | 0   | 0  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0   | 0  | 0  | 1   |
|        | Blue(2)   | 0   | 0  | 0  | 0   | 0  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0   | 0  | 1  | 0   |
| Blue - | :         | :   | :  | :  | :   | :  | :   | :   | :  | :   | :  | :   | :   | :   | :  | :   | :  | :  | :   |
| שועכ   | :         | :   | :  | :  | :   | :  | :   | :   | :  | :   | :  | :   | :   | :   | :  | :   | :  | :  | :   |
|        | Blue(61)  | 0   | 0  | 0  | 0   | 0  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 1   | 1  | 1   | 1  | 0  | 1   |
|        | Blue(62)  | 0   | 0  | 0  | 0   | 0  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 1   | 1  | 1   | 1  | 1  | 0   |
|        | Blue(63)  | 0   | 0  | 0  | 0   | 0  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 1   | 1  | 1   | 1  | 1  | 1   |

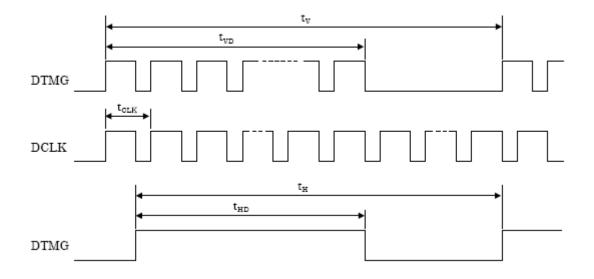
Note 1) Definition of gray scale : Color(n) Number in parenthesis indicates gray scale level. Larger number corresponds to brighter level.


Note 2) Data Signal : 1 : High, 0 : Low

| KAOHSIUNG HITACHI<br>ELECTRONICS CO., LTD. | SHEET<br>NO. | 7B64PS 2709-TX26D12VM0AAA-2 | PAGE | 9-8/11 |  |
|--------------------------------------------|--------------|-----------------------------|------|--------|--|
|--------------------------------------------|--------------|-----------------------------|------|--------|--|

#### 9.5 INTERFACE TIMING

## (1) LVDS Receiver Timing


(Interface of TFT module)

