

Do	Doc. Number:							
	Tentative Specification							
	Preliminary Specification							
	Approval Specification							

MODEL NO.: N101ICG SUFFIX: L11

Customer: acer APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your consignature and comments.	ifirmation with your

Approved By	Checked By	Prepared By
曹文彬	曹文彬	李軒誠
2013-09-04	2013-08-22	2013-08-22
09:11:52 CST	19:45:17 CST	08:52:29 CST

Version 2.0 11 September 2013 1 / 36

CONTENTS

1. GENERAL DESCRIPTION	ON	4
1.1 OVERVIEW		4
1.2 GENERAL SPECIFIC	CATIONS	4
2. MECHANICAL SPECIFIC	CATIONS	4
2.1 CONNECTOR TYPE	E	4
3. ABSOLUTE MAXIMUM	RATINGS	5
3.1 ABSOLUTE RATING	GS OF ENVIRONMENT	5
3.2 ELECTRICAL ABSO	DLUTE RATINGS	5
3.2.1 TFT LCD MO	DULE	5
4. ELECTRICAL SPECIFIC	CATIONS	6
4.1 FUNCTION BLOCK	DIAGRAM	6
4.2. INTERFACE CONN	ECTIONS	6
4.3 ELECTRICAL CHAI	RACTERISTICS	8
4.3.1 LCD ELETRO	NICS SPECIFICATION	8
4.3.2 LED CONVE	RTER SPECIFICATION	10
4.3.3 BACKLIGHT	UNIT	12
4.4 LVDS INPUT SIGNA	AL TIMING SPECIFICATIONS	13
4.4.1 LVDS DC SPE	ECIFICATIONS	13
4.4.2 LVDS DATA F	FORMAT	13
4.4.3 COLOR DATA	A INPUT ASSIGNMENT	14
4.5 DISPLAY TIMING S	PECIFICATIONS	15
4.6 POWER ON/OFF SE	QUENCE	16
5. OPTICAL CHARACTER	ISTICS	17
5.1 TEST CONDITIONS		17
5.2 OPTICAL SPECIFIC	ATIONS	17
6. RELIABILITY TEST ITEI	М	22
7. PACKING		23
7.1 MODULE LABEL		23
7.2 CARTON		24
7.3 PALLET		25
8. PRECAUTIONS		27
8.1 HANDLING PRECA	UTIONS	27
8.2 STORAGE PRECAU	TIONS	27
8.3 OPERATION PRECA	AUTIONS	27
Appendix. EDID DATA S	STRUCTURE	28
Appendix. OUTLINE DR	RAWING	31
Appendix. SYSTEM CO	VER DESIGN GUIDANCE	31
Version 2.0	11 September 2013	2/36

REVISION HISTORY

Version	Date	Page	Description
0.0	July, 05, 2013	All	Spec Ver.0.0 was first issued.
1.0	July, 11, 2013	All	Spec Ver.1.0 was first issued.
2.0	Aug, 9, 2013	All	Spec Ver.2.0 was first issued.

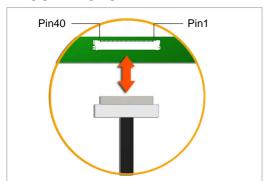
1. GENERAL DESCRIPTION

1.1 OVERVIEW

N101ICG-L11 is a 10" (10.1" diagonal) TFT Liquid Crystal Display module with LED Backlight unit and 40 pins LVDS interface. This module supports 1280 x 800 WXGA mode.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	10.1 diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1280 x R.G.B. x 800	pixel	-
Pixel Pitch	0.1695 (H) x 0.1695 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262,144	color	-
Transmissive Mode	Normally black	-	-
Surface Treatment	Hard coating (3H), Anti-Glare	-	-
Luminance, White	350	Cd/m2	
Power Consumption	Total 2.96 W (Max.) @ cell 0.76 W (Max.), BL 2.20	W (Max.)	(1)


Note (1) The specified power consumption (with converter efficiency) is under the conditions at VCCS = 3.3 V, fv = 60 Hz, LED_VCCS = Typ, fPWM = 200 Hz, Duty=100% and Ta = 25 ± 2 °C, whereas mosaic pattern is displayed.

2. MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
Module Size	Horizontal (H)	227.12	227.42	227.72	mm	
	Vertical (V)	147.19	147.69	147.99	mm	(1)
	Thickness (T)	-	2.16(w/o PCBA) 4.36(w/ PCBA)	2.35 4.85	mm	(1)
CF Polarizer	Horizontal	219.06	219.31	219.56	mm	
CFFGianzei	Vertical	138.0	138.25	138.50	mm	
Active Area	Horizontal	216.66	216.96	217.26	mm	
Active Area	Vertical	135.3	135.60	135.9	mm	
V	Weight		120	135	g	

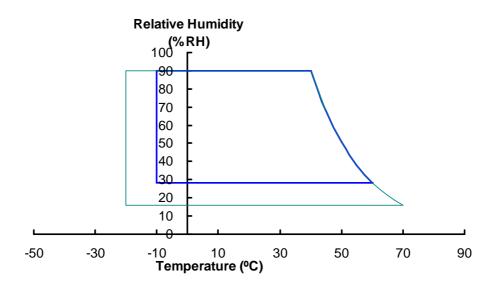
Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2.1 CONNECTOR TYPE

Please refer Appendix Outline Drawing for detail design.

Connector Part No.: IPEX-20455-040E-12

User's connector Part No: IPEX-20453-040T-01



3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

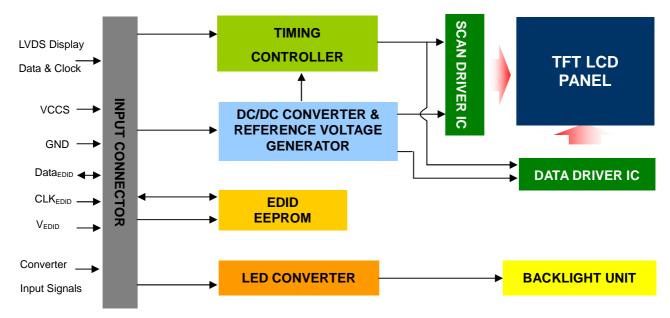
Itom	Symbol	Va	lue	Unit	Note	
Item	Symbol	Min.	Max.	Offic		
Storage Temperature	T _{ST}	-20	+70	°C	(1)	
Operating Ambient Temperature	T _{OP}	-10	+60	°C	(1), (2)	

- Note (1) (a) 90 %RH Max. (Ta <= 40 °C).
 - (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
 - (c) No condensation.
- Note (2) The temperature of panel surface should be -10 °C min. and 70 °C max.

