

Kaohsiung Opto-Electronics Inc.

FOR MESSRS :\_\_\_\_\_

DATE : Sep. 11th ,2015

## CUSTOMER'S ACCEPTANCE SPECIFICATIONS

# TX26D203VM2BAA

## Contents

| No. | ITEM                       | SHEET No.                    | PAGE         |
|-----|----------------------------|------------------------------|--------------|
| 1   | COVER                      | 7B64PS 2701-TX26D203VM2BAA-1 | 1-1/1        |
| 2   | RECORD OF REVISION         | 7B64PS 2702-TX26D203VM2BAA-1 | 2-1/1        |
| 3   | GENERAL DATA               | 7B64PS 2703-TX26D203VM2BAA-1 | 3-1/1        |
| 4   | ABSOLUTE MAXIMUM RATINGS   | 7B64PS 2704-TX26D203VM2BAA-1 | 4-1/1        |
| 5   | ELECTRICAL CHARACTERISTICS | 7B64PS 2705-TX26D203VM2BAA-1 | 5-1/2~2/2    |
| 6   | OPTICAL CHARACTERISTICS    | 7B64PS 2706-TX26D203VM2BAA-1 | 6-1/2~2/2    |
| 7   | BLOCK DIAGRAM              | 7B64PS 2707-TX26D203VM2BAA-1 | 7-1/1        |
| 8   | RELIABILITY TESTS          | 7B64PS 2708-TX26D203VM2BAA-1 | 8-1/1        |
| 9   | LCD INTERFACE              | 7B64PS 2709-TX26D203VM2BAA-1 | 9-1/10~10/10 |
| 10  | OUTLINE DIMENSIONS         | 7B64PS 2710-TX26D203VM2BAA-1 | 10-1/2~2/2   |
| 11  | APPEARANCE STANDARD        | 7B64PS 2711-TX26D203VM2BAA-1 | 11-1/3~3/3   |
| 12  | PRECAUTIONS                | 7B64PS 2712-TX26D203VM2BAA-1 | 12-1/2~2/2   |
| 13  | DESIGNATION OF LOT MARK    | 7B64PS 2713-TX26D203VM2BAA-1 | 13-1/1       |

ACCEPTED BY:\_\_\_\_\_

PAGE 1-1/1

| 2. RECO      | 2. RECORD OF REVISION |              |                              |      |       |  |  |  |
|--------------|-----------------------|--------------|------------------------------|------|-------|--|--|--|
| ATE          | SHEET No.             |              | SUMMARY                      |      |       |  |  |  |
|              |                       | N            | SUMMARY                      |      |       |  |  |  |
|              |                       |              |                              |      |       |  |  |  |
| KAOHSIUNG OP | PTO-ELECTRONICS INC.  | SHEET<br>NO. | 7B64PS 2702-TX26D203VM2BAA-1 | PAGE | 2-1/1 |  |  |  |

## 3. GENERAL DATA

### **3.1 DISPLAY FEATURES**

This module is a 10.4" XGA format amorphous silicon TFT. The pixel format is vertical stripe and sub pixels are arranged as R(red), G(green), B(blue) sequentially. This display is RoHS compliant, and COG (chip on glass) technology and LED backlight are applied on this display.

| Part Name               | TX26D203VM2BAA                                                                                           |
|-------------------------|----------------------------------------------------------------------------------------------------------|
| Module Dimensions       | 235.0(W) mm x 180.2(H) mm x 9.5(D) mm                                                                    |
| LCD Active Area         | 211.2(W) mm x 158.4(H) mm                                                                                |
| Pixel Pitch             | 0.20625(W) mm x 0.20625(H) mm                                                                            |
| Resolution              | 1024 x 3(RGB)(W) x 768(H) Dots                                                                           |
| Color Pixel Arrangement | R, G, B Vertical Stripe                                                                                  |
| LCD Type                | Transmissive Color TFT; Normally White                                                                   |
| Display Type            | Active Matrix                                                                                            |
| Number of Colors        | 262K (6-bit) / 16.7M (8-bit RGB)                                                                         |
| Backlight               | Light Emitting Diode (LED)                                                                               |
| Weight                  | 370g                                                                                                     |
| Interface               | LVDS; 20 pins                                                                                            |
| Power Supply Voltage    | 3.3V for LCD; 30V for Backlight                                                                          |
| Power Consumption       | 0.594W for LCD; 6W for Backlight                                                                         |
| Viewing Direction       | 12 O'clock (without image inversion and least brightness change)<br>6 O'clock (contrast peak located at) |

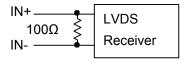
# 4. ABSOLUTE MAXIMUM RATINGS

| Item                   | Symbol          | Min. | Max.                 | Unit | Remarks |
|------------------------|-----------------|------|----------------------|------|---------|
| Supply Voltage         | V <sub>DD</sub> | -0.3 | 3.96                 | V    | -       |
| Input Voltage of Logic | VI              | -0.3 | V <sub>DD</sub> +0.3 | V    | Note 1  |
| Operating Temperature  | T <sub>op</sub> | -20  | 70                   | °C   | Note 2  |
| Storage Temperature    | T <sub>st</sub> | -30  | 80                   | °C   | Note 2  |
| LED Forward Current    | ١ <sub>F</sub>  | -    | 150                  | mA   | -       |

Note 1: The rating is defined for the signal voltages of the interface such as CLK and pixel data pairs.

- Note 2: The maximum rating is defined as above based on the chamber temperature, which might be different from ambient temperature after assembling the panel into the application. Moreover, some temperature-related phenomenon as below needed to be noticed:
  - Background color, contrast and response time would be different in temperatures other than 25°C.

- Operating under high temperature will shorten LED lifetime.


NO.

# **5. ELECTRICAL CHARACTERISTICS**

### 5.1 LCD CHARACTERISTICS

| 5.1 LCD CHARACT                        | $T_a = 25 \ ^{\circ}C, \ \text{Vss} = 0\text{V}$ |                           |      |      |      |      |         |
|----------------------------------------|--------------------------------------------------|---------------------------|------|------|------|------|---------|
| Item                                   | Symbol                                           | Condition                 | Min. | Тур. | Max. | Unit | Remarks |
| Power Supply Voltage                   | V <sub>DD</sub>                                  | -                         | 3.0  | 3.3  | 3.6  | V    | -       |
| Differential Input                     |                                                  | "H" level                 | -    | -    | +100 |      |         |
| Voltage for LVDS<br>Receiver Threshold | VI                                               | "L" level                 | -100 | -    | -    | mV   | Note 1  |
| Power Supply Current                   | I <sub>DD</sub>                                  | $V_{DD}$ - $V_{SS}$ =3.3V | -    | 180  | 250  | mA   | Note 2  |
| Frame Frequency                        | $f_{\it Frame}$                                  | -                         | -    | 60   | 66   | Hz   | Nata 2  |
| CLK Frequency                          | $f_{\textit{CLK}}$                               | -                         | -    | 65   | 71.5 | MHz  | Note 3  |

Note 1: VCM 1.2V is common mode voltage of LVDS transmitter and receiver. The input terminal of LVDS receiver is terminated with  $100\Omega$ .



- Note 2: An all black check pattern is used when measuring  $I_{DD}$ .  $f_{Frame}$  is set to 60Hz. Moreover, 1.0A fuse is applied in the module for IDD. For display activation and protection purpose, power supply is recommended larger than 2.5A to start the display and break fuse once any short circuit occurred.
- Note 3: Please refer to Page 9-6/10 typ. value for the horizontal and vertical timing.

| 5.2 BACKLIGHT CHARACTERISTICS       |                  |                        |      |      |      |      |         |  |  |
|-------------------------------------|------------------|------------------------|------|------|------|------|---------|--|--|
| Item                                | Symbol           | Condition              | Min. | Тур. | Max. | Unit | Remarks |  |  |
| LED Input Voltage                   | $V_{\text{LED}}$ | I <sub>LED</sub> =50mA | -    | 30   | 34   | V    |         |  |  |
| LED Forward Current<br>(per serial) | I <sub>LED</sub> | -                      | -    | 50   | 55   | mA   | Note 1  |  |  |
| LED Lifetime                        | -                | I <sub>LED</sub> =50mA | -    | 70K  | -    | hrs  | Note 2  |  |  |

Note 1: Fig. 5.1 shows the LED backlight circuit.

Note 2: The estimated lifetime is specified as the time to reduce 50% brightness by applying 50 mA at  $25^{\circ}C$ .

