

Doc. Number:

Tentative Specification

Preliminary Specification

Approval Specification

MODEL NO.: N116BGE SUFFIX: EA2

Customer:			
APPROVED BY	SIGNATURE		
<u>Name / Title</u> Note			
Please return 1 copy for your confirmation with your signature and comments.			

Approved By	Checked By	Prepared By
楊竣傑	曹文彬	劉建宏
2013-10-09	2013-10-09	2013-10-04
10:58:56 CST	10:45:28 CST	11:17:43 CST

Version 2	2.0
-----------	-----

11 October 2013

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 GENERAL SPECIFICATIONS	5
2. MECHANICAL SPECIFICATIONS	6
2.1 CONNECTOR TYPE	6
3. ABSOLUTE MAXIMUM RATINGS	7
3.1 ABSOLUTE RATINGS OF ENVIRONMENT	7
3.2 ELECTRICAL ABSOLUTE RATINGS	7
3.2.1 TFT LCD MODULE	7
4. ELECTRICAL SPECIFICATIONS	8
4.1 FUNCTION BLOCK DIAGRAM	
4.2. INTERFACE RFACE CONNECTIONS	
4.3 ELECTRICAL CHARACTERISTICS	10
4.3.1 LCD ELETRONICS SPECIFICATION	10
4.3.2 LED CONVERTER SPECIFICATION	12
4.3.3 BACKLIGHT UNIT	14
4.4 DISPLAY PORT INPUT SIGNAL TIMING SPECIFICATIONS	15
4.4.1 ELECTRICAL SPECIFICATIONS	
4.4.2 COLOR DATA INPUT ASSIGNMENT	16
4.5 DISPLAY TIMING SPECIFICATIONS	
4.6 POWER ON/OFF SEQUENCE	
5. OPTICAL CHARACTERISTICS	21
5.1 TEST CONDITIONS	21
5.2 OPTICAL SPECIFICATIONS	21
6. RELIABILITY TEST ITEM	25
7. PACKING	26
7.1 MODULE LABEL	26
7.2 CARTON	27
7.3 PALLET	
7.4 UN-PACKING	29
8. PRECAUTIONS	
8.1 HANDLING PRECAUTIONS	
8.2 STORAGE PRECAUTIONS	
8.3 OPERATION PRECAUTIONS	
Appendix. EDID DATA STRUCTURE	
Appendix. OUTLINE DRAWING	34

11 October 2013

Appendix. SYSTEM COVER DESIGN NOTICE

REVISION HISTORY

Version	Date	Page	Description
2.0	Oct. 4, 2013	All	Approval Spec Ver.2.0 was first issued for Common Model

1. GENERAL DESCRIPTION

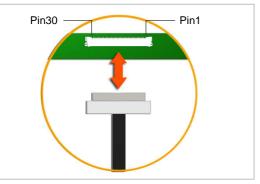
1.1 OVERVIEW

N116BGE-EA2 is a 11.6" (11.6" diagonal) TFT Liquid Crystal Display module with LED Backlight unit and 30 pins eDP interface. This module supports 1366 x 768 HD mode and can display 262,144 colors. The optimum viewing angle is at 6 o'clock direction.

1.2 GENERAL SPECIFICATIONS

Item	Specification		Unit	Note
Screen Size	11.6 diagonal			
Driver Element	a-si TFT active matrix		-	-
Pixel Number	1366 x R.G.B. x 768		pixel	-
Pixel Pitch	0.1875 (H) x 0.1875 (V)		mm	-
Pixel Arrangement	RGB vertical stripe		-	-
Display Colors	262,144		color	-
Transmissive Mode	Normally white		-	-
Surface Treatment	Hard coating (3H), Anti-Glare		-	-
Luminance, White	220(typ.)		Cd/m2	
Power Consumption	Total 2.646 W (Max.) @ cell 0.75W (Max.), 1.896 W (Max)	BL		(1)

Note (1) The specified power consumption (with converter efficiency) is under the conditions at VCCS = 3.3 V, fv = 60 Hz, LED_VCCS = Typ, fPWM = 200 Hz, Duty=100% and Ta = $25 \pm 2 \text{ °C}$, whereas mosaic pattern is display.