3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note	
Rem	Cymbol	Min.	Max.	Onic	14010	
Power Supply Voltage	VCCS	-0.3	+4.0	V	(1)	
Logic Input Voltage	V _{IN}	-0.3	VCCS+0.3	V	(1)	
Converter Input Voltage	LED_VCCS	-0.3	25	V	(1)	
Converter Control Signal Voltage	LED_PWM,	-0.3	5	V	(1)	
Converter Control Signal Voltage	LED_EN	-0.3	5	V	(1)	

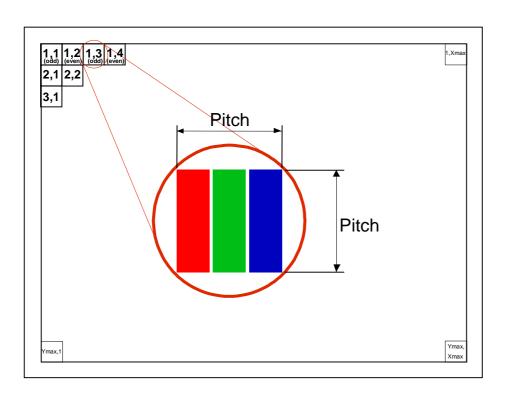

Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".

Version 2.0 11 September 2013 5 / 36

4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

4.2. INTERFACE CONNECTIONS


PIN ASSIGNMENT

Pin	Symbol	Description	Remark
1	NC	No Connection (Reserve)	
2	VCCS	Power Supply (3.3V typ.)	
3	VCCS	Power Supply (3.3V typ.)	
4	VEDID	DDC 3.3V power	
5	NC	No Connection (Reserved for CMI test)	
6	CLKEDID	DDC clock	
7	DATAEDID	DDC data	
8	Rxin0-	LVDS differential data input	R0-R5, G0
9	Rxin0+	LVDS differential data input	K0-K5, G0
10	VSS	Ground	
11	Rxin1-	LVDS differential data input	C1 C5 P0 P1
12	Rxin1+	LVDS differential data input	G1~G5, B0, B1
13	VSS	Ground	
14	Rxin2-	LVDS Differential Data Input	B2-B5,HS,VS, DE
15	Rxin2+	LVDS Differential Data Input	62-65,65,v3, DE
16	VSS	Ground	
17	RxCLK-	LVDS differential clock input	LVDS CLK
18	RxCLK+	LVDS differential clock input	LVD3 CLK
19	VSS	Ground	
20	NC	No Connection (Reserve)	
21	NC	No Connection (Reserve)	
22	VSS	Ground	
23	NC	No Connection (Reserve)	

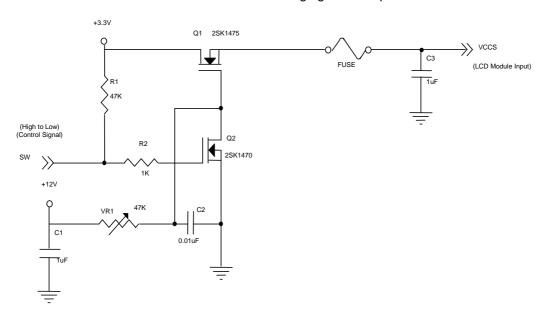
24	NC	No Connection (Reserve)
25	VSS	Ground
26	NC	No Connection (Reserve)
27	NC	No Connection (Reserve)
28	VSS	Ground
29	ID1	Connect a 10Kohm to GND
30	ID2	Connect a 10Kohm to GND
31	LED_GND	LED Ground
32	LED_GND	LED Ground
33	LED_GND	LED Ground
34	NC	No Connection (Reserve)
35	LED_PWM	PWM Control Signal of LED Converter
36	LED_EN	Enable Control Signal of LED Converter
37	NC	No Connection (Reserve)
38	LED_VCCS	LED Power Supply
39	LED_VCCS	LED Power Supply
40	LED_VCCS	LED Power Supply

Note (1) The first pixel is odd as shown in the following figure.

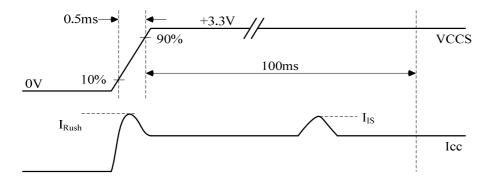
Version 2.0 11 September 2013 7 / 36

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELETRONICS SPECIFICATION

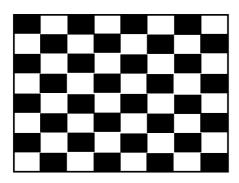

Parameter		Symbol	Value			Lloit	Note
			Min.	Тур.	Max.	Unit	Note
Power Supply Voltage		vccs	3.0	3.3	3.6	V	(1)-
Ripple Voltage		V _{RP}	-	50	-	mV	(1)-
Inrush Current		I _{RUSH}	-	-	1.5	Α	(1),(2)
Mosaic		loo	160	190	230	mA	(3)a
Power Supply Current	White	lcc	185	220	265	mA	

Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.


Note (2) I_{RUSH} : the maximum current when VCCS is rising

I_{IS}: the maximum current of the first 100ms after power-on

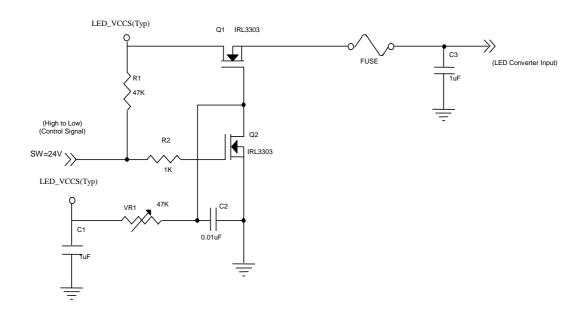
Measurement Conditions: Shown as the following figure. Test pattern: white.