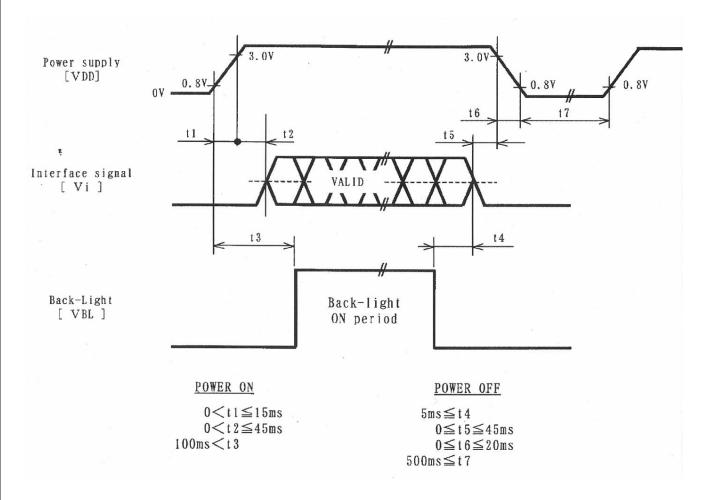


| Item                                |                   | Symbol | Min.           | Тур.     | Max.           | Unit | Note |
|-------------------------------------|-------------------|--------|----------------|----------|----------------|------|------|
| DCLK                                | FREQUENCY         | 1/tcLK | 35             | 40       | 45             | MHz  |      |
| RinX                                | 0 data position   | tRP0   | 1/7*tCLK -0.49 | 1/7*tCLK | 1/7*tCLK +0.49 |      |      |
| (X=0,1,2)                           | 1st data position | tRP1   | -0.49          | 0        | +0.49          |      |      |
|                                     | 2nd data position | tRP2   | 6/7*tCLK -0.49 | 6/7*tCLK | 6/7*tCLK +0.49 |      |      |
|                                     | 3rd data position | tRP3   | 5/7*tCLK -0.49 | 5/7*tCLK | 5/7*tCLK +0.49 | ns   |      |
| 4th data position 5th data position |                   | tRP4   | 4/7*tCLK -0.49 | 4/7*tCLK | 4/7*tCLK +0.49 |      |      |
|                                     |                   | tRP5   | 3/7*tCLK -0.49 | 3/7*tCLK | 3/7*tCLK +0.49 |      |      |
|                                     | 6th data position | tRP6   | 2/7*tCLK -0.49 | 2/7*tCLK | 2/7*tCLK +0.49 |      |      |

#### (2) Timing converter timing

(Input timing for transmitter)