2. MECHANICAL SPECIFICATIONS

	Item	Min. Typ. Max. Unit N		Note		
	Horizontal (H) W/o Bracket	267.5	268	268.5	mm	
	Vertical (V) With PCB	167.4	167.9	168.4	mm	(1)
	Vertical (V) W/o PCB	157	157.5	158	mm	
	Thickness (T)	-	-	3.0	mm	-
Bezel Area	Horizontal	258.825	259.125	259.425	mm	
Dezel Alea	Vertical	146.5	146.8	147.1	mm	
Active Aree	Horizontal	255.825	256.125	256.425	mm	
Active Area	Vertical	143.7	144	144.3	mm	
Glass	CF	0.35	0.4	0.45	mm	
Thickness	TFT	0.35	0.4	0.45	mm	
,	Weight	-	200	210	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2.1 CONNECTOR TYPE

Please refer Appendix Outline Drawing for detail design. Connector Part No.: IPEX-20455-030E-12 User's connector Part No: IPEX-20453-030T-03

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

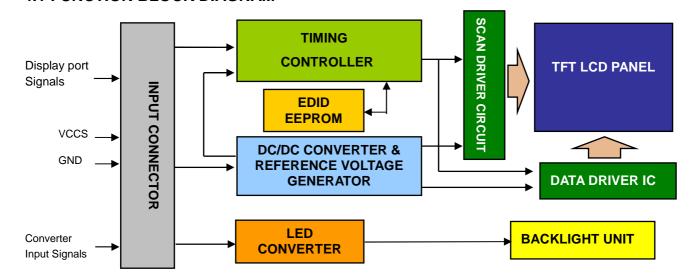
Item	Sumbol	Value		Unit	Note
nem	Symbol	Min.	Max.	Unit	NOLE
Storage Temperature	T _{ST}	-20	+60	°C	(1)
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)

Note (1) (a) 90 %RH Max. (Ta <= 40 °C).

(b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).

(c) No condensation.

Note (2) The temperature of panel surface should be 0 °C min. and 60 °C max.


3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

ltem	Symbol	Value		Unit	Note
	Cymbol	Min.	Max.	Onit	Note
Power Supply Voltage	VCCS	-0.3	+4.0	V	(1)
Logic Input Voltage	V _{IN}	-0.3	VCCS+0.3	V	(1)
Converter Input Voltage	LED_VCCS	-0.3	26	V	(1)
Converter Control Signal Voltage	LED_PWM,	-0.3	4	V	(1)
Converter Control Signal Voltage	LED_EN	-0.3	4	V	(1)

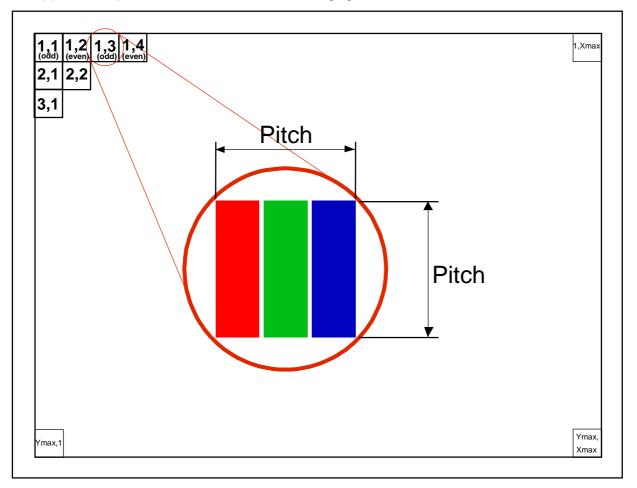
Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".