VCCS rising time is 0.5ms

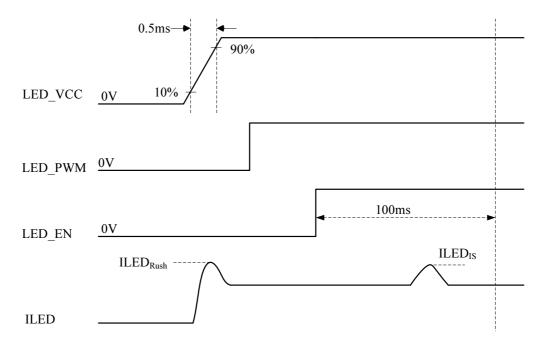
Note (3) The specified power supply current is under the conditions at VCCS = 3.3 V, Ta = 25 \pm 2 °C, DC Current and f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

a. Mosaic Pattern

Active Area


4.3.2 LED CONVERTER SPECIFICATION

Doror	motor	Cymphol		Value		Linit	Note
Parar	netei	Symbol	Min.	Тур.	Max.	Unit	Note
Converter Input pow	er supply voltage	LED_Vccs	3.2	3.7	4.2	V	
Converter Inrush Cu	ILED _{RUSH}	-	-	1.5	А	(1)	
EN Control Level	Backlight On		3.0	-	3.6	V	
EN Control Level	Backlight Off		0	-	0.5	V	
PWM Control Level	PWM High Level		3.0	-	3.6	V	
Pvvivi Control Level	PWM Low Level		0	-	0.5	V	
DWM Control Duty	Datia		10	-	100	%	
PWM Control Duty F	Rallo		5	-	100	%	(2)
PWM Control F Voltage	Permissive Ripple	VPWM_pp	-	-	100	mV	
PWM Control Frequ	ency	f_{PWM}	190	-	2K	Hz	(3)
LED Power Current	ILED	450	532	609	mA	(4)	


Note (1) ILED_{RUSH}: the maximum current when LED_VCCS is rising,

ILED_{IS}: the maximum current of the first 100ms after power-on,

Measurement Conditions: Shown as the following figure. LED_VCCS = Typ, Ta = 25 \pm 2 $^{\circ}$ C, f_{PWM} = 200 Hz, Duty=100%.

VLED rising time is 0.5ms

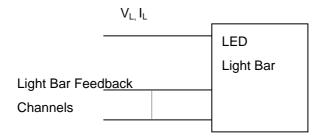
- Note (2) If the PWM control duty ratio is less than 10%, there is some possibility that acoustic noise or backlight flash can be found. And it is also difficult to control the brightness linearity.
- Note (3) If PWM control frequency is applied in the range less than 1KHz, the "waterfall" phenomenon on the screen may be found. To avoid the issue, it's a suggestion that PWM control frequency should follow the criterion as below.

PWM control frequency
$$f_{\text{PWM}}$$
 should be in the range
$$(N+0.33)*f \leq f_{\text{PWM}} \leq (N+0.66)*f$$

$$N: \text{Integer} \ \ (N\geq 3)$$

$$f: \text{Frame rate}$$

Note (4) The specified LED power supply current is under the conditions at "LED_VCCS = Typ.", Ta = 25 \pm 2 °C, f_{PWM} = 200 Hz, Duty=100%.



4.3.3 BACKLIGHT UNIT

 $Ta = 25 \pm 2 \, ^{\circ}C$

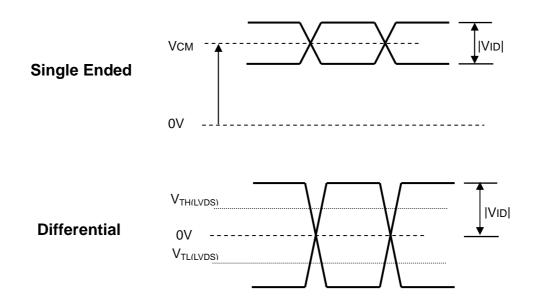
Dovomotor	Cumbal		Value		l lm:4	Note	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note	
LED Light Bar Power Supply Voltage	VL	8.4	9	9.9	V	(4)(2)(Duty(1009())	
LED Light Bar Power Supply Current	IL	-	178.4	-	mA	(1)(2)(Duty100%)	
Power Consumption	PL		1.61	1.77	W	(3)	
LED Life Time	L_BL	12000	-	-	Hrs	(4)	

Note (1) LED current is measured by utilizing a high frequency current meter as shown below:

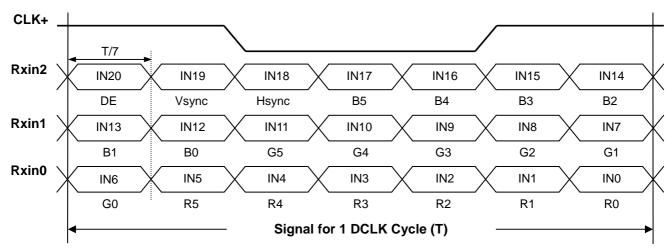
Note (2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with current balancing function to drive LED light-bar.

Note (3) $P_L = I_L \times V_L$ (Without LED converter transfer efficiency)

Note (4) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and I_L = 20 mA(Per EA) until the brightness becomes $\leq 50\%$ of its original value.



4.4 LVDS INPUT SIGNAL TIMING SPECIFICATIONS


4.4.1 LVDS DC SPECIFICATIONS

Parameter	Symbol		Value		Unit	Note	
	,	Min.	Тур.	Max.			
LVDS Differential Input High Threshold	V _{TH(LVDS)}	-	-	+100	mV	(1), V _{CM} =1.2V	
LVDS Differential Input Low Threshold	V _{TL(LVDS)}	-100	-	-	mV	(1) V _{CM} =1.2V	
LVDS Common Mode Voltage	V_{CM}	1.125	-	1.375	V	(1)	
LVDS Differential Input Voltage	V _{ID}	100	-	600	mV	(1)	
LVDS Terminating Resistor	R_T	-	100	-	Ohm	-	

Note (1) The parameters of LVDS signals are defined as the following figures.