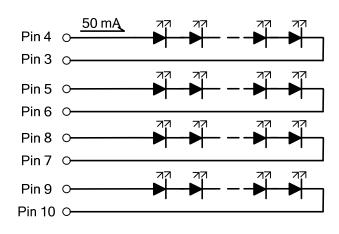



Fig 5.1

| KAOHSIUNG OPTO-ELECTRONICS INC. | SHEET<br>NO. | 7B64PS 2705-TX26D203VM2BAA-1 | PAGE | 5-2/2 |
|---------------------------------|--------------|------------------------------|------|-------|
|                                 | I NO.        |                              |      |       |

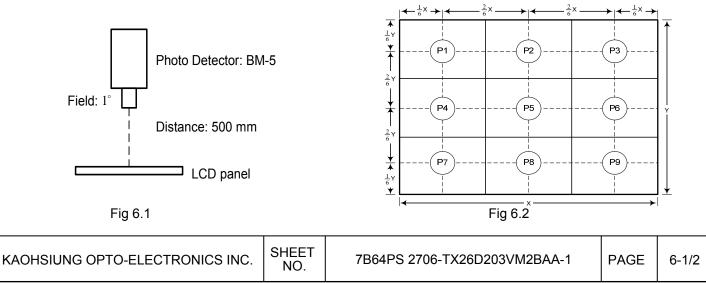
## 6. OPTICAL CHARACTERISTICS

The optical characteristics are measured based on the conditions as below:

- Supplying the signals and voltages defined in the section of electrical characteristics.

- The backlight unit needs to be turned on for 30 minutes.
- The ambient temperature is 25  $^{\circ}\mathrm{C}\,.$

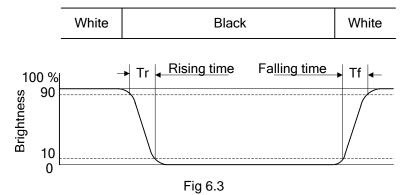
- In the dark room less than 100 lx, the equipment has been set for the measurements as shown in Fig 6.1.


|               |                     |                      |                                         |      | T,   | a = 25 °C, j | $f_{Frame} = 60 \text{ Hz}$ | z, Vdd = $3.3V$ |  |
|---------------|---------------------|----------------------|-----------------------------------------|------|------|--------------|-----------------------------|-----------------|--|
| Item          |                     | Symbol               | Condition                               | Min. | Тур. | Max.         | Unit                        | Remarks         |  |
| Brightness o  | f White             | -                    |                                         | 960  | 1200 | -            | cd/m <sup>2</sup>           | Note 1          |  |
| Brightness Ur | niformity           | -                    | $\phi = 0^{\circ}, \theta = 0^{\circ},$ | 70   | -    | -            | %                           | Note 2          |  |
| Contrast F    | Ratio               | CR                   | I <sub>LED</sub> = 50 mA                | _    | 800  | -            | -                           | Note 3          |  |
| Response      | Time                | Tr + Tf              | $\phi = 0^\circ, \theta = 0^\circ$      | -    | 16   | -            | ms                          | Note 4          |  |
| NTSC Ra       | atio                | -                    | $\phi = 0^\circ, \theta = 0^\circ$      | -    | 50   | -            | %                           | -               |  |
|               | $\theta \mathbf{x}$ |                      | $\phi = 0^{\circ}$ , CR $\geq 10$       | -    | 75   | -            |                             |                 |  |
|               | un aul n            | $\theta \mathbf{x}'$ | φ = 180 °, CR ≥ 10                      | -    | 75   | -            | 5                           | Nata E          |  |
| Viewing A     | Viewing Angle       |                      | $\phi = 90^{\circ}, \mathrm{CR} \ge 10$ | -    | 60   | -            | Degree                      | Note 5          |  |
|               |                     | $\theta$ y'          | $\phi=270\degree, \mathrm{CR}\geq10$    | -    | 70   | -            |                             |                 |  |
|               | <b>_</b>            | Х                    |                                         | 0.59 | 0.62 | 0.67         |                             |                 |  |
|               | Red                 | Y                    |                                         | 0.29 | 0.34 | 0.39         |                             |                 |  |
|               | Green               | Х                    |                                         | 0.29 | 0.32 | 0.37         |                             |                 |  |
| Color         | Green               | Y                    |                                         | 0.53 | 0.58 | 0.63         |                             |                 |  |
| Chromaticity  | Blue                | Х                    | $\phi = 0^\circ, \theta = 0^\circ$      | 0.10 | 0.15 | 0.20         | -                           | Note 6          |  |
|               | Diue                | Y                    |                                         | 0.07 | 0.12 | 0.17         |                             |                 |  |
|               | White               | Х                    |                                         | 0.26 | 0.31 | 0.36         |                             |                 |  |
|               | VVIIILE             | Y                    | ]                                       | 0.29 | 0.34 | 0.39         |                             |                 |  |

Note 1: The brightness is measured from the center point of the panel, P5 in Fig. 6.2, for the typical value.

Note 2: The brightness uniformity is calculated by the equation as below:

Brightness uniformity =  $\frac{\text{Min. Brightness}}{\text{Max. Brightness}}$  X100%


which is based on the brightness values of the 9 points in active area measured by BM-5 as shown in Fig. 6.2.



Note 3: The Contrast ratio is measured from the center point of the panel, P5, and defined as the following equation:

$$CR = \frac{Brightness of White}{Brightness of Black}$$

Note 4: The definition of response time is shown in Fig. 6.3. The rising time is the period from 90% brightness to 10% brightness when the data is from white to black. Oppositely, Falling time is the period from 10% brightness rising to 90% brightness.



Note 5: The definition of viewing angle is shown in Fig. 6.4. Angle  $\phi$  is used to represent viewing directions, for instance,  $\phi = 270^{\circ}$  means 6 o'clock, and  $\phi = 0^{\circ}$  means 3 o'clock. Moreover, angle  $\theta$  is used to represent viewing angles from axis Z toward plane XY.

The viewing direction of this display is 12 o'clock, which means that a photograph with gray scale would not be reversed in color and the brightness change would be less from this direction. However, the best contrast peak would be located at 6 o'clock.

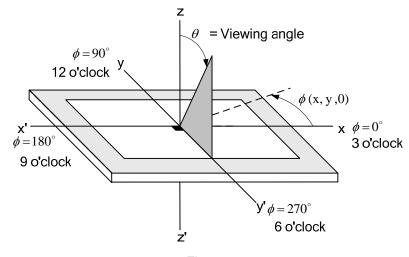
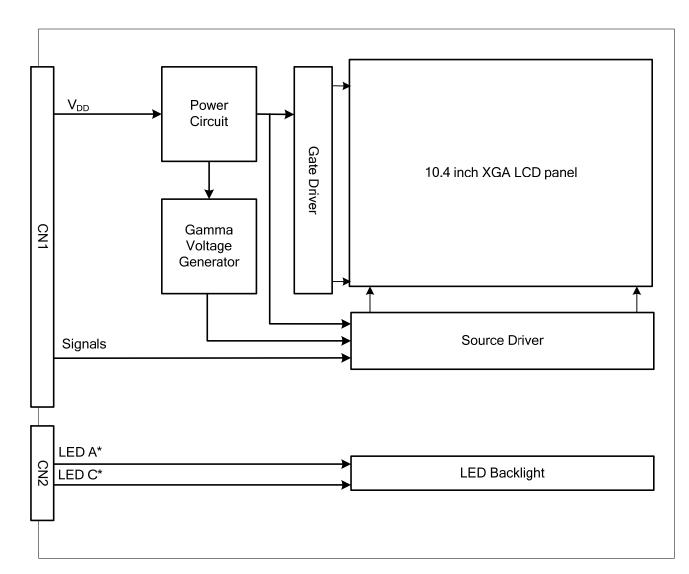



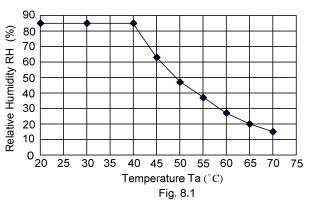

Fig 6.4

Note 6: The color chromaticity is measured from the center point of the panel, P5, as shown in Fig. 6.2.

# 7. BLOCK DIAGRAM



Note : Signals are CLK and pixel data pairs.