4. ELECTRICAL SPECIFICATIONS 4.1 FUNCTION BLOCK DIAGRAM

4.2. INTERFACE RFACE CONNECTIONS

PIN ASSIGNMENT

Pin	Symbol	Description	Remark
1	NC	No Connection (Reserved for LCD test)	
2	H_GND	High Speed Ground	
3	NC	No Connection (Reserved for LCD test)	
4	NC	No Connection (Reserved for LCD test)	
5	H_GND	High Speed Ground	
6	ML0-	Complement Signal-Lane 0	
7	ML0+	True Signal-Main Lane 0	
8	H_GND	High Speed Ground	
9	AUX+	True Signal-Auxiliary Channel	
10	AUX-	Complement Signal-Auxiliary Channel	
11	H_GND	High Speed Ground	
12	VCCS	Power Supply +3.3 V (typical)	
13	VCCS	Power Supply +3.3 V (typical)	
14	NC	No Connection (Reserved for LCD test)	
15	GND	Ground	
16	GND	Ground	
17	HPD	Hot Plug Detect	
18	BL_GND	BL Ground	
19	BL_GND	BL Ground	
20	BL_GND	BL Ground	
21	BL_GND	BL Ground	
22	LED_EN	BL_Enable Signal of LED Converter	
23	LED_PWM	PWM Dimming Control Signal of LED Converter	
24	NC	No Connection (Reserved for LCD test)	
25	NC	No Connection (Reserved for LCD test)	


Version 2.0

11 October 2013

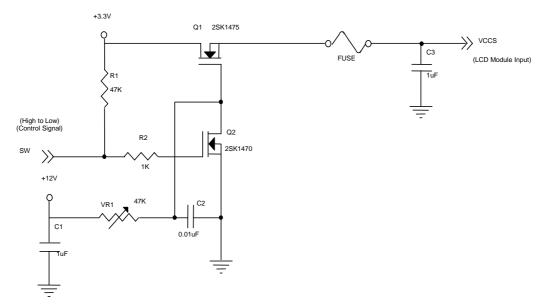
26	LED_VCCS	BL Power	
27	LED_VCCS	BL Power	
28	LED_VCCS	BL Power	
29	LED_VCCS	BL Power	
30	NC	No Connection (Reserved for LCD test)	

Note (1) The first pixel is odd as shown in the following figure.

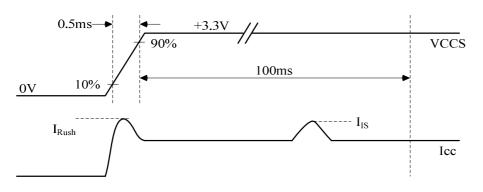
11 October 2013

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELETRONICS SPECIFICATION

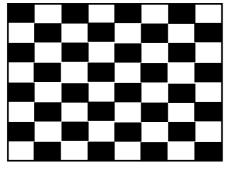

Parar	motor		Sumbol		Value	Unit	Note	
Fala	netei		Symbol	Min.	Тур.	Max.	Unit	NOLE
Power Supply Voltage			VCCS	3.0	3.3	3.6	V	(1)-
HPD	High	Level		2.25	-	2.75	V	
ΠFD	Low Level			0	-	0.4	V	
Ripple Voltage			V_{RP}	-	50	-	mV	(1)-
Inrush Current			I _{RUSH}	-	-	1.5	А	(1),(2)
Power Supply Current		Mosaic	lcc	-	203	225	mA	(3)a
		Black		-	220	247	mA	(3)

Note (1) The ambient temperature is $Ta = 25 \pm 2 \ ^{\circ}C$.


Note (2) I_{RUSH} : the maximum current when VCCS is rising

 I_{IS} : the maximum current of the first 100ms after power-on

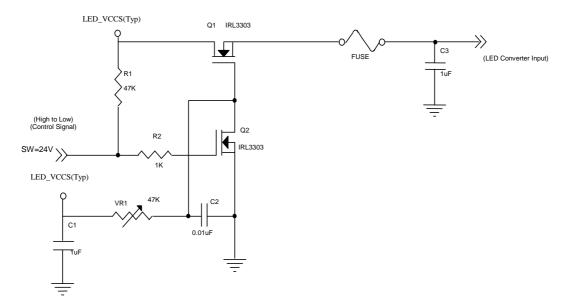
Measurement Conditions: Shown as the following figure. Test pattern: black.