4.4.2 LVDS DATA FORMAT

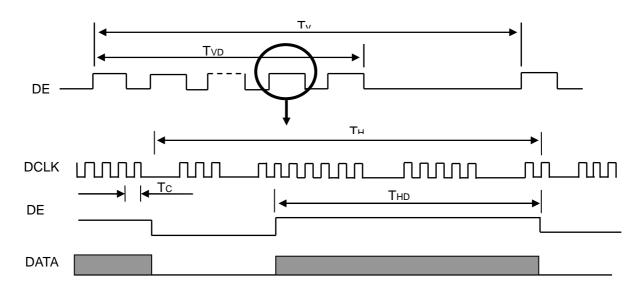
Version 2.0 11 September 2013 13 / 36

4.4.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

									[Data		al							
	Color			Re						Gre							ue		
	T.	R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	: (:	:	:	:	: (:	:	:	:	;	;	:	:	;
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

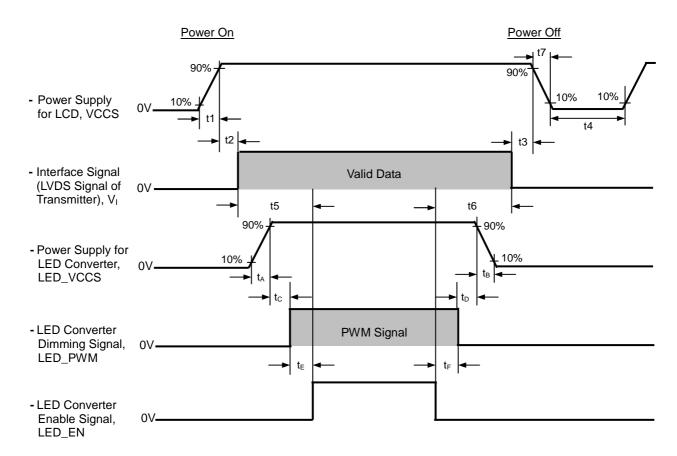

4.5 DISPLAY TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	60.4	71.1	74.7	MHz	-
	Vertical Total Time	TV	810	823	829	TH	-
	Vertical Active Display Period	TVD	800	800	800	TH	-
DE	Vertical Active Blanking Period	TVB	TV-TVD	23	TV-TVD	TH	-
DE	Horizontal Total Time	TH	1362	1440	1480	Тс	-
	Horizontal Active Display Period	THD	1280	1280	1280	Тс	-
	Horizontal Active Blanking Period	THB	TH-THD	160	TH-THD	Tc	-

Note (1) Because this module is operated by DE only mode, Hsync and Vsync are ignored.

INPUT SIGNAL TIMING DIAGRAM



4.6 POWER ON/OFF SEQUENCE

The power sequence specifications are shown as the following table and diagram.

Cymphol		Value		Unit	Note
Symbol	Min.	Тур.	Max.	Offic	Note
t1	0.5	-	10	ms	
t2	0	-	50	ms	
t3	0	-	50	ms	
t4	500	-	-	ms	
t5	200	-	-	ms	
t6	200	-	-	ms	
t7	0.5	-	10	ms	
t_A	0.5	-	10	ms	
t_{B}	0		10	ms	
t_{C}	10	-	-	ms	
t _D	10	-	-	ms	
t _∈	10	-	-	ms	
t _F	10	-	-	ms	

- Note (1) Please don't plug or unplug the interface cable when system is turned on.
- Note (2) Please avoid floating state of the interface signal during signal invalid period.
- Note (3) It is recommended that the backlight power must be turned on after the power supply for LCD and the interface signal is valid.

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Та	25±2	°C		
Ambient Humidity	Ha	50±10	%RH		
Supply Voltage	V _{cc}	3.3	V		
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"				
LED Light Bar Input Current	IL	178.4	mA		


The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

5.2 OPTICAL SPECIFICATIONS

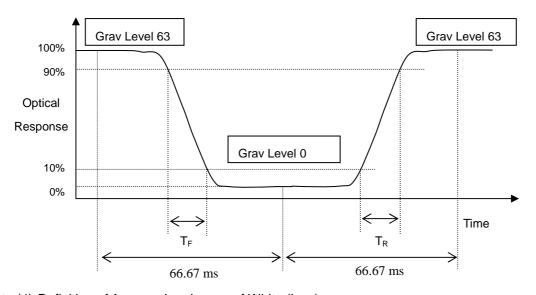
Iter	m	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio		CR		500	800	-	-	(2), (5),(7)	
Response Time		T _R		-	14	17	ms		
Response fille		T _F		-	11	14	ms	(3),(7)	
Cross Talk		CT		-	-	4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Average Lumina	ance of White	Lave		300 350 - cd/m ²				(4), (6),(7)	
	Dod	Rx	$\theta_x=0^\circ$, $\theta_Y=0^\circ$		0.592		-		
Red Ry Viewing Normal Angle 0.340 Color Gy Chromaticity Blue Bx Viewing Normal Angle D.370 Red Ry Viewing Normal Angle 0.340 0.340 0.340 0.340 0.340 0.340 0.310	Ry			0.340		-			
	0.310		-						
	Green	Gy	_	Тур –	0.579	Typ +	-	(1),(7)	
	Dlug	Bx		0.03	0.150	0.03	-		
	Blue	Ву			0.128		-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\//b:4a	Wx			0.308		-		
	Wy			0.324		-			
Color G	Samut	CG		47	50		%	(9)	
	l lawi-antal	θ_x +		80	85				
Viousing Angle	Horizontai	θ_{x} -	OD>40	80	85	-	Dog	(1),(5),	
Viewing Angle	\ /o.wt: o.o.l	θ _Υ +	CR≥10	80	85	-	Deg.	(7)	
	Vertical	θ _Y -		80	0.592 0.340 0.310 0.579 0.150 0.128 0.308 0.324 47 50 % 80 85 - 80 80 80 80 80 80 80 80 80 80 80 80 80 8				
White Variation	of 5 Points	δW _{5p}	$\theta_x=0^\circ, \ \theta_Y=0^\circ$	80	90	-	%	(5),(6) , (7)	

Note (1) Definition of Viewing Angle (θx , θy)

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0


L63: Luminance of gray level 63

L 0: Luminance of gray level 0

CR = CR(1)

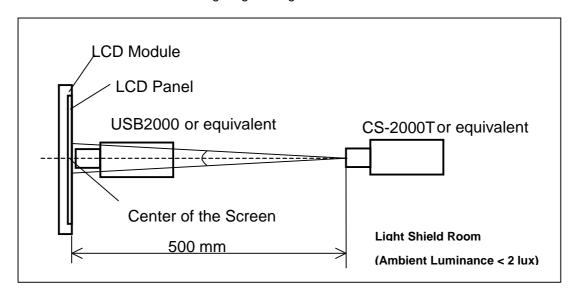
CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F):