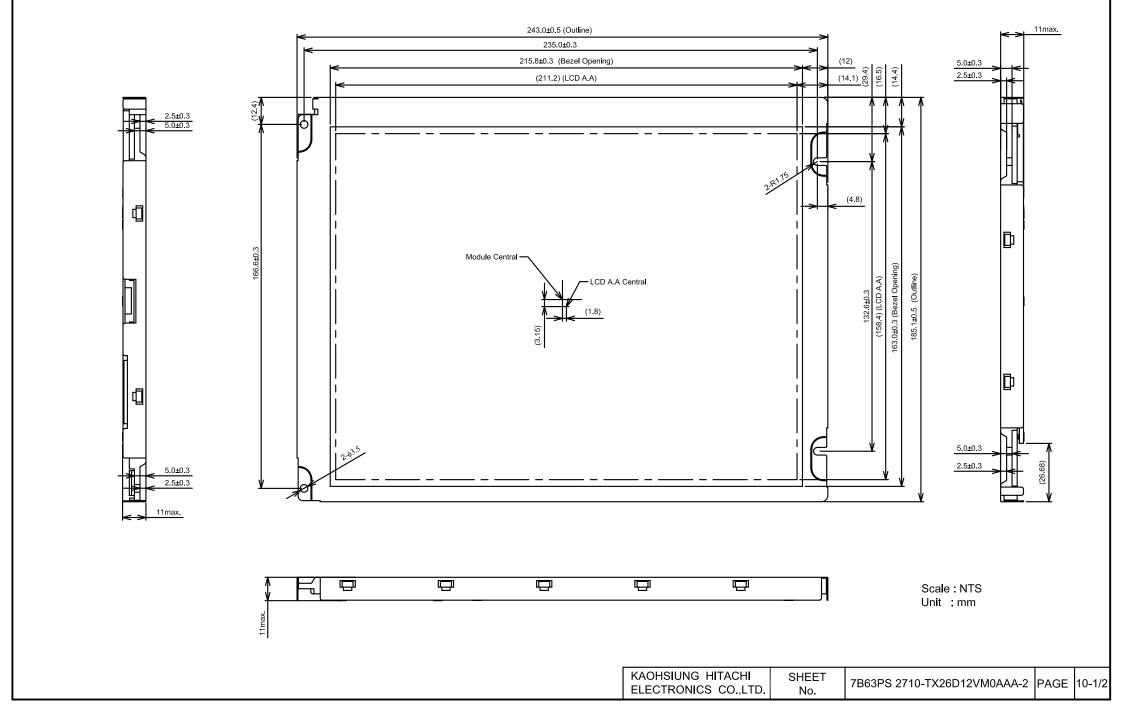


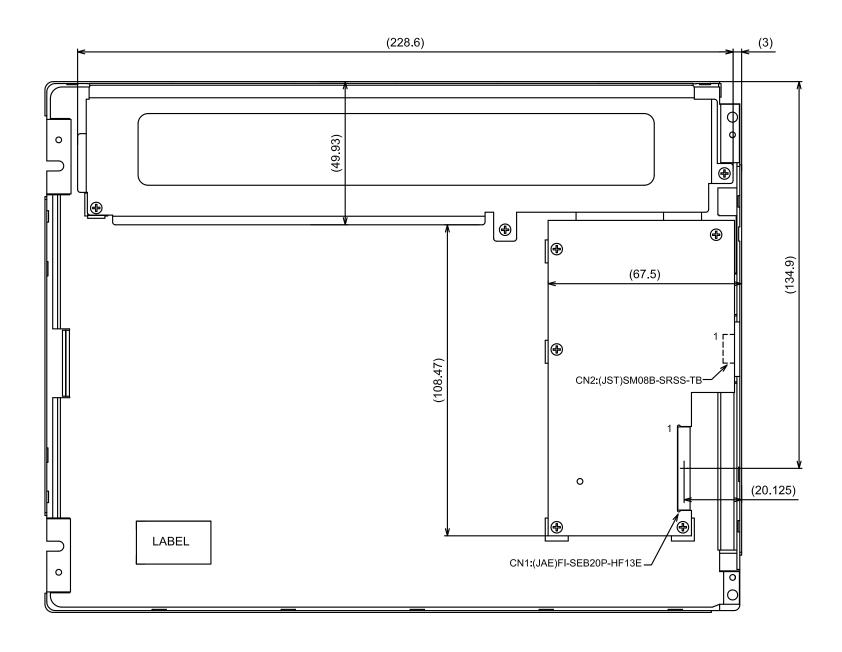

The timings except mentiond above are referd to the specifications of your transmitter.

| Item             |                             | Symbol          | Min. | Тур. | Max. | Unit             |
|------------------|-----------------------------|-----------------|------|------|------|------------------|
| DCLK             | DCLK Cycle time             |                 | 22.2 | 25.0 | 28.5 | ns               |
| Horizontal Cycle |                             | t <sub>H</sub>  | 850  | 1060 | 1600 |                  |
| DTMO             | Horizontal Valid Data width | t <sub>HD</sub> | 800  | 800  | 800  | t <sub>CLK</sub> |
| DTMG             | Vertical Cycle              | tv              | 603  | 628  | 1000 |                  |
|                  | Vertical Valid Data width   | t <sub>VD</sub> | 600  | 600  | 600  | t <sub>H</sub>   |

Note 1: It counts by a typical value of line cycle time.

#### (3) TIMING BETWEEN INTERFACE SIGNAL AND POWER SUPPLY


Power Supply, Input Signal and Backlight Voltage ON/OFF/REENTRY should comply with the following sequence.




- Note 1: In order to prevent electronic parts from destruction caused by latch-up, please input signal after Power Supply Voltage ON. In addition, please turn off signals before power supply voltage OFF.
- Note 2: In order to prevent from function error due to residual charge, please reenter power supply voltage after time stipulated with t7.
- Note 3: Please turn on Backlight after signals fix and turn off before signals down, otherwise noise appears in the display. The noise cause no problem with display performance in case of timing sequence comply with the spec.

#### 10. OUTLINE DIMENSIONS

10.1 SURFACE SIDE





Scale : NTS Unit : mm

| KAOHSIUNG HITACHI    | SHEET | 7B63PS 2710-TX26D12VM0APA-2          | DACE | 10 2/2 |  |
|----------------------|-------|--------------------------------------|------|--------|--|
| ELECTRONICS CO.,LTD. | No.   | 7 BOSF 3 27 TO-T X 20D T2 VINOAF A-2 | PAGE | 10-2/2 |  |

### 11. APPEARANCE STANDARD

The appearance inspection is performed in a dark room around 1200 lx based on the conditions as below:

- The distance between inspector's eyes and display is 30 cm.
- The viewing zone is defined with angle  $\theta$  shown in Fig. 11.1 The inspection should be performed within 45° when display is shut down. The inspection should be performed within 5° when display is power on.