VCCS rising time is 0.5ms

Note (3) The specified power supply current is under the conditions at VCCS = 3.3 V, Ta = 25 ± 2 °C, DC Current and $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

a. Mosaic Pattern

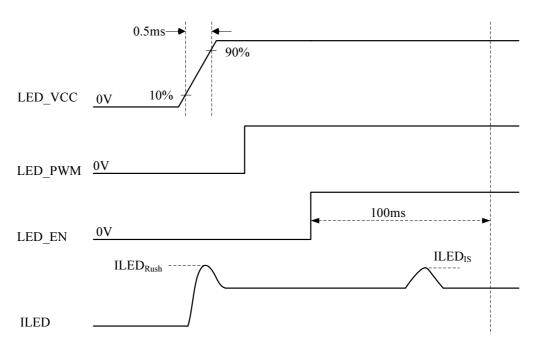
Active Area


4.3.2 LED CONVERTER SPECIFICATION

Doro	meter	Symbol		Value		Unit	Note
Fdia	meter	Symbol	Min.	Тур.	Max.	Unit	Note
Converter Input pow	ver supply voltage	LED_Vccs	5.0	12.0	21.0	V	
Converter Inrush Cu	irrent	ILED _{RUSH}	-	-	1.5	А	(1)
EN Control Level	Backlight On		2.3	-	3.6	V	
	Backlight Off		0	-	0.6	V	
PWM Control Level	PWM High Level		2.3	-	3.6	V	
	PWM Low Level		0	-	0.6	V	
PWM Control Duty F	Ratio		5	-	100	%	(2)
PWM Control Permissive Ripple Voltage		VPWM_pp	-	-	100	mV	
PWM Control Frequency		f _{PWM}	190	-	2K	Hz	(3)
LED Power Current	LED_VCCS =Typ.	ILED	110	136	158	mA	(4)

Note (1) ILED_{RUSH}: the maximum current when LED_VCCS is rising,

ILED_{IS}: the maximum current of the first 100ms after power-on,

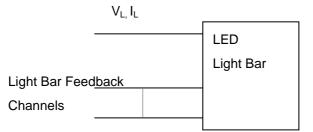

Measurement Conditions: Shown as the following figure. LED_VCCS = Typ, Ta = 25 \pm 2 °C, f_{PWM} = 200 Hz, Duty=100%.

Version 2.0

VLED rising time is 0.5ms

Note (2) If PWM control frequency is applied in the range less than 1KHz, the "waterfall" phenomenon on the screen may be found. To avoid the issue, it's a suggestion that PWM control frequency should follow the criterion as below.

PWM control frequency
$$f_{PWM}$$
 should be in the range
 $(N + 0.33) * f \le f_{PWM} \le (N + 0.66) * f$
 $N : \text{Integer} \quad (N \ge 3)$
 $f : \text{Frame rate}$


Note (3) The specified LED power supply current is under the conditions at "LED_VCCS = Typ.", Ta = 25 \pm 2 °C, f_{PWM} = 200 Hz, Duty=100%.

4.3.3 BACKLIGHT UNIT

					Та	a = 25 ± 2 °C
Deservator	Our make a l		Value		1.1	Nata
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
LED Light Bar Power Supply Voltage	VL	26	29	30	V	(1)(2)(Duty(100%))
LED Light Bar Power Supply Current	IL		47		mA	(1)(2)(Duty100%)
Power Consumption	PL		1.36	1.41	W	(3)
LED Life Time	L _{BL}	15000	-	-	Hrs	(4)

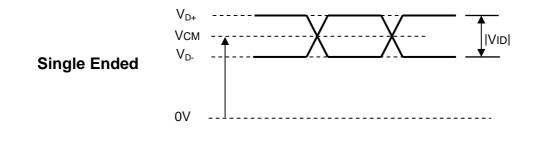
Note (1) LED current is measured by utilizing a high frequency current meter as shown below :

Note (2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with current balancing function to drive LED light-bar.

Note (3) $P_L = I_L \times V_L$ (Without LED converter transfer efficiency)

Note (4) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = 25 ±2 $^{\circ}$ C and I_L = 23.5 mA(Per EA) until the brightness becomes \leq 50% of its original value.

4.4 DISPLAY PORT INPUT SIGNAL TIMING SPECIFICATIONS


4.4.1 ELECTRICAL SPECIFICATIONS

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Differential Signal Common Mode Voltage(MainLink and AUX)	VCM	0		2	V	(1)(3)
AUX AC Coupling Capacitor	C _{AUX}	75		200	nF	(2)

Note (1)Display port interface related AC coupled signals should follow VESA DisplayPort Standard Version1. Revision 1a and VESA Embedded DisplayPort[™] Standard Version 1.2. There are many optional items described in eDP1.2. If some optional item is requested, please contact us.

(2) The AUX AC Coupling Capacitor should be placed on Source Devices.