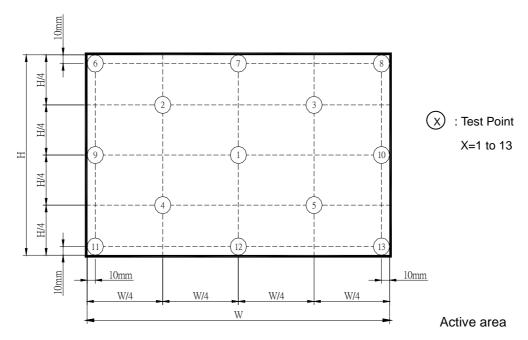
Note (4) Definition of Average Luminance of White (LAVE):

Measure the luminance of gray level 63 at 5 points

$$L_{AVE} = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5$$



L(x) is corresponding to the luminance of the point X at Figure in Note (6)


Note (5) Measurement Setup:

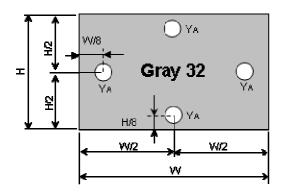
The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

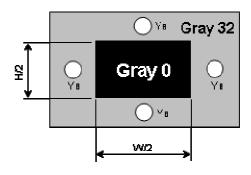
Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 5 points $\delta W_{5p} = \{ \text{Minimum} \left[\text{L} \left(1 \right) \sim \text{L} \left(5 \right) \right] / \text{Maximum} \left[\text{L} \left(1 \right) \sim \text{L} \left(5 \right) \right] \}^* 100\%$

Note (7) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.

Version 2.0 11 September 2013 20 / 36

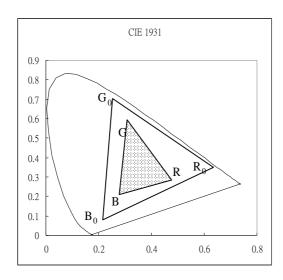

Note (8) Cross Talk (CT):


$$CT = | Y_B - Y_A | / Y_A \times 100\%$$

Where

Y_A=Luminance of measured location in left figure

Y_B=Luminance of measured location in right figure


Note (9) Definition of color gamut (C.G%):

R₀, G₀, B₀: CIE1931 coordinates of red, green, and blue defined by NTSC.

R, G, B: CIE1931 coordinates of red, green, and blue in module at 63 gray level.

Area (R₀, G₀, B₀): Area of the triangle defined by coordinate R0, G0, B0.

Area(R, G, B): Area of the triangle defined by coordinate R, G, B

6. RELIABILITY TEST ITEM

Test Item	Test Condition	Note
High Temperature Storage Test	70°C, 240 hours	
Low Temperature Storage Test	-20°C, 240 hours	
Thermal Shock Storage Test	-20°C, 0.5hour ←→70°C, 0.5hour; 100cycles, 1hour/cycle	
High Temperature Operation Test	60°C, 240 hours	(1) (2)
Low Temperature Operation Test	-10°C, 240 hours	
High Temperature & High Humidity Operation Test	50°C, RH 80%, 240hours	
ESD Test (Operation)	150pF, 330 Ω, 1sec/cycle Condition 1 : Contact Discharge, ±8KV Condition 2 : Air Discharge, ±15KV	(1)
Shock (Non-Operating)	220G, 2ms, half sine wave,1 time for each direction of ±X,±Y,±Z	(1)(3)
Vibration (Non-Operating)	1.5G / 10-500 Hz, Sine wave, 30 min/cycle, 1cycle for each X, Y, Z	(1)(3)

- Note (1) criteria: Normal display image with no obvious non-uniformity and no line defect.
- Note (2) Evaluation should be tested after storage at room temperature for more than two hour
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

7. PACKING

7.1 MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: N101ICG L11
- (b) Revision: Rev. XX, for example: C1, C2 ...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2010~2019

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

7.2 CARTON

Box Dimensions : 435(L)*350(W)*275(H) Weight: Approx. 7.2kg(30 module .per. 1 box)