PAGE

## 8. RELIABILITY TESTS

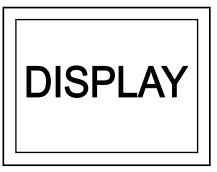
| Test Item                                 | Condition                                                                                                                        |                                                            |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| High Temperature                          | 1) Operating<br>2) 70 °C                                                                                                         | 240 hrs                                                    |
| Low Temperature 1) Operating<br>2) -20 °C |                                                                                                                                  | 240 hrs                                                    |
| High Temperature                          | 1) Storage<br>2) 80 °C                                                                                                           | 240 hrs                                                    |
| Low Temperature                           | 1) Storage<br>2) -30 °C                                                                                                          | 240 hrs                                                    |
| Heat Cycle                                | 1) Operating<br>2) –20 °C ~70 °C<br>3) 3hrs~1hr~3hrs                                                                             | 240 hrs                                                    |
| Thermal Shock                             | 1) Non-Operating<br>2) -35°C $\leftrightarrow$ 85°C<br>3) 0.5 hr $\leftrightarrow$ 0.5 hr                                        | 240 hrs                                                    |
| High Temperature & Humidity               | 1) Operating<br>2) 40 $^{\circ}C$ & 85%RH<br>3) Without condensation                                                             | 240 hrs<br>(Note 3)                                        |
| Vibration                                 | <ol> <li>Non-Operating</li> <li>2) 20~200 Hz</li> <li>3) 2G</li> <li>4) X, Y, and Z directions</li> </ol>                        | 1 hr for each direction                                    |
| Mechanical Shock                          | 1) Non-Operating<br>2) 10 ms<br>3) 50G<br>4) $\pm X, \pm Y$ and $\pm Z$ directions                                               | Once for each direction                                    |
| ESD                                       | 1) Operating<br>2) Tip: 150 pF, 330 $\Omega$<br>3) Air discharge for glass: ± 8KV<br>4) Contact discharge for metal frame: ± 8KV | 1) Glass: 9 points<br>2) Metal frame: 8 points<br>(Note 4) |

Note 1: Display functionalities are inspected under the conditions defined in the specification after the reliability tests.

- Note 2: The display is not guaranteed for use in corrosive gas environments.
- Note 3: Under the condition of high temperature & humidity, if the temperature is higher than 40°C, the humidity needs to be reduced as Fig. 8.1 shown.



Note 4: All pins of LCD interface (CN1) have been tested by ± 100V contact discharge of ESD under non-operating condition.


## 9. LCD INTERFACE

### 9.1 INTERFACE PIN CONNECTIONS

The display interface connector is CN1 MSB24013P20HA made by STM and pin assignment is as below:

| Pin No. | Signal          | Signal                          | Pin No. | Signal          | Signal                |
|---------|-----------------|---------------------------------|---------|-----------------|-----------------------|
| 1       | $V_{\text{DD}}$ |                                 | 11      | IN2-            |                       |
| 2       | $V_{DD}$        | Power Supply for Logic          | 12      | IN2+            | B2~B5, DE             |
| 3       | $V_{SS}$        | GND                             | 13      | $V_{SS}$        | GND                   |
| 4       | SD              | Scan Direction Control (Note 1) | 14      | CLK IN-         | Divel Cleak           |
| 5       | IN0-            |                                 | 15      | CLK IN+         | Pixel Clock           |
| 6       | IN0+            | R0~R5, G0                       | 16      | V <sub>SS</sub> | GND                   |
| 7       | $V_{SS}$        | GND                             | 17      | IN3-            |                       |
| 8       | IN1-            |                                 | 18      | IN3+            | R6~R7, G6~G7, B6~B7   |
| 9       | IN1+            | G1~G5, B0~B1                    | 19      | SEL             | Data selection        |
|         |                 |                                 |         |                 | (H:8 bits L/NC:6bits) |
| 10      | $V_{SS}$        | GND                             | 20      | NC              | Test Pin              |

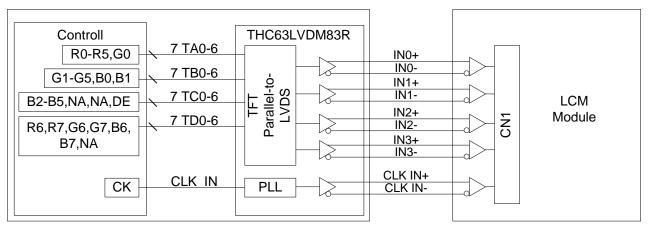
Note 1: Scan direction is available to be switched as below.



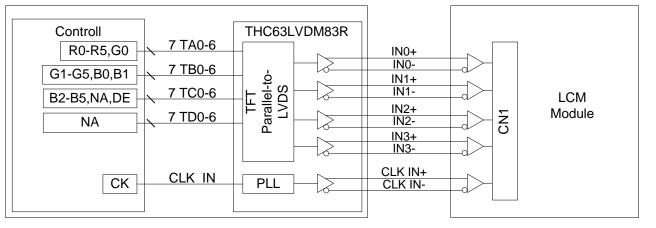
SD: Low or Open



SD: High


Note 2: INn- and INn+ (n=0,1,2,3), CLK IN- and CLK IN+ should be wired by twist-pairs or side-by-side FPC patterns, respectively.

The backlight interface connector CN2 is SM10B-SHLS-TS made by JST, and pin assignment as below:

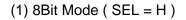

| Pin No.                        | Signal | Level        | Function                     |              |        |  |  |  |
|--------------------------------|--------|--------------|------------------------------|--------------|--------|--|--|--|
| 1                              | NC     | -            | No Conne                     | ection       |        |  |  |  |
| 2                              | NC     | -            | No Conne                     | ection       |        |  |  |  |
| 3                              | LED C1 | -            | LED Cath                     | node1        |        |  |  |  |
| 4                              | LED A1 | -            | LED Ano                      | de1          |        |  |  |  |
| 5                              | LED A2 | -            | LED Ano                      | LED Anode2   |        |  |  |  |
| 6                              | LED C2 | -            | LED Cath                     | LED Cathode2 |        |  |  |  |
| 7                              | LED C3 | -            | LED Cath                     | LED Cathode3 |        |  |  |  |
| 8                              | LED A3 | -            | LED Ano                      | de3          |        |  |  |  |
| 9                              | LED A4 | -            | LED Ano                      | de4          |        |  |  |  |
| 10                             | LED C4 | -            | LED Cathode4                 |              |        |  |  |  |
|                                |        |              |                              |              |        |  |  |  |
| AOHSIUNG OPTO-ELECTRONICS INC. |        | SHEET<br>NO. | 7B64PS 2709-TX26D203VM2BAA-1 | PAGE         | 9-1/10 |  |  |  |

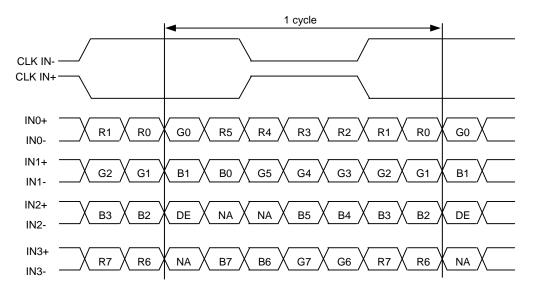
### 9.2 LVDS INTERFACE

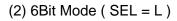
(1) 8Bit Mode (SEL = H)