(3)The source device should pass the test criteria described in DisplayPortCompliance Test Specification (CTS) 1.1

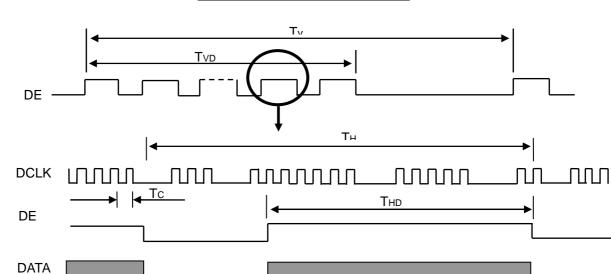
4.4.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

								-		Data	Sign	al							
	Color			Re						Gre						Bl	ue		
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Version 2.0

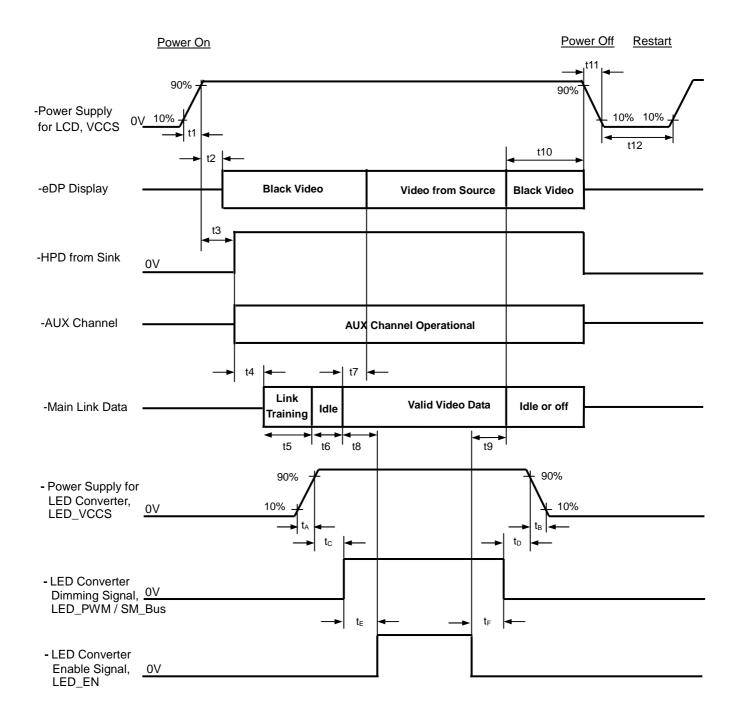


4.5 DISPLAY TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	72.6	76.42	80.24	MHz	-
	Vertical Total Time	ΤV	788	800	868	тн	-
	Vertical Active Display Period	TVD	768	768	768	TH	-
DE	Vertical Active Blanking Period	TVB	TV-TVD	32	TV-TVD	TH	-
DE	Horizontal Total Time	ТН	1506	1592	1716	Тс	-
	Horizontal Active Display Period	THD	1366	1366	1366	Тс	-
	Horizontal Active Blanking Period	THB	TH-THD	226	TH-THD	Тс	-

Note (1) Because this module is operated by DE only mode, Hsync and Vsync are ignored.