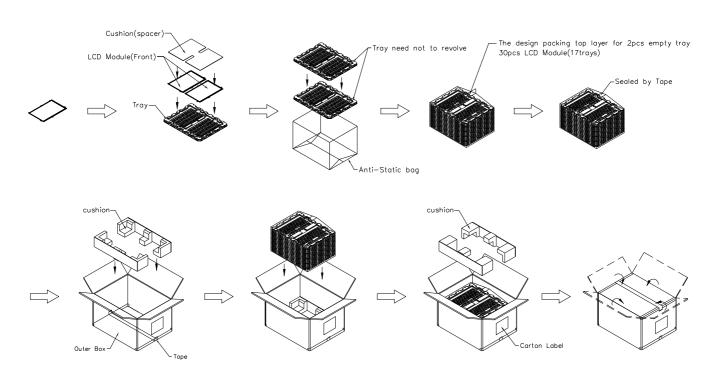


Figure. 7-1 Packing method

7.3 PALLET

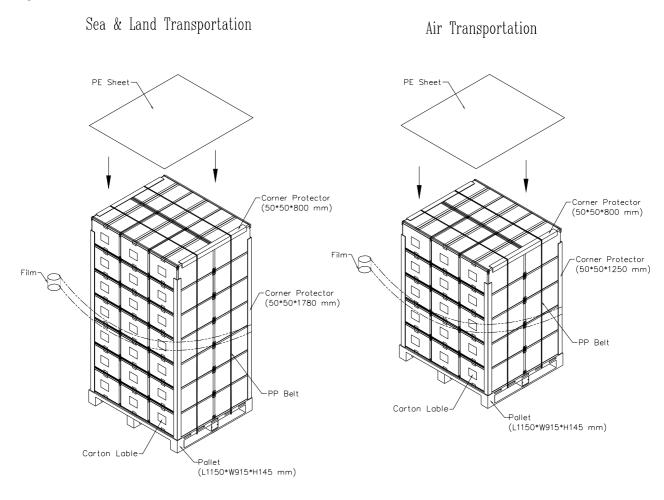


Figure. 7-2 Packing method

7.4 Un-Packing

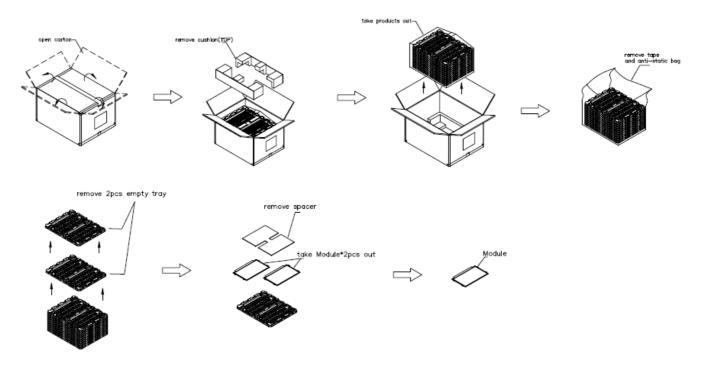


Figure. 7-3 Un-Packing method

INNOLUX 群創光電

PRODUCT SPECIFICATION

8. PRECAUTIONS

8.1 HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the LED wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

8.2 STORAGE PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of LED will be higher than the room temperature.

8.3 OPERATION PRECAUTIONS

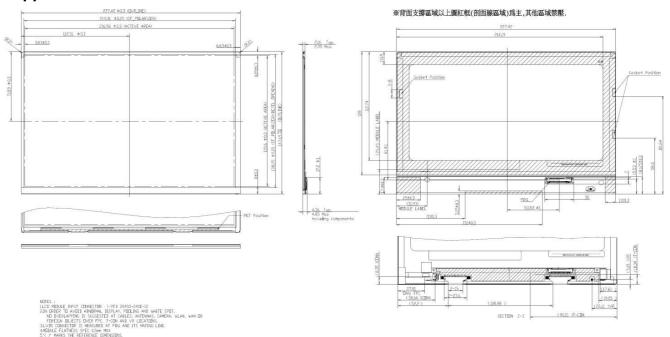
- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up.
- (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with converter. Do not disassemble the module or insert anything into the Backlight unit.

Appendix. EDID DATA STRUCTURE

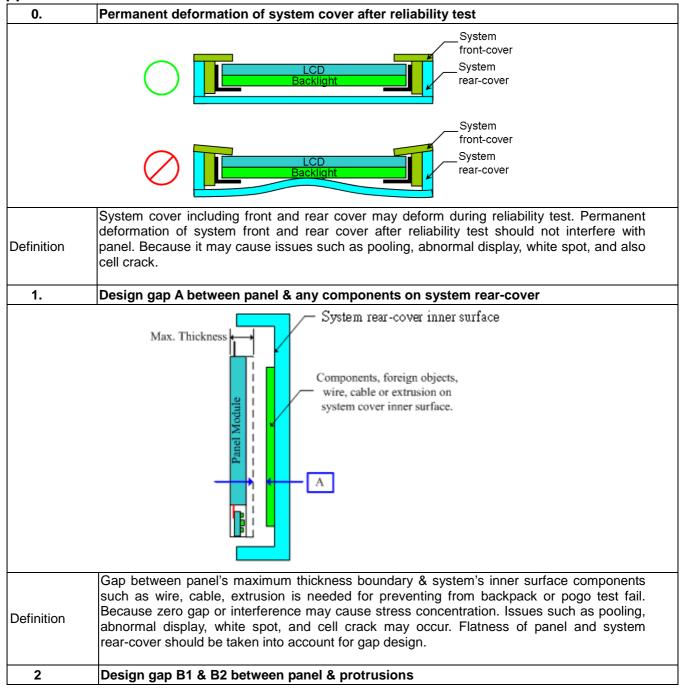
The EDID (Extended Display Identification Data) data formats are to support displays as defined in the VESA Plug & Display and FPDI standards.

	Byte #	Field Name and Comments	Value	Value
(decimal) 0	(hex)	Haadan	(hex) 00	(binary) 00000000
1		Header	FF	11111111
2		Header	FF	11111111
3		Header	FF	11111111
4		Header Header	FF	11111111
5		Header Header	FF	11111111
6		Header	FF	11111111
7		Header	00	00000000
8		EISA ID manufacturer name ("CMN")	0D	00000000
9		EISA ID manufacturer name	AE	10101110
10		ID product code (LSB)	41	01000001
11		ID product code (LSB)	10	00010000
12		ID S/N (fixed "0")	00	00000000
13		ID S/N (fixed "0")	00	00000000
14		ID S/N (fixed "0")	00	00000000
15		ID S/N (fixed "0")	00	00000000
16	10	Week of manufacture (fixed week code)	1D	0000000
17	11	Year of manufacture (fixed year code)	17	00011101
18		EDID structure version ("1")	01	00000001
19		EDID structure version (1) EDID revision ("3")	03	0000001
20		Video I/P definition ("Digital")	80	100000011
21	15	Active area horizontal ("21.696cm")	16	00010110
22		Active area vertical ("13.56cm")	0E	00001110
23		Display Gamma (Gamma = "2.2")	78	01111000
24		Feature support ("RGB Color")	0A	00001010
25		Rx1, Rx0, Ry1, Ry0, Gx1, Gx0, Gy1, Gy0	85	10000101
26		Bx1, Bx0, By1, By0, Wx1, Wx0, Wy1, Wy0	BC	10111100
27		Rx=0.592	97	10010111
28		Ry=0.34	57	01010111
29		Gx=0.31	4F	01001111
30	1E	Gy=0.579	94	10010100
31		Bx=0.15	26	00100110
32		By=0.128	20	00100000
33		Wx=0.308	4E	01001110
34		Wy=0.324	53	01010011
35		Established timings 1	00	00000000
36		Established timings 2	00	00000000
37		Manufacturer's reserved timings	00	00000000
38		Standard timing ID # 1	01	00000001
39	27	Standard timing ID # 1	01	00000001
40	28	Standard timing ID # 2	01	00000001
41		Standard timing ID # 2	01	00000001