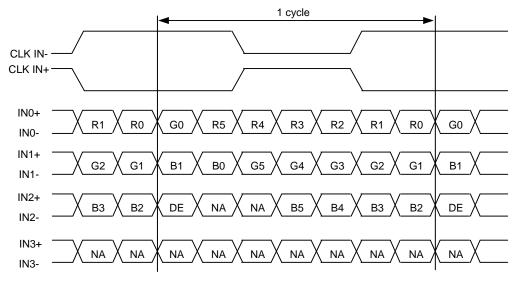


#### (2) 6Bit Mode (SEL = L)



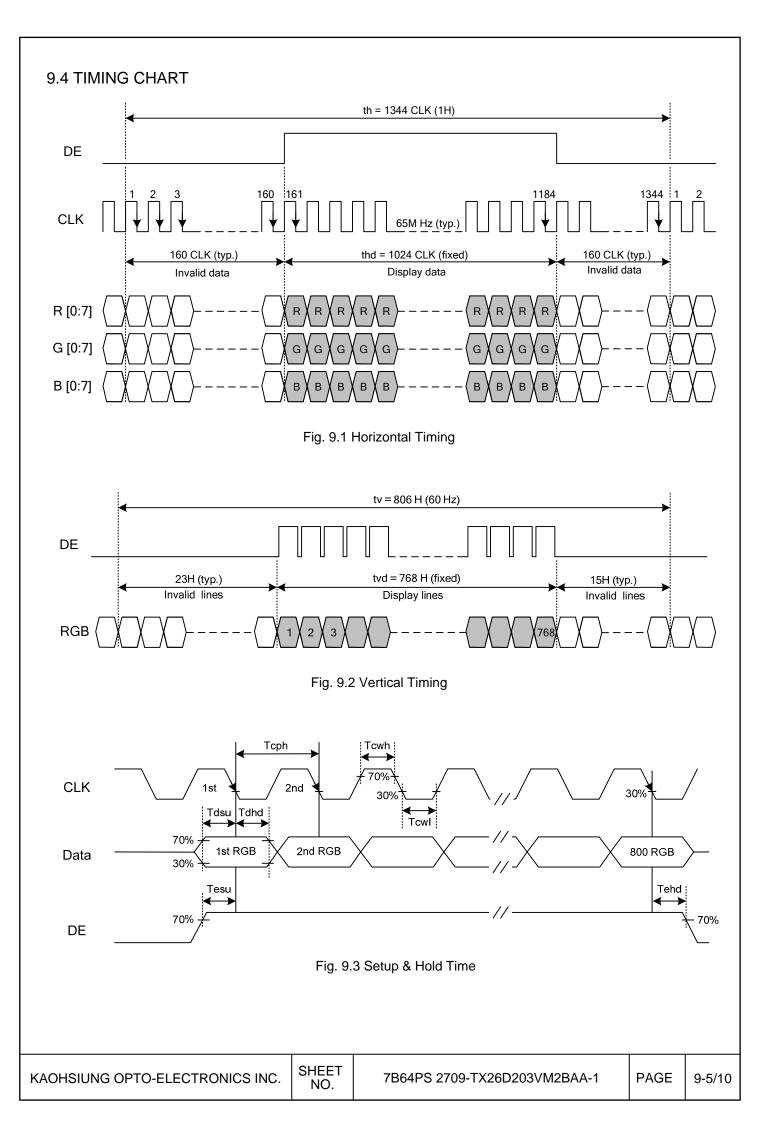


- Note 1: LVDS cable impedance should be 100 ohms per signal line when each 2-lines (+,-) is used in differential mode.
- Note 2: The recommended transmitter, THC63LVDM83R, is made by Thine or equivalent, which is not contained in the module.


| KAOHSIUNG OPTO-ELECTRONICS INC. | SHEET<br>NO. | 7B64PS 2709-TX26D203VM2BAA-1 | PAGE | 9-2/10 |
|---------------------------------|--------------|------------------------------|------|--------|


### 9.3 DATA MAPPING

| Tra     | ansmitter | 8Bit Mode | 6Bit Mode |
|---------|-----------|-----------|-----------|
| D'ANA   | Diaman    | S         | EL        |
| Pin No. | Pin name  | HIGH      | LOW       |
| 51      | TA0       | R0(LSB)   | R0(LSB)   |
| 52      | TA1       | R1        | R1        |
| 54      | TA2       | R2        | R2        |
| 55      | TA3       | R3        | R3        |
| 56      | TA4       | R4        | R4        |
| 3       | TA5       | R5        | R5(MSB)   |
| 4       | TA6       | G0(LSB)   | G0(LSB)   |
| 6       | TB0       | G1        | G1        |
| 7       | TB1       | G2        | G2        |
| 11      | TB2       | G3        | G3        |
| 12      | TB3       | G4        | G4        |
| 14      | TB4       | G5        | G5(MSB)   |
| 15      | TB5       | B0(LSB)   | B0(LSB)   |
| 19      | TB6       | B1        | B1        |
| 20      | TC0       | B2        | B2        |
| 22      | TC1       | B3        | B3        |
| 23      | TC2       | B4        | B4        |
| 24      | TC3       | B5        | B5(MSB)   |
| 27      | TC4       | (NA)      | (NA)      |
| 28      | TC5       | (NA)      | (NA)      |
| 30      | TC6       | DE        | DE        |
| 50      | TD0       | R6        | (NA)      |
| 2       | TD1       | R7(MSB)   | (NA)      |
| 8       | TD2       | G6        | (NA)      |
| 10      | TD3       | G7(MSB)   | (NA)      |
| 16      | TD4       | B6        | (NA)      |
| 18      | TD5       | B7(MSB)   | (NA)      |
| 25      | TD6       | (NA)      | (NA)      |










- DE : Display Enable
- NA : Not Available

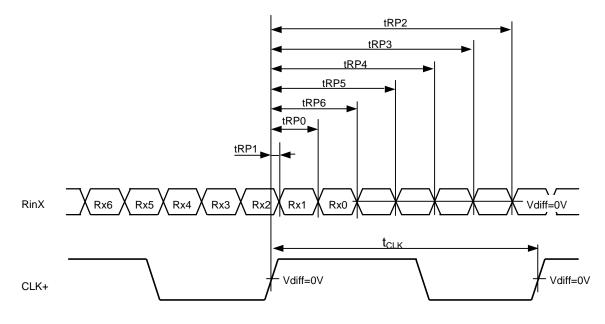
| KAOHSIUNG OPTO-ELECTRONICS INC. | SHEET<br>NO. | 7B64PS 2709-TX26D203VM2BAA-1 | PAGE | 9-4/10 |
|---------------------------------|--------------|------------------------------|------|--------|
|---------------------------------|--------------|------------------------------|------|--------|



#### 9.5 TIME TABLE

The column of timing sets including minimum, typical, and maximum as below are based on the best optical performance, frame frequency ( $f_{Frame}$ ) = 60 Hz to define. If 60 Hz is not the aim to set, less than 66 Hz for  $f_{Frame}$  is recommended to apply for better performance by other parameter combination as the definitions in section 5.1.

#### A. Horizontal and Vertical Timing


|            | Item          | Symbol | Min. | Тур. | Max. | Unit |
|------------|---------------|--------|------|------|------|------|
|            | CLK Frequency | fclk   | 52   | 65   | 71   | M Hz |
| Horizontal | Display Data  | thd    |      | 1024 |      |      |
|            | Cycle Time    | th     | 1114 | 1344 | 1400 | CLK  |
| Martinal   | Display Data  | tvd    |      | 768  |      |      |
| Vertical   | Cycle Time    | tv     | 778  | 806  | 845  | Н    |

#### B. Setup and Hold Time

|      | Item       | Symbol | Min. | Тур.  | Max. | Unit |
|------|------------|--------|------|-------|------|------|
|      | Duty       | Tcwh   | 40   | 50    | 60   | %    |
| CLK  | Cycle Time | Tcph   | 14   | 15.38 | -    |      |
| Dete | Setup Time | Tdsu   | 5    | -     | -    |      |
| Data | Hold Time  | Tdhd   | 5    | -     | -    | ns   |
|      | Setup Time | Tesu   | 5    | -     | -    |      |
| DE   | Hold Time  | Tehd   | 5    | -     | -    |      |

| KAOHSIUNG OPTO-ELECTRONICS INC. | SHEET<br>NO. | 7B64PS 2709-TX26D203VM2BAA-1 | PAGE | 9-6/10 |
|---------------------------------|--------------|------------------------------|------|--------|
|---------------------------------|--------------|------------------------------|------|--------|

#### 9.6 LVDS RECEIVER TIMING



RinX= (RinX+)-(RinX-) (X=0, 1, 2, 3)

|             | Item              | Symbol | Min.                        | Тур.                  | Max.                        | Unit |
|-------------|-------------------|--------|-----------------------------|-----------------------|-----------------------------|------|
| CLK         | Cycle frequency   | 1/tcLK | 52                          | 65                    | 71                          | MHz  |
|             | 0 data position   | tRP0   | 1/7* t <sub>CLK</sub> -0.49 | 1/7* t <sub>CLK</sub> | 1/7* t <sub>CLK</sub> +0.49 |      |
|             | 1st data position | tRP1   | -0.49                       | 0                     | +0.49                       |      |
| DieV        | 2nd data position | tRP2   | 6/7* t <sub>CLK</sub> -0.49 | 6/7* t <sub>CLK</sub> | 6/7* t <sub>CLK</sub> +0.49 |      |
| RinX        | 3rd data position | tRP3   | 5/7* t <sub>CLK</sub> -0.49 | 5/7* t <sub>CLK</sub> | 5/7* t <sub>CLK</sub> +0.49 | ns   |
| (X=0,1,2,3) | 4th data position | tRP4   | 4/7* t <sub>CLK</sub> -0.49 | 4/7* t <sub>CLK</sub> | 4/7* t <sub>CLK</sub> +0.49 |      |
|             | 5th data position | tRP5   | 3/7* t <sub>CLK</sub> -0.49 | 3/7* t <sub>CLK</sub> | 3/7* t <sub>CLK</sub> +0.49 |      |
|             | 6th data position | tRP6   | 2/7* t <sub>CLK</sub> -0.49 | 2/7* t <sub>CLK</sub> | 2/7* t <sub>CLK</sub> +0.49 |      |