INPUT SIGNAL TIMING DIAGRAM

Version 2.0

4.6 POWER ON/OFF SEQUENCE

11 October 2013

Timing Specifications

Parameter	Description	Reqd.		lue	Unit	Notes
	-	By	Min	Max		110100
t1 t2	Power rail rise time, 10% to 90% Delay from LCD,VCCS to black	Source Sink	0.5	10 200	ms ms	- Automatic Black Video generation prevents display noise until valid
	video generation		Ū			video data is received from the Source (see Notes:2 and 3 below) Sink AUX Channel
t3	Delay from LCD,VCCS to HPD high	Sink	0	200	ms	must be operational upon HPD high (see Note:4 below)
t4	Delay from HPD high to link training initialization	Source	-	-	ms	Allows for Source to read Link capability and initialize
t5	Link training duration	Source	-	-	ms	Dependant on Source link training protocol
t6	Link idle	Source	-	-	ms	Min Accounts for required BS-Idle pattern. Max allows for Source frame synchronization
t7	Delay from valid video data from Source to video on display	Sink	0	50	ms	Max value allows for Sink to validate video data and timing. At the end of T7, Sink will indicate the detection of valid video data by setting the SINK_STATUS bit to logic 1 (DPCD 00205h, bit 0), and Sink will no longer generate automatic Black Video
t8	Delay from valid video data from Source to backlight on	Source	-	-	ms	Source must assure display video is stable
t9	Delay from backlight off to end of valid video data	Source	-	-	ms	Source must assure backlight is no longer illuminated. At the end of T9, Sink will indicate the detection of no valid video data by setting the SINK_STATUS bit to logic 0 (DPCD 00205h, bit 0), and Sink will automatically display Black Video. (See Notes: 2 and 3 below)
t10	Delay from end of valid video data from Source to power off	Source	0	500	ms	Black video will be displayed after receiving idle or off signals from Source
t11	VCCS power rail fall time, 90% to 10%	Source	0.5	10	ms	-
t12	VCCS Power off time	Source	500	-	ms	-
t _A	LED power rail rise time, 10% to 90%	Source	0.5	10	ms	-
t _B	LED power rail fall time, 90% to 10%	Source	0	10	ms	-

11 October 2013

t _C	Delay from LED power rising to LED dimming signal	Source	1	-	ms	-
t _D	Delay from LED dimming signal to LED power falling	Source	1	-	ms	-
t _E	Delay from LED dimming signal to LED enable signal	Source	1	-	ms	-
t _F	Delay from LED enable signal to LED dimming signal	Source	1	-	ms	-

Note (1) Please don't plug or unplug the interface cable when system is turned on.

Note (2) The Sink must include the ability to automatically generate Black Video autonomously. The Sink must automatically enable Black Video under the following conditions:

- Upon LCDVCC power-on (within T2 max)

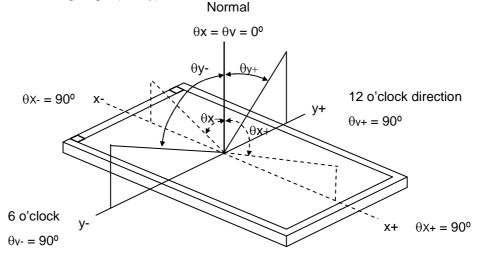
- When the "NoVideoStream_Flag" (VB-ID Bit 3) is received from the Source (at the end of T9)
- Note (3) The Sink may implement the ability to disable the automatic Black Video function, as described in Note (2), above, for system development and debugging purposes.
- Note (4) The Sink must support AUX Channel polling by the Source immediately following LCDVCC power-on without causing damage to the Sink device (the Source can re-try if the Sink is not ready). The Sink must be able to response to an AUX Channel transaction with the time specified within T3 max.

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Та	25±2	°C		
Ambient Humidity	На	50±10	%RH		
Supply Voltage	V _{cc}	3.3	V		
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTIC				
LED Light Bar Input Current	ΙL	47	mA		


The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

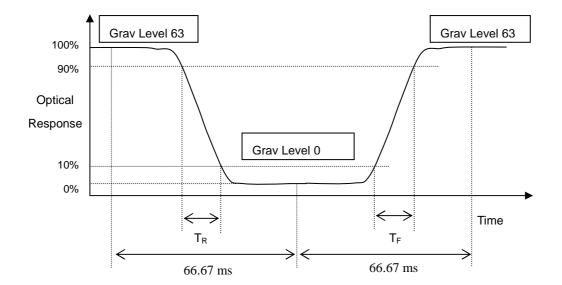
5.2 OPTICAL SPECIFICATIONS

Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		300	500	-	-	(2), (5), (7)
Response Time		T _R		-	3	8	ms	(3), (7)
		T _F		-	7	12	ms	(3), (7)
Average Luminance of White		Lave		190	220	-	cd/m ²	(4), (6) (7)
Pod		Rx	θ _x =0°, θ _Y =0°		0.570		-	
	Red		Viewing Normal Angle		0.333		-	
	Green	Gx			0.325		-	(1), (7)
Color		Gy		Тур –	0.582	Тур +	-	
Chromaticity	Blue	Bx		0.03	0.160	0.03	-	
	Diue	By			0.144		-	
	White	Wx			0.313		-	
	vvnite	Wy			0.329		-	
	Harizantal	θ_x +		40	45	-		
	Horizontal	θ _x -		40	45	-	Dee	(1),(5)
Viewing Angle) (a sti a a l	θ γ+	CR≥10	15	20	-	Deg.	(7)
	Vertical	θγ-		40	45	-		
		δW _{5p}	θ _x =0°, θ _Y =0°	-	-	1.25	-	(5),(6),
White Variation		δW _{13p}	θ _x =0°, θ _Y =0°	-	-	1.6	-	(7)