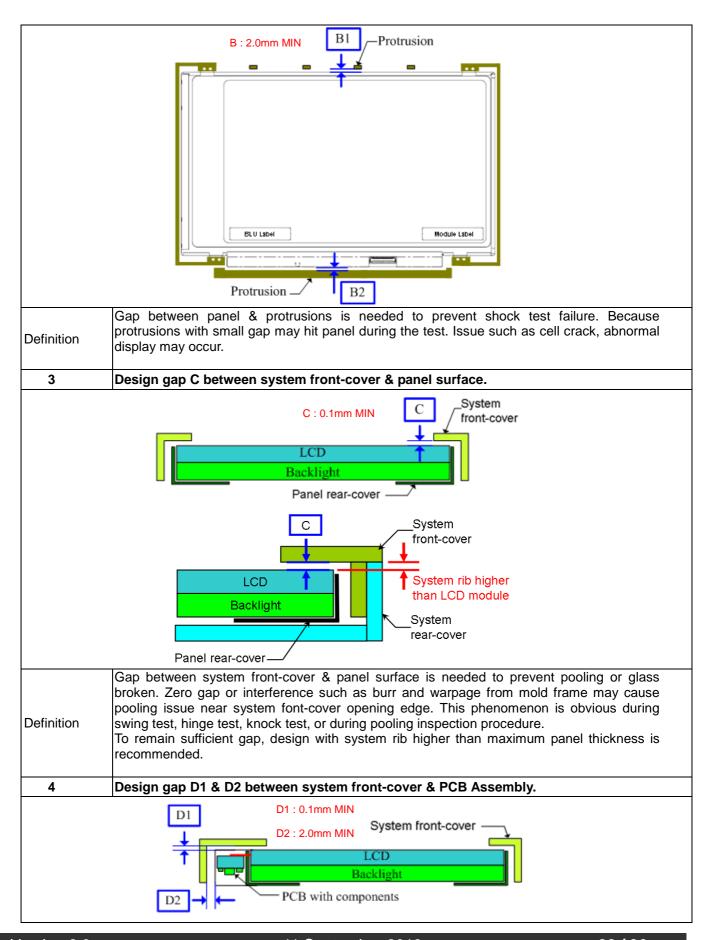
40	$\overline{}$	T	T 04	00000004
42	2A	Standard timing ID # 3	01	00000001
43	2B	Standard timing ID # 3	01	00000001
44	2C	Standard timing ID # 4	01	00000001
45	2D	Standard timing ID # 4	01	00000001
46	2E	Standard timing ID # 5	01	00000001
47	2F	Standard timing ID # 5	01	0000001
48	30	Standard timing ID # 6	01	00000001
49	31	Standard timing ID # 6	01	00000001
50	32	Standard timing ID # 7	01	00000001
51	33	Standard timing ID # 7	01	00000001
52	34	Standard timing ID # 8	01	00000001
53	35	Standard timing ID # 8	01	0000001
54	36	Detailed timing description # 1 Pixel clock ("71.11MHz")	C7	11000111
55	37	# 1 Pixel clock (hex LSB first)	1B	00011011
56	38	# 1 H active ("1280")	00	00000000
57	39	# 1 H blank ("160")	A0	10100000
58	3A	# 1 H active : H blank	50	01010000
59	3B	# 1 V active ("800")	20	00100000
60	3C	# 1 V blank ("23")	17	00010111
61	3D	# 1 V active : V blank	30	00110000
62	3E	# 1 H sync offset ("48")	30	00110000
63	3F	# 1 H sync pulse width ("32")	20	00100000
64	40	# 1 V sync offset : V sync pulse width ("3 : 6")	36	00110110
65	41	# 1 H sync offset : H sync pulse width : V sync offset : V sync width	00	00000000
66	42	# 1 H image size ("216 mm")	D8	11011000
67	43	# 1 V image size ("135 mm")	87	10000111
68	44	# 1 H image size : V image size	00	00000000
69	45	# 1 H boarder ("0")	00	00000000
70	46	# 1 V boarder ("0")	00	00000000
71	47	# 1 Non-interlaced, Normal, no stereo, Separate sync, H/V pol	18	00011000
72	47	Negatives Detailed timing description # 2	00	00000000
72	48	Detailed timing description # 2	00	00000000
73	49 4A	# 2 Pasaryad		1
74 75	4A 4B	# 2 Reserved	00 FE	00000000
75 76	4B	# 2 ASCII string Model name	00	00000000
76	4C 4D	# 2 Flag # 2 Character of Model name ("N")		01001110
78	4D 4F	# 2 Character of Model name ("N") # 2 Character of Model name ("1")	4E	01001110
78 79	4E	# 2 Character of Model name ("1")	31	00110001
80	4F	# 2 Character of Model name ("0")	30	00110000
80	50	# 2 Character of Model name ("1")	31	01001001
81	51	# 2 Character of Model name ("I")	49	01001001
83	52 53	# 2 Character of Model name ("C")	43	01000011
	53	# 2 Character of Model name ("G")	47 2D	+
84 85	54 55	# 2 Character of Model name ("-")	2D 4C	00101101
85 86	55 56	# 2 Character of Model name ("L")	4C 31	01001100
86 87	56 57	# 2 Character of Model name ("1") # 2 Character of Model name ("1")	31	00110001
88	58	# 2 Character of Model name ("1") # 2 New line character indicates end of ASCII string	0A	000110001
00		The river intermine character indicates end of ASCII String		1 0000 1010