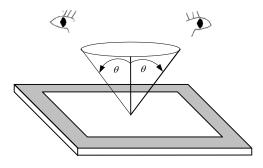
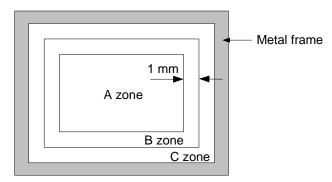


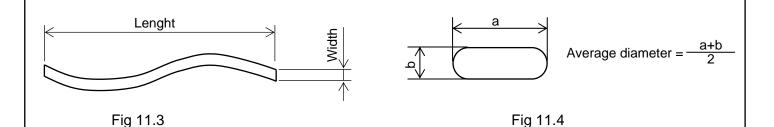

Fig. 11.1

#### 11.1 THE DEFINITION OF LCD ZONE

LCD panel is divided into 3 areas as shown in Fig.11.2 for appearance specification in next section. A zone is the LCD active area (dot area); B zone is the area, which extended 1 mm out from LCD active area; C zone is the area between B zone and metal frame.

In terms of housing design, B zone is the recommended window area customers' housing should be located in.





Fig. 11.2

#### 11.2 LCD APPEARANCE SPECIFICATION

The specification as below is defined as the amount of unexpected phenomenon or material in different zones of LCD panel. The definitions of length, width and average diameter using in the table are shown in Fig. 11.3 and Fig. 11.4.