## 9.7 DATA INPUT for DISPLAY COLOR

## (8Bit Mode)

|       |                                 |      |       |     | Red  | Data   |       |        |               |     |       | (    | Greer | n Data | 1     |       |        |     |      |       | Blue | Data  |      |    |        |
|-------|---------------------------------|------|-------|-----|------|--------|-------|--------|---------------|-----|-------|------|-------|--------|-------|-------|--------|-----|------|-------|------|-------|------|----|--------|
| Inp   | out color                       | R7   | R6    | R5  | R4   | R3     | R2    | R1     | R0            | G7  | G6    | G5   | G4    | G3     | G2    | G1    | G0     | B7  | B6   | B5    | B4   | B3    | B2   | B1 | B0     |
|       |                                 | MSB  |       |     |      |        |       |        | LSB           | MSB |       |      |       |        |       |       | LSB    | MSB |      |       |      |       |      |    | LSB    |
|       | Black                           | 0    | 0     | 0   | 0    | 0      | 0     | 0      | 0             | 0   | 0     | 0    | 0     | 0      | 0     | 0     | 0      | 0   | 0    | 0     | 0    | 0     | 0    | 0  | 0      |
|       | Red(255)                        | 1    | 1     | 1   | 1    | 1      | 1     | 1      | 1             | 0   | 0     | 0    | 0     | 0      | 0     | 0     | 0      | 0   | 0    | 0     | 0    | 0     | 0    | 0  | 0      |
|       | Green(255)                      | 0    | 0     | 0   | 0    | 0      | 0     | 0      | 0             | 1   | 1     | 1    | 1     | 1      | 1     | 1     | 1      | 0   | 0    | 0     | 0    | 0     | 0    | 0  | 0      |
| Basic | Blue(255)                       | 0    | 0     | 0   | 0    | 0      | 0     | 0      | 0             | 0   | 0     | 0    | 0     | 0      | 0     | 0     | 0      | 1   | 1    | 1     | 1    | 1     | 1    | 1  | 1      |
| Color | Cyan                            | 0    | 0     | 0   | 0    | 0      | 0     | 0      | 0             | 1   | 1     | 1    | 1     | 1      | 1     | 1     | 1      | 1   | 1    | 1     | 1    | 1     | 1    | 1  | 1      |
|       | Magenta                         | 1    | 1     | 1   | 1    | 1      | 1     | 1      | 1             | 0   | 0     | 0    | 0     | 0      | 0     | 0     | 0      | 1   | 1    | 1     | 1    | 1     | 1    | 1  | 1      |
|       | Yellow                          | 1    | 1     | 1   | 1    | 1      | 1     | 1      | 1             | 1   | 1     | 1    | 1     | 1      | 1     | 1     | 1      | 0   | 0    | 0     | 0    | 0     | 0    | 0  | 0      |
| -     | White                           | 1    | 1     | 1   | 1    | 1      | 1     | 1      | 1             | 1   | 1     | 1    | 1     | 1      | 1     | 1     | 1      | 1   | 1    | 1     | 1    | 1     | 1    | 1  | 1      |
|       | Black                           | 0    | 0     | 0   | 0    | 0      | 0     | 0      | 0             | 0   | 0     | 0    | 0     | 0      | 0     | 0     | 0      | 0   | 0    | 0     | 0    | 0     | 0    | 0  | 0      |
|       | Red(1)                          | 0    | 0     | 0   | 0    | 0      | 0     | 0      | 1             | 0   | 0     | 0    | 0     | 0      | 0     | 0     | 0      | 0   | 0    | 0     | 0    | 0     | 0    | 0  | 0      |
|       | Red(2)                          | 0    | 0     | 0   | 0    | 0      | 0     | 1      | 0             | 0   | 0     | 0    | 0     | 0      | 0     | 0     | 0      | 0   | 0    | 0     | 0    | 0     | 0    | 0  | 0      |
| Red   | :                               | :    | :     | :   | :    | :      | :     | :      | :             | :   | :     | :    | :     | :      | :     | :     | :      | :   | :    | :     | :    | :     | :    | :  | :      |
|       | :                               | :    | :     | :   | :    | :      | :     | :      | :             | :   | :     | :    | :     | :      | :     | :     | :      | :   | :    | :     | :    | :     | :    | :  | :      |
|       | Red(253)                        | 1    | 1     | 1   | 1    | 1      | 1     | 0      | 1             | 0   | 0     | 0    | 0     | 0      | 0     | 0     | 0      | 0   | 0    | 0     | 0    | 0     | 0    | 0  | 0      |
|       | Red(254)                        | 1    | 1     | 1   | 1    | 1      | 1     | 1      | 0             | 0   | 0     | 0    | 0     | 0      | 0     | 0     | 0      | 0   | 0    | 0     | 0    | 0     | 0    | 0  | 0      |
|       | Red(255)                        | 1    | 1     | 1   | 1    | 1      | 1     | 1      | 1             | 0   | 0     | 0    | 0     | 0      | 0     | 0     | 0      | 0   | 0    | 0     | 0    | 0     | 0    | 0  | 0      |
|       | Black                           | 0    | 0     | 0   | 0    | 0      | 0     | 0      | 0             | 0   | 0     | 0    | 0     | 0      | 0     | 0     | 0      | 0   | 0    | 0     | 0    | 0     | 0    | 0  | 0      |
|       | Green(1)                        | 0    | 0     | 0   | 0    | 0      | 0     | 0      | 0             | 0   | 0     | 0    | 0     | 0      | 0     | 0     | 1      | 0   | 0    | 0     | 0    | 0     | 0    | 0  | 0      |
|       | Green(2)                        | 0    | 0     | 0   | 0    | 0      | 0     | 0      | 0             | 0   | 0     | 0    | 0     | 0      | 0     | 1     | 0      | 0   | 0    | 0     | 0    | 0     | 0    | 0  | 0      |
| Green | :                               | •    | •     | •   |      | •      | •     | •      |               | •   | •     | •    | •     | •      | •     | •     | ·<br>: |     | •    | •     | •    | •     | •    | •  | ·<br>: |
|       | Green(253)                      |      | 0     |     |      |        | 0     |        |               |     |       |      |       |        |       |       |        |     |      |       | 0    |       |      | 0  |        |
|       | Green(254)                      |      | 0     | 0   | 0    | 0      | 0     | 0      | 0             | 1   | 1     | 1    | 1     | 1      | 1     | 1     | 0      | 0   | 0    | 0     | 0    | 0     | 0    | 0  | 0      |
|       | Green(255)                      | 0    | 0     | 0   | 0    | 0      | 0     | 0      | 0             | 1   | 1     | 1    | 1     | 1      | 1     | 1     | 1      | 0   | 0    | 0     | 0    | 0     | 0    | 0  | 0      |
|       | Black                           | 0    | 0     | 0   | 0    | 0      | 0     | 0      | 0             | 0   | 0     | 0    | 0     | 0      | 0     | 0     | 0      | 0   | 0    | 0     | 0    | 0     | 0    | 0  | 0      |
|       | Blue(1)                         | 0    | 0     | 0   | 0    | 0      | 0     | 0      | 0             | 0   | 0     | 0    | 0     | 0      | 0     | 0     | 0      | 0   | 0    | 0     | 0    | 0     | 0    | 0  | 1      |
|       | Blue(2)                         | 0    | 0     | 0   | 0    | 0      | 0     | 0      | 0             | 0   | 0     | 0    | 0     | 0      | 0     | 0     | 0      | 0   | 0    | 0     | 0    | 0     | 0    | 1  | 0      |
|       | :                               | :    | :     | :   | :    | :      | :     | :      | :             | :   | :     | :    | :     | :      | :     | :     | :      | :   | :    | :     | :    | :     | :    | :  | :      |
| Blue  | :                               | :    | :     | :   | :    | :      | :     | :      | :             | :   | :     | :    | :     | :      | :     | :     | :      | :   | :    | :     | :    | :     | :    | :  | :      |
|       | Blue(253)                       | 0    | 0     | 0   | 0    | 0      | 0     | 0      | 0             | 0   | 0     | 0    | 0     | 0      | 0     | 0     | 0      | 1   | 1    | 1     | 1    | 1     | 1    | 0  | 1      |
|       | Blue(254)                       | 0    | 0     | 0   | 0    | 0      | 0     | 0      | 0             | 0   | 0     | 0    | 0     | 0      | 0     | 0     | 0      | 1   | 1    | 1     | 1    | 1     | 1    | 1  | 0      |
|       | Blue(255)                       | 0    | 0     | 0   | 0    | 0      | 0     | 0      | 0             | 0   | 0     | 0    | 0     | 0      | 0     | 0     | 0      | 1   | 1    | 1     | 1    | 1     | 1    | 1  | 1      |
|       | ote 1: Def<br>nur<br>ote 2: Dat | nbei | r cor | res | pono | ds to  | bri   | ghte   | n) N<br>r lev |     | oer i | n pa | aren  | thes   | is in | ndica | ates   | gra | y sc | ale I | eve  | I. La | rger |    |        |
| 110   | 2. Dai                          |      | gna   |     |      | yıı, ( |       |        | 0             |     |       |      |       |        |       |       |        |     |      |       |      |       |      |    |        |
| KAOI  | HSIUNG C                        | PTC  | D-EL  | ECT | ROI  | NICS   | S INC | ).<br> | SHE<br>N(     |     |       | 7B   | 64P   | S 27   | 09-T  | X26   | D20    | 3VM | I2BA | A-1   |      | PA    | GE   | 9- | 8/10   |