Version 2.0 11 September 2013 29 / 36

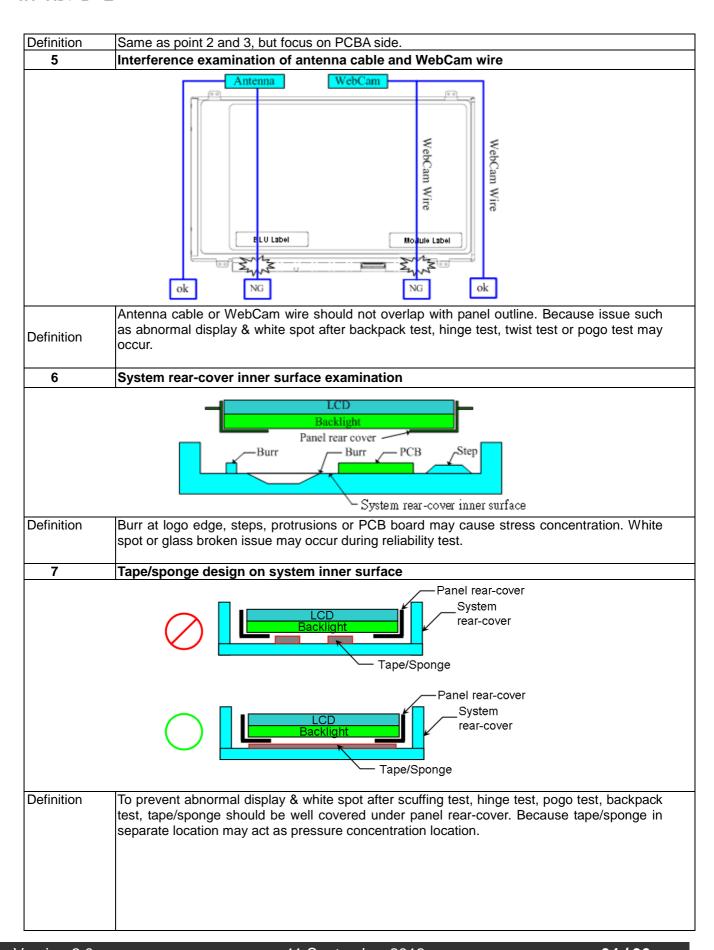
89	59	# 2 Padding with "Blank" character	20	00100000
90	5A	Detailed timing description # 3	00	00000000
91	5B	# 3 Flag	00	00000000
92	5C	# 3 Reserved	00	00000000
93	5D	# 3 ASCII string Vendor	FE	11111110
94	5E	# 3 Flag	00	00000000
95	5F	# 3 Character of string ("C")	43	01000011
96	60	# 3 Character of string ("M")	4D	01001101
97	61	# 3 Character of string ("N")	4E	01001110
98	62	# 3 New line character indicates end of ASCII string	0A	00001010
99	63	# 3 Padding with "Blank" character	20	00100000
100	64	# 3 Padding with "Blank" character	20	00100000
101	65	# 3 Padding with "Blank" character	20	00100000
102	66	# 3 Padding with "Blank" character	20	00100000
103	67	# 3 Padding with "Blank" character	20	00100000
104	68	# 3 Padding with "Blank" character	20	00100000
105	69	# 3 Padding with "Blank" character	20	00100000
106	6A	# 3 Padding with "Blank" character	20	00100000
107	6B	# 3 Padding with "Blank" character	20	00100000
108	6C	Detailed timing description # 4	00	00000000
109	6D	# 4 Flag	00	00000000
110	6E	# 4 Reserved	00	00000000
111	6F	# 4 ASCII string Model Name	FE	11111110
112	70	# 4 Flag	00	00000000
113	71	# 4 Character of Model name ("N")	4E	01001110
114	72	# 4 Character of Model name ("1")	31	00110001
115	73	# 4 Character of Model name ("0")	30	00110000
116	74	# 4 Character of Model name ("1")	31	00110001
117	75	# 4 Character of Model name ("I")	49	01001001
118	76	# 4 Character of Model name ("C")	43	01000011
119	77	# 4 Character of Model name ("G")	47	01000111
120	78	# 4 Character of Model name ("-")	2D	00101101
121	79	# 4 Character of Model name ("L")	4C	01001100
122	7A	# 4 Character of Model name ("1")	31	00110001
123	7B	# 4 Character of Model name ("1")	31	00110001
124	7C	# 4 New line character indicates end of ASCII string	0A	00001010
125	7D	# 4 Padding with "Blank" character	20	00100000
126	7E	Extension flag	00	00000000
127	7F	Checksum	EB	11101011

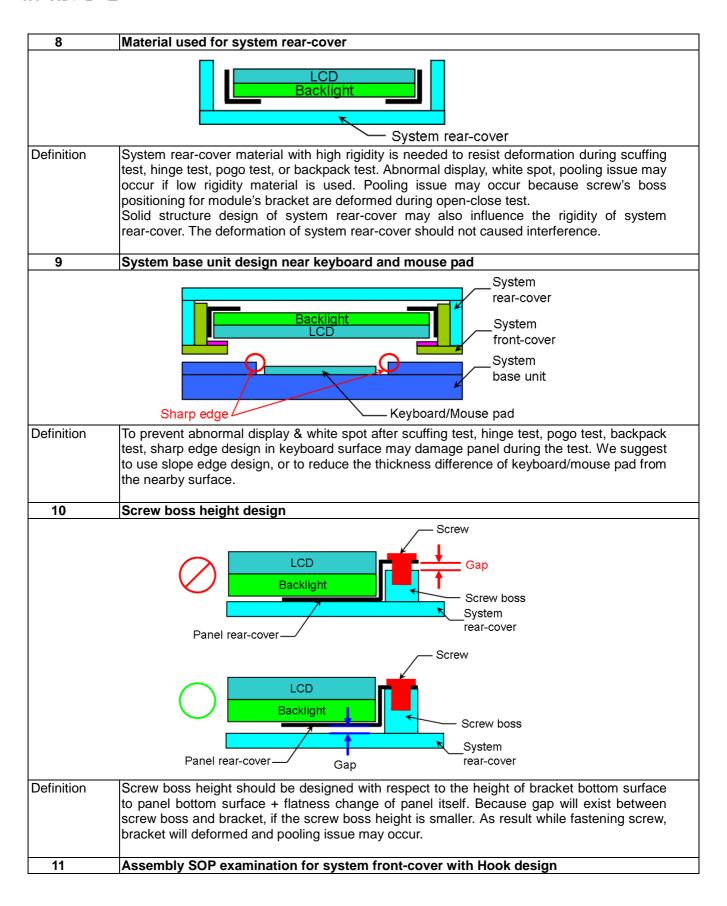


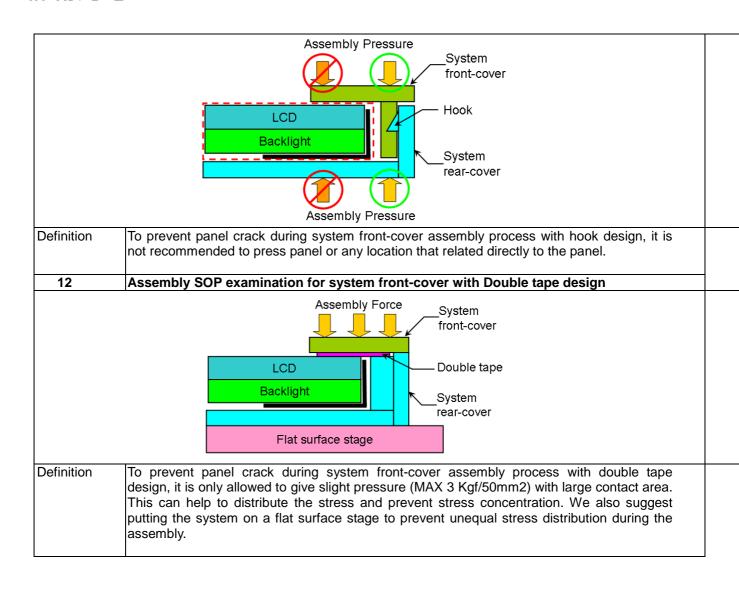
Appendix. OUTLINE DRAWING



Appendix. SYSTEM COVER DESIGN GUIDANCE




Version 2.0 11 September 2013 33 / 36



Version 2.0 11 September 2013 34 / 36