| Item                  | Criteria                                                                                                         |                                                                               |                                                           |                   | Applied zone |               |     |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------|--------------|---------------|-----|--|
|                       | Length (mm)                                                                                                      | Width (m                                                                      | nm)                                                       | Maximum nu        | mber         | Minimum space |     |  |
| Scratches             | Ignored                                                                                                          | W≦0.0                                                                         | )2                                                        | Ignored           |              | -             | A D |  |
| Scratches             | L≦40                                                                                                             | 0.02 <w≦< td=""><td>0.04</td><td>10</td><td></td><td>-</td><td>A,B</td></w≦<> | 0.04                                                      | 10                |              | -             | A,B |  |
|                       | L≦20                                                                                                             | W≦0.0                                                                         | )4                                                        | 10                |              | -             |     |  |
| Dent                  | Distinguished one is                                                                                             | acceptable                                                                    | е                                                         |                   |              |               | Α   |  |
| Dent                  | (To be judged by HI                                                                                              | TACHI star                                                                    | ndard)                                                    |                   |              |               | A   |  |
| Wrinkles in polarizer |                                                                                                                  | (                                                                             | Same a                                                    | as above          |              |               | Α   |  |
|                       | Average diam                                                                                                     | neter (mm)                                                                    |                                                           | Maxi              | mum n        | umber         |     |  |
|                       | D≦0                                                                                                              | .3                                                                            |                                                           |                   | Ignore       | d             |     |  |
| Bubbles on polarizer  | 0.3 <d< td=""><td>≦0.5</td><td></td><td></td><td>10</td><td></td><td>Α</td></d<>                                 | ≦0.5                                                                          |                                                           |                   | 10           |               | Α   |  |
|                       | 0.5 < D                                                                                                          | ≦1.0                                                                          |                                                           |                   | 5            |               |     |  |
|                       | 1.0<                                                                                                             | D                                                                             |                                                           |                   | none         |               |     |  |
|                       |                                                                                                                  | Filame                                                                        | entous                                                    | (Line shape)      |              |               |     |  |
|                       | Length (mm)                                                                                                      |                                                                               | Widtl                                                     | h (mm) Maximum nu |              | imum number   |     |  |
|                       | L : Ignored                                                                                                      |                                                                               | W≦0.06                                                    |                   | Ignored      | A,B           |     |  |
|                       | L≦1.0                                                                                                            |                                                                               | 0.06 <w< td=""><td colspan="2">Ignored</td><td></td></w<> |                   | Ignored      |               |     |  |
| 1) Stains             | 1.0 <l< td=""><td></td><td>0.0</td><td>0 &lt; **</td><td>(Se</td><td>e Dot shape)</td><td colspan="2"></td></l<> |                                                                               | 0.0                                                       | 0 < **            | (Se          | e Dot shape)  |     |  |
| 2) Foreign Materials  | Round (Dot shape)                                                                                                |                                                                               |                                                           |                   |              |               |     |  |
| 3) Dark Spot          | Average diameter (r                                                                                              | mm) M                                                                         | laximu                                                    | m number          | Min          | imum Space    |     |  |
|                       | D≦0.45                                                                                                           |                                                                               | lgn                                                       | gnored -          |              | -             | A,B |  |
|                       | 0.45 <d≦0.7< td=""><td></td><td></td><td colspan="2">5 -</td><td>-</td><td>А,Б</td></d≦0.7<>                     |                                                                               |                                                           | 5 -               |              | -             | А,Б |  |
|                       | 0.7 <d< td=""><td></td><td>n</td><td colspan="2">one -</td><td></td></d<>                                        |                                                                               | n                                                         | one -             |              |               |     |  |
|                       | Those wiped out easily are acceptable                                                                            |                                                                               |                                                           |                   |              |               |     |  |
| Color Tone            | To be judged by HITA                                                                                             | CHI STAND                                                                     | ARD                                                       |                   |              |               | Α   |  |
| Color Uniformity      | Sane as above                                                                                                    |                                                                               |                                                           |                   |              |               | Α   |  |
|                       |                                                                                                                  |                                                                               | T                                                         | ype               | Max          | imum number   |     |  |
|                       |                                                                                                                  |                                                                               | 1                                                         | dot               |              | 4             |     |  |
|                       | Bright dot-defect                                                                                                | t                                                                             | 2                                                         | dot               |              | 2             |     |  |
| Dot-Defect            |                                                                                                                  |                                                                               | In                                                        | total             |              | 6             | Α   |  |
| (Note 1)              |                                                                                                                  |                                                                               | 1                                                         | dot               |              | 5             | 73  |  |
|                       | Dark dot-defect                                                                                                  |                                                                               | 2                                                         | dot               |              | 2             |     |  |
|                       | In                                                                                                               |                                                                               | In                                                        | total             |              | 5             |     |  |
|                       | In total                                                                                                         |                                                                               |                                                           | 11                |              |               |     |  |

| KAOHSIUNG HITACHI<br>ELECTRONICS CO., LTD. | SHEET<br>NO. | 7B64PS 2711-TX26D12VM0AAA-2 | PAGE | 11-2/3 |  |
|--------------------------------------------|--------------|-----------------------------|------|--------|--|
|--------------------------------------------|--------------|-----------------------------|------|--------|--|



Note 1: The defi nitions of dot defect are as below:

- The defect area of the dot must be bigger than half of a dot.
- For bright dot-defect, showing black pattern, the dot's brightness must be over 30% brighter than others.
- For dark dot-defect, showing white pattern, the dot's brightness must be under 70% darker than others.
- The definition of 1-dot-defect is the defect-dot, which is isolated and no adjacent defect-dot.
- The definition of adjacent dot is shown as Fig. 11.5.
- The Density of dot defect is defined in the area within diameter  $\phi$  =20mm.



#### 12. PRECAUTIONS

#### 12.1 PRECAUTIONS of ESD

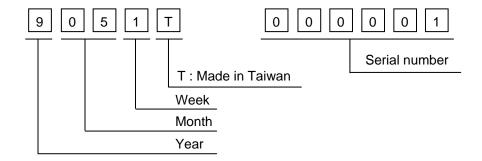
- 1) Before handling the display, please ensure your body has been connected to ground to avoid any damages by ESD. Also, do not touch display's interface directly when assembling.
- 1) Please remove the protection film very slowly before turning on the display to avoid generating ESD.