#### (6Bit Mode)

| Basic<br>Color | Black<br>Red(63)<br>Green(63)<br>Blue(63) | R5<br>MSB<br>0<br>1<br>0 | R4<br>0<br>1 | R3<br>0 | R2<br>0 | R1 | R0<br>LSB | G5<br>MSB | G4 | G3 | G2 | G1 | G0<br>LSB | B5    | B4  | B3 | B2 | B1 | В |
|----------------|-------------------------------------------|--------------------------|--------------|---------|---------|----|-----------|-----------|----|----|----|----|-----------|-------|-----|----|----|----|---|
| Basic<br>Color | Red(63)<br>Green(63)<br>Blue(63)          | 0                        |              | 0       | 0       |    | LSB       | MSB       |    |    |    |    | ICD       | MCD   |     |    |    |    |   |
| Basic<br>Color | Red(63)<br>Green(63)<br>Blue(63)          | 1                        |              | 0       | 0       |    |           | 1         |    |    |    |    | LOD       | IVISD |     |    |    |    | L |
| Basic<br>Color | Green(63)<br>Blue(63)                     |                          | 1            | i .     |         | 0  | 0         | 0         | 0  | 0  | 0  | 0  | 0         | 0     | 0   | 0  | 0  | 0  | ( |
| Basic<br>Color | Blue(63)                                  | 0                        |              | 1       | 1       | 1  | 1         | 0         | 0  | 0  | 0  | 0  | 0         | 0     | 0   | 0  | 0  | 0  | ( |
| Color          | . ,                                       | <b> </b>                 | 0            | 0       | 0       | 0  | 0         | 1         | 1  | 1  | 1  | 1  | 1         | 0     | 0   | 0  | 0  | 0  |   |
|                |                                           | 0                        | 0            | 0       | 0       | 0  | 0         | 0         | 0  | 0  | 0  | 0  | 0         | 1     | 1   | 1  | 1  | 1  |   |
|                | Cyan                                      | 0                        | 0            | 0       | 0       | 0  | 0         | 1         | 1  | 1  | 1  | 1  | 1         | 1     | 1   | 1  | 1  | 1  |   |
|                | Magenta                                   | 1                        | 1            | 1       | 1       | 1  | 1         | 0         | 0  | 0  | 0  | 0  | 0         | 1     | 1   | 1  | 1  | 1  |   |
|                | Yellow                                    | 1                        | 1            | 1       | 1       | 1  | 1         | 1         | 1  | 1  | 1  | 1  | 1         | 0     | 0   | 0  | 0  | 0  |   |
|                | White                                     | 1                        | 1            | 1       | 1       | 1  | 1         | 1         | 1  | 1  | 1  | 1  | 1         | 1     | 1   | 1  | 1  | 1  |   |
|                | Black                                     | 0                        | 0            | 0       | 0       | 0  | 0         | 0         | 0  | 0  | 0  | 0  | 0         | 0     | 0   | 0  | 0  | 0  |   |
|                | Red(1)                                    | 0                        | 0            | 0       | 0       | 0  | 1         | 0         | 0  | 0  | 0  | 0  | 0         | 0     | 0   | 0  | 0  | 0  |   |
|                | Red(2)                                    | 0                        | 0            | 0       | 0       | 1  | 0         | 0         | 0  | 0  | 0  | 0  | 0         | 0     | 0   | 0  | 0  | 0  |   |
| Red            | :                                         | :                        | :            | :       | :       | :  | :         | :         | :  | :  | :  | :  | :         | :     |     | :  | :  | :  |   |
| Red            | :                                         | :                        | :            | :       | :       | :  | :         | :         | :  | :  | :  | :  | :         | :     | •   | :  | :  | :  |   |
|                | Red(61)                                   | 1                        | 1            | 1       | 1       | 0  | 1         | 0         | 0  | 0  | 0  | 0  | 0         | 0     | 0   | 0  | 0  | 0  |   |
|                | Red(62)                                   | 1                        | 1            | 1       | 1       | 1  | 0         | 0         | 0  | 0  | 0  | 0  | 0         | 0     | 0   | 0  | 0  | 0  |   |
|                | Red(63)                                   | 1                        | 1            | 1       | 1       | 1  | 1         | 0         | 0  | 0  | 0  | 0  | 0         | 0     | 0   | 0  | 0  | 0  |   |
|                | Black                                     | 0                        | 0            | 0       | 0       | 0  | 0         | 0         | 0  | 0  | 0  | 0  | 0         | 0     | 0   | 0  | 0  | 0  |   |
|                | Green(1)                                  | 0                        | 0            | 0       | 0       | 0  | 0         | 0         | 0  | 0  | 0  | 0  | 1         | 0     | 0   | 0  | 0  | 0  |   |
|                | Green(2)                                  | 0                        | 0            | 0       | 0       | 0  | 0         | 0         | 0  | 0  | 0  | 1  | 0         | 0     | 0   | 0  | 0  | 0  |   |
| Green          | :                                         |                          | :            | :       | :       | :  |           | :         | :  | :  |    | :  |           |       | • • | :  | :  | :  |   |
| Green          | :                                         | :                        | :            | :       | :       | :  | :         | :         | :  | :  | :  | :  | :         | :     | :   | :  | :  | :  |   |
| 1              | Green(61)                                 | 0                        | 0            | 0       | 0       | 0  | 0         | 1         | 1  | 1  | 1  | 0  | 1         | 0     | 0   | 0  | 0  | 0  |   |
| 1              | Green(62)                                 | 0                        | 0            | 0       | 0       | 0  | 0         | 1         | 1  | 1  | 1  | 1  | 0         | 0     | 0   | 0  | 0  | 0  |   |
| (              | Green(63)                                 | 0                        | 0            | 0       | 0       | 0  | 0         | 1         | 1  | 1  | 1  | 1  | 1         | 0     | 0   | 0  | 0  | 0  |   |
|                | Black                                     | 0                        | 0            | 0       | 0       | 0  | 0         | 0         | 0  | 0  | 0  | 0  | 0         | 0     | 0   | 0  | 0  | 0  |   |
|                | Blue(1)                                   | 0                        | 0            | 0       | 0       | 0  | 0         | 0         | 0  | 0  | 0  | 0  | 0         | 0     | 0   | 0  | 0  | 0  |   |
|                | Blue(2)                                   | 0                        | 0            | 0       | 0       | 0  | 0         | 0         | 0  | 0  | 0  | 0  | 0         | 0     | 0   | 0  | 0  | 1  |   |
| Blue           | :                                         | :                        | :            | :       | :       | :  | :         | :         | :  | :  | :  | :  | :         | :     | :   | :  | :  | :  |   |
| Blue           | :                                         | :                        | :            | :       | :       | :  | :         | :         | :  | :  | :  | :  | :         | :     | :   | :  | :  | :  |   |
|                | Blue(61)                                  | 0                        | 0            | 0       | 0       | 0  | 0         | 0         | 0  | 0  | 0  | 0  | 0         | 1     | 1   | 1  | 1  | 0  |   |
|                | Blue(62)                                  | 0                        | 0            | 0       | 0       | 0  | 0         | 0         | 0  | 0  | 0  | 0  | 0         | 1     | 1   | 1  | 1  | 1  |   |
|                | Blue(63)                                  | 0                        | 0            | 0       | 0       | 0  | 0         | 0         | 0  | 0  | 0  | 0  | 0         | 1     | 1   | 1  | 1  | 1  |   |

SHEET NO.

### 9.8 POWER SEQUENCE

Interface signals are also shown in the chart. Signals from any system shall be Hi- resistance state or low level when  $V_{DD}$  voltage is off.