Note (1) Definition of Viewing Angle ($\theta x, \theta y$):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63

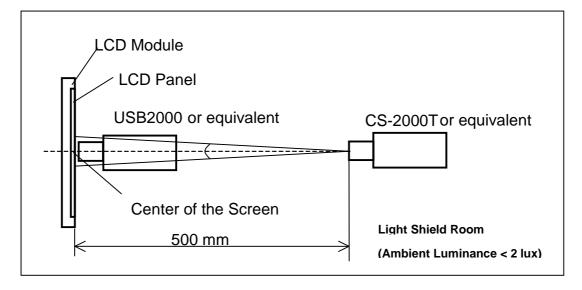
L 0: Luminance of gray level 0

CR = CR(1)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F) :

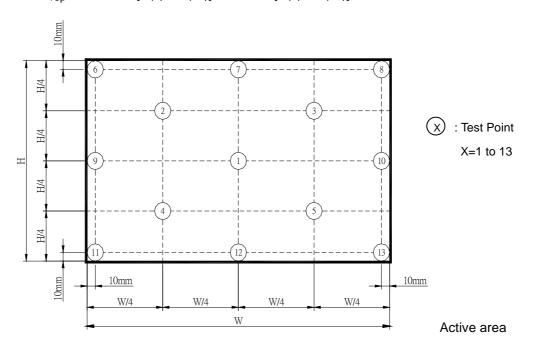
Note (4) Definition of Average Luminance of White (L_{AVE}):


Measure the luminance of gray level 63 at 5 points

 $L_{AVE} = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5$

L (x) is corresponding to the luminance of the point X at Figure in Note (6)

Note (5) Measurement Setup:


The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (6) Definition of White Variation (δW):

 δW_{5p} = Maximum [L (1) ~ L (5)] / Minimum [L (1) ~ L (5)] δW_{13p} = Maximum [L (1) ~ L (13)] / Minimum [L (1) ~ L (13)]

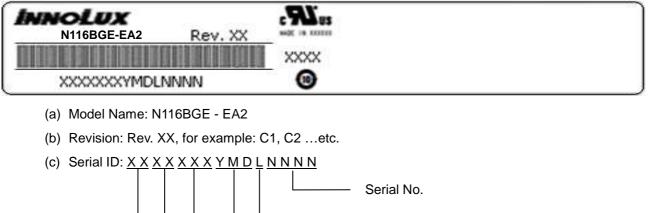
Note (7) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.

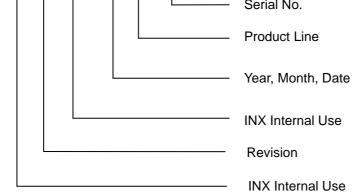
6. RELIABILITY TEST ITEM

Test Item	Test Condition	Note
High Temperature Storage Test	60ºC, 240 hours	
Low Temperature Storage Test	-20°C, 240 hours	
Thermal Shock Storage Test	-20ºC, 0.5hour↔60°C, 0.5hour; 100cycles, 1hour/cycle	
High Temperature Operation Test	50ºC, 240 hours	(1) (2)
Low Temperature Operation Test	0ºC, 240 hours	
High Temperature & High Humidity Operation Test	50ºC, RH 80%, 240hours	
ESD Test (Operation)	150pF, 330 Ω , 1sec/cycle Condition 1 : Contact Discharge, ±8KV Condition 2 : Air Discharge, ±15KV	(1)
Shock (Non-Operating)	220G, 2ms, half sine wave,1 time for each direction of $\pm X, \pm Y, \pm Z$	(1)(3)
Vibration (Non-Operating)	1.5G / 10-500 Hz, Sine wave, 30 min/cycle, 1cycle for each X, Y, Z	(1)(3)

Note (1) criteria : Normal display image with no obvious non-uniformity and no line defect.