#### 12.2 PRECAUTIONS of HANDLING

- 1) In order to keep the appearance of display in good condition, please do not rub any surfaces of the displays by sharp tools harder than 3H, especially touch panel, metal frame and polarizer.
- 2) Please do not pile the displays in order to avoid any scars leaving on the display. In order to avoid any injuries, please pay more attention for the edges of glasses and metal frame, and wear finger cots to protect yourself and the display before working on it.
- 2) Touching the display area or the terminal pins with bare hand is prohibited. This is because it will stain the display area and cause poor insulation between terminal pins, and might affect display's electrical characteristics furthermore.
- 3) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean display's surfaces.
- 4) Please use soft cloth or absorbent cotton with ethanol to clean the display by gently wiping. Moreover, when wiping the display, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the display's surface, especially polarizer.
- 5) Please wipe any unknown liquids immediately such as saliva, water or dew on the display to avoid color fading or any permanently damages.
- 6) Maximum pressure to the surface of the display must be less than  $1.96 \times 10^4$  Pa. If the area of adding pressure is less than 1 cm<sup>2</sup>, the maximum pressure must be less than 1.96N.

#### 12.3 PRECAUTIONS OF OPERATING

- 1) Please input signals and voltages to the displays according to the values defined in the section of electrical characteristics to obtain the best performance. Any voltages over than absolute maximum rating will cause permanent damages to this display. Also, any timing of the signals out of this specification would cause unexpected performance.
- 2) When the display is operating at significant low temperature, the response time will be slower than it at 25 °C . In high temperature, the color will be slightly dark and blue compared to original pattern. However, these are temperature-related phenomenon of LCD and it will not cause permanent damages to the display when used within the operating temperature.
- 3) The use of screen saver or sleep mode is recommended when static images are likely for long periods of time. This is to avoid the possibility of image sticking.
- 4) Spike noise can cause malfunction of the circuit. The recommended limitation of spike noise is no bigger than  $\pm 100$  mV.


#### 12.4 PRECAUTIONS of STORAGE

If the displays are going to be stored for years, please be aware the following notices.

- 1) Please store the displays in a dark room to avoid any damages from sunlight and other sources of UV light.
- 2) The recommended long term storage temperature is between 10 °C ~35 °C and 55%~75% humidity to avoid causing bubbles between polarizer and LCD glasses, and polarizer peeling from LCD glasses.
- 3) It would be better to keep the displays in the container, which is shipped from Hitachi, and do not unpack it.
- 4) Please do not stick any labels on the display surface for a long time, especially on the polarizer.

## 13. DESIGNATION of LOT MARK

1) The lot mark is showing in Fig.13.1. First 4 digits are used to represent production lot, T represented made in Taiwan, and the last 6 digits are the serial number.



2) The tables as below are showing what the first 4 digits of lot mark are shorted for.

| Year | Mark |
|------|------|
| 2008 | 8    |
| 2009 | 9    |
| 2010 | 0    |
| 2011 | 1    |
| 2012 | 2    |

| Month | Mark | Month | Mark |
|-------|------|-------|------|
| 1     | 01   | 7     | 07   |
| 2     | 02   | 8     | 08   |
| 3     | 03   | 9     | 09   |
| 4     | 04   | 10    | 10   |
| 5     | 05   | 11    | 11   |
| 6     | 06   | 12    | 12   |

| Week (Days) | Mark |
|-------------|------|
| 1~7         | 1    |
| 8~14        | 2    |
| 15~21       | 3    |
| 22~28       | 4    |
| 29~31       | 5    |

- 3) Except letters I and O, revision number will be showen on lot mark and following letters A to Z.
- 4) The location of the lot mark is on the back of the display shown in Fig. 13.1.



Fig 13.1