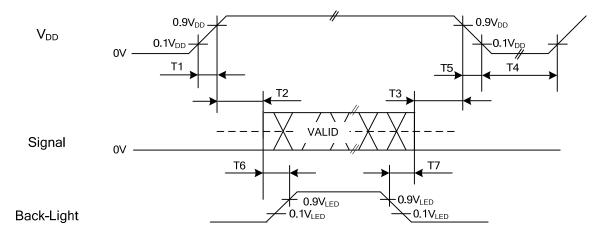
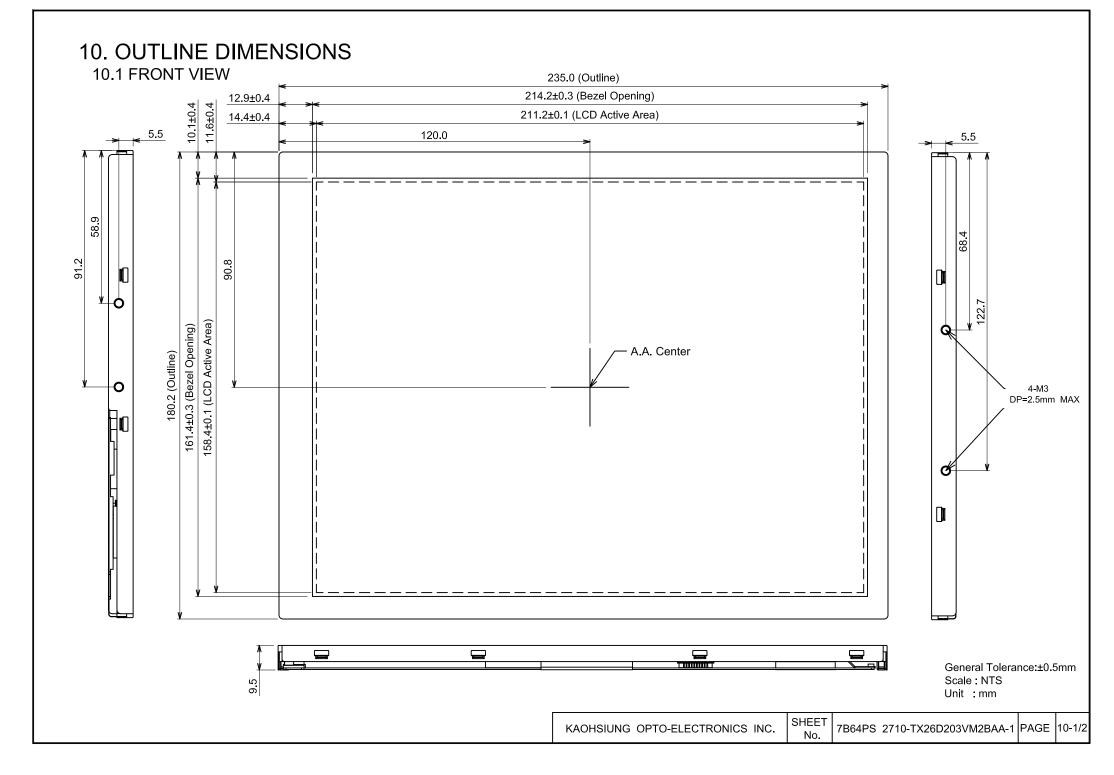
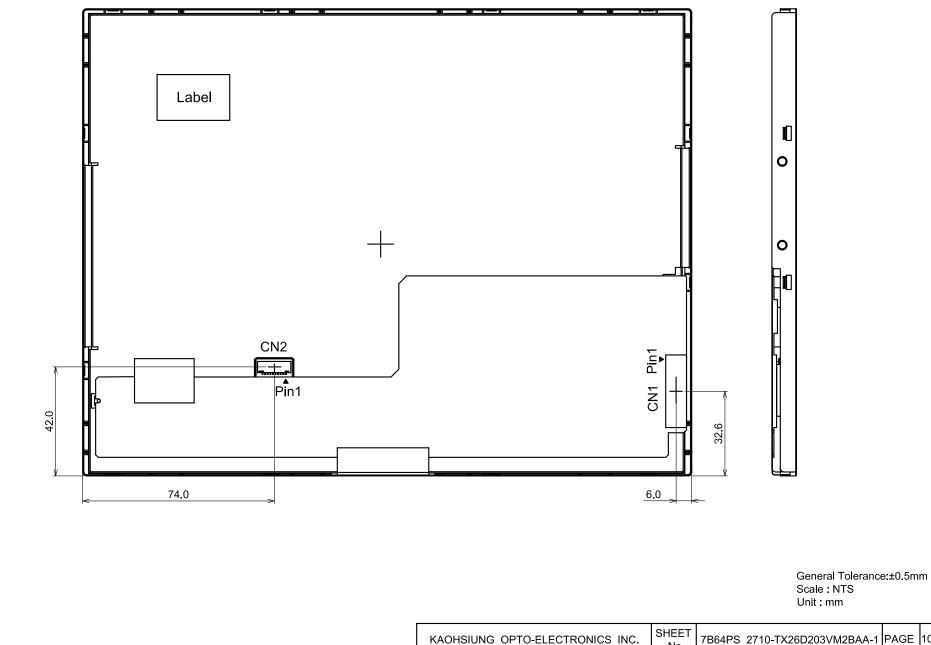





Fig 9.4 Power Sequence

| Parameter                                                     | Symbol | Min. | Тур. | Max. | Unit |
|---------------------------------------------------------------|--------|------|------|------|------|
| $V_{DD}$ rising time from 10% to 90%                          | T1     | 0.5  | -    | 10   | ms   |
| Delay from $V_{DD}$ to valid data at power ON                 | T2     | 30   | -    | 50   | ms   |
| Delay from valid data OFF to V <sub>DD</sub> OFF at power OFF | Т3     | 0    | -    | 50   | ms   |
| V <sub>DD</sub> OFF time for windows restart                  | T4     | 500  | -    | -    | ms   |
| $V_{DD}$ falling time from 90% to 10%                         | T5     | 0.5  | -    | 10   | ms   |
| Delay from valid data to BL ON                                | Т6     | 200  | -    | -    | ms   |
| Delay from valid data to BL OFF                               | T7     | 200  | -    | -    | ms   |



10.2 REAR VIEW



7B64PS 2710-TX26D203VM2BAA-1 PAGE 10-2/2 No.

## **11. APPEARANCE STANDARD**

The appearance inspection is performed in a dark room around 500~1000 lx based on the conditions as below:

- The distance between inspector's eyes and display is 30 cm.
- The viewing zone is defined with angle  $\theta$  shown in Fig. 11.1 The inspection should be performed within 45° when display is shut down. The inspection should be performed within 5° when display is power on.

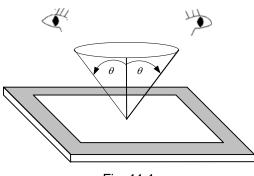
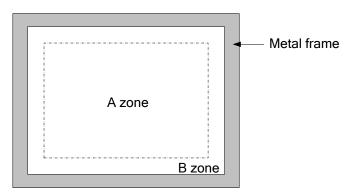


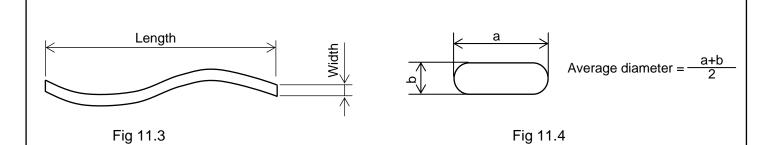

Fig. 11.1

### 11.1 THE DEFINITION OF LCD ZONE

LCD panel is divided into 2 areas as shown in Fig.11.2 for appearance specification in next section. A zone is the LCD active area (dot area); B zone is the area between A zone and metal frame.

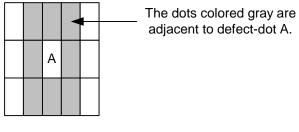
In terms of housing design, B zone is the recommended window area customers' housing should be located in.





Fig. 11.2

| KAOHSIUNG OPTO-ELECTRONICS INC. | SHEET<br>NO. | 7B64PS 2711-TX26D203VM2BAA-1 | PAGE | 11-1/3 |
|---------------------------------|--------------|------------------------------|------|--------|
|---------------------------------|--------------|------------------------------|------|--------|

### 11.2 LCD APPEARANCE SPECIFICATION


The specification as below is defined as the amount of unexpected phenomenon or material in different zones of LCD panel. The definitions of length, width and average diameter using in the table are shown in Fig. 11.3 and Fig. 11.4.

| Item                                                           |                    | Crite                                             | ria                   | Applied zone |
|----------------------------------------------------------------|--------------------|---------------------------------------------------|-----------------------|--------------|
|                                                                | Length (mm)        | Width (mm)                                        | Maximum number        |              |
| Caratabaa                                                      | Ignored            | W≦0.02                                            | Ignored               |              |
| Scratches                                                      | L≦10               | $0.02 \! < \! W \! \le \! 0.1$                    | 4                     | A, B         |
|                                                                | -                  | 0.1 <w< td=""><td>Not allowed</td><td></td></w<>  | Not allowed           |              |
| Wrinkles in polarizer                                          |                    | Serious one is                                    | not allowed           | А            |
|                                                                | Average dia        | imeter (mm)                                       | Maximum number        |              |
| Bubble Dent on                                                 | C                  | D≦0.3                                             | Ignored               | •            |
| polarizer                                                      | 0.3<[              | D≦0.5                                             | 4                     | — A          |
|                                                                | 0.5<               | D                                                 | Not allowed           |              |
|                                                                |                    | Filamentous (I                                    | Line shape)           |              |
|                                                                | Length (mm)        | Width (mm)                                        | Maximum number        |              |
|                                                                | L≦2.0              | W≦0.03                                            | Ignored               | А, В         |
|                                                                | L≦3.0              | 0.03 <w≦0.05< td=""><td>4</td><td></td></w≦0.05<> | 4                     |              |
| 1) 0(1)                                                        | L≦2.5              | 0.05 <w≦0.1< td=""><td>1</td><td></td></w≦0.1<>   | 1                     |              |
| 1) Stains                                                      |                    | Round (Do                                         | t shape)              |              |
| <ol> <li>2) Foreign Materials</li> <li>3) Dark Spot</li> </ol> | Average dia        | imeter (mm)                                       | Maximum number        |              |
| S) Dark Spor                                                   | [                  | D≦0.2                                             | Ignored               |              |
|                                                                | 0.2<[              | D≦0.4                                             | 4                     | A, B         |
|                                                                | 0.4<               | )                                                 | Not allowed           |              |
|                                                                | In t               | otal                                              | Filamentous + Round=8 |              |
|                                                                |                    | Those wiped out eas                               | ily are acceptable    |              |
|                                                                |                    | Туре                                              | Maximum number        |              |
|                                                                |                    | 1 dot                                             | 3                     |              |
|                                                                | Bright dot-defect  | 2 adjacent dot                                    | 1                     |              |
|                                                                | Bright dot-delect  | 3 adjacent dot or                                 | 0                     |              |
|                                                                |                    | above                                             | 0                     |              |
|                                                                |                    | 1 dot                                             | 4                     |              |
| Dot-Defect                                                     | Dark dot-defect    | 2 adjacent dot                                    | 1                     |              |
| (Note 1)                                                       | Dark dot-derect    | 3 adjacent dot                                    | 0                     | A            |
|                                                                |                    | or above                                          |                       |              |
|                                                                |                    | Туре                                              | Minimum Space         |              |
|                                                                |                    | Minimum                                           | 15 mm≦L               |              |
|                                                                | Distance           | Between Bright                                    | To thin <u></u> L     |              |
|                                                                |                    | Minimum                                           | 5 mm≦L                |              |
|                                                                |                    | Between Dark                                      |                       |              |
|                                                                | In t               | 5                                                 |                       |              |
| Small bright dot and                                           | Cannot be seen th  | _                                                 |                       |              |
| micro bright dot                                               | 1. N≦5             |                                                   |                       | A            |
|                                                                | 2. N≦3 within 50n  |                                                   |                       |              |
| Mura                                                           | Judge by not visib | le through ND5%                                   |                       | A            |



Note 1: The definitions of dot defect are as below:

- The defect area of the dot must be bigger than half of a dot.
- For bright dot-defect, showing black pattern, the dots can be seen through a 8% ND filter.
- For dark dot-defect, appearing dark and unchanged in size over 1/2 of whole dot in which LCD panel is displaying under pure red, green, blue picture.
- The definition of 1-dot-defect is the defect-dot, which is isolated and no adjacent defect-dot.
- The definition of adjacent dot is shown as Fig. 11.5.





## **12. PRECAUTIONS**

#### 12.1 PRECAUTIONS of ESD

- 1) Before handling the display, please ensure your body has been connected to ground to avoid any damages by ESD. Also, do not touch display's interface directly when assembling.
- 2) Please remove the protection film very slowly before turning on the display to avoid generating ESD.

#### **12.2 PRECAUTIONS of HANDLING**

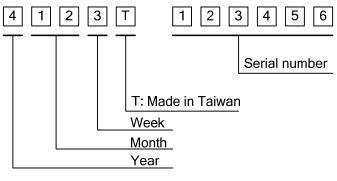
- 1) In order to keep the appearance of display in good condition; please do not rub any surfaces of the displays by sharp tools harder than 3H, especially touch panel, metal frame and polarizer.
- 2) Please do not pile the displays in order to avoid any scars leaving on the display. In order to avoid any injuries, please pay more attention for the edges of glasses and metal frame, and wear finger cots to protect yourself and the display before working on it.
- 3) Touching the display area or the terminal pins with bare hand is prohibited. This is because it will stain the display area and cause poor insulation between terminal pins, and might affect display's electrical characteristics furthermore.
- 4) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean display's surfaces.
- 5) Please use soft cloth or absorbent cotton with ethanol to clean the display by gently wiping. Moreover, when wiping the display, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the display's surface, especially polarizer.
- 6) Please wipe any unknown liquids immediately such as saliva, water or dew on the display to avoid color fading or any permanently damages.
- 7) Maximum pressure to the surface of the display must be less than  $1.96 \times 10^4$  Pa. If the area of adding pressure is less than  $1 \text{ cm}^2$ , the maximum pressure must be less than 1.96N.

#### **12.3 PRECAUTIONS OF OPERATING**

- 1) Please input signals and voltages to the displays according to the values defined in the section of electrical characteristics to obtain the best performance. Any voltages over than absolute maximum rating will cause permanent damages to this display. Also, any timing of the signals out of this specification would cause unexpected performance.
- 2) When the display is operating at significant low temperature, the response time will be slower than it at 25 C°. In high temperature, the color will be slightly dark and blue compared to original pattern. However, these are temperature-related phenomenon of LCD and it will not cause permanent damages to the display when used within the operating temperature.
- 3) The use of screen saver or sleep mode is recommended when static images are likely for long periods of time. This is to avoid the possibility of image sticking.
- 4) Spike noise can cause malfunction of the circuit. The recommended limitation of spike noise is no bigger than  $\pm 100$  mV.

NO.

#### 12.4 PRECAUTIONS of STORAGE


If the displays are going to be stored for years, please be aware the following notices.

- 1) Please store the displays in a dark room to avoid any damages from sunlight and other sources of UV light.
- 2) The recommended long-term storage temperature is between 10 C° ~35 C° and 55%~75% humidity to avoid causing bubbles between polarizer and LCD glasses, and polarizer peeling from LCD glasses.
- 3) It would be better to keep the displays in the container, which is shipped from KOE, and do not unpack it.
- 4) Please do not stick any labels on the display surface for a long time, especially on the polarizer.

| KAOHSIUNG OPTO-ELECTRONICS INC. | SHEET<br>NO. | 7B64PS 2712-TX26D203VM2BAA-1 | PAGE | 12-2/2 |
|---------------------------------|--------------|------------------------------|------|--------|

## 13. DESIGNATION of LOT MARK

1) The lot mark is showing in Fig.13.1. First 4 digits are used to represent production lot, T represented made in Taiwan, and the last 6 digits are the serial number.





2) The tables as below are showing what the first 4 digits of lot mark are shorted for.

| Year | Lot Mark |
|------|----------|
| 2015 | 5        |
| 2016 | 6        |
| 2017 | 7        |
| 2018 | 8        |
| 2019 | 9        |

| Month | Lot Mark | Month | Lot Mark |
|-------|----------|-------|----------|
| Jan.  | 01       | Jul.  | 07       |
| Feb.  | 02       | Aug.  | 08       |
| Mar.  | 03       | Sep.  | 09       |
| Apr.  | 04       | Oct.  | 10       |
| May   | 05       | Nov.  | 11       |
| Jun.  | 06       | Dec.  | 12       |

| Week       | Lot Mark |
|------------|----------|
| 1~7 days   | 1        |
| 8~14 days  | 2        |
| 15~21 days | 3        |
| 22~28 days | 4        |
| 29~31 days | 5        |

3) Except letters I and O, revision number will be shown on lot mark and following letters A to Z.

4) The location of the lot mark is on the back of the display shown in Fig. 13.2.

| TX26D203 | VM2BAA | REV:A    |
|----------|--------|----------|
| 4123T    | (5D)   | 123456   |
| KOE      | MADE   | N TAIWAN |

Fig. 13.2