Note (2) Evaluation should be tested after storage at room temperature for more than two hour


Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.



7. PACKING

7.1 MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (d) Production Location: MADE IN XXXX.
- (e) UL Logo : XXXX is UL factory ID.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2010~2019

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ... etc
- (e) UL Logo : XXXXX is UL factory ID.

7.2 CARTON

Box Dimensions : 489(L)*382(W)*275(H) Weight: Approx. 11kg(40 module .per. 1 box)

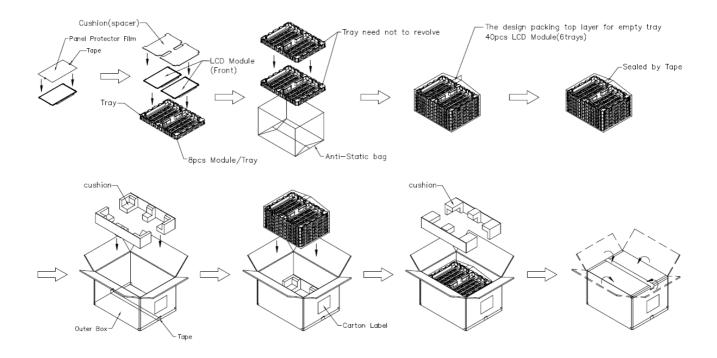


Figure. 7-1 Packing method

7.3 PALLET

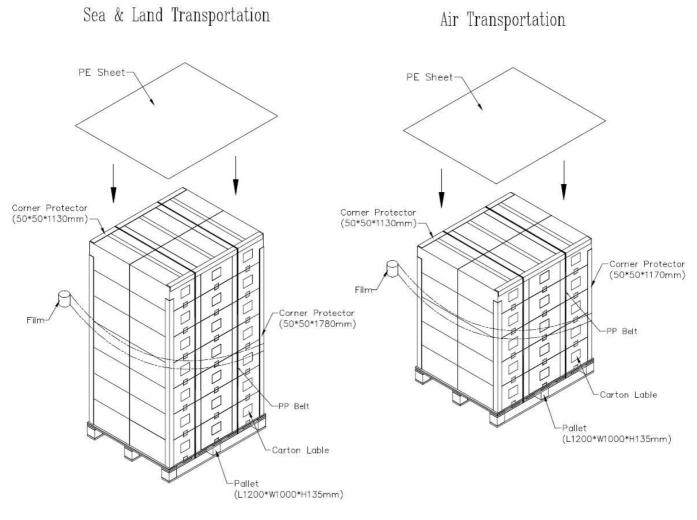


Figure. 7-2 Packing method

PRODUCT SPECIFICATION

7.4 UN-PACKING

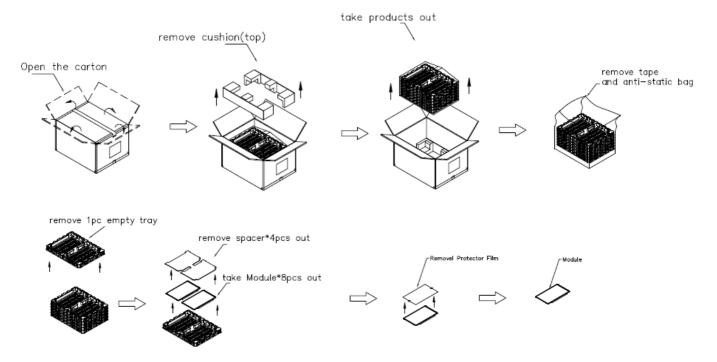


Figure. 7.3 Un-packing method

8. PRECAUTIONS

8.1 HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the LED wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

8.2 STORAGE PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of LED will be higher than the room temperature.

8.3 OPERATION PRECAUTIONS

- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up.
- (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with converter. Do not disassemble the module or insert anything into the Backlight unit.

Appendix. EDID DATA STRUCTURE

The EDID (Extended Display Identification Data) data formats are to support displays as defined in the

VESA Plug & Display and FPDI standards.

	-		Value	Value
Byte # (decimal)		Field Name and Comments	value (hex)	(binary)
	(nex) 0	Header	00	00000000
1	1	Header	FF	11111111
2	2	Header	FF	11111111
3	2	Header	FF	11111111
4	4	Header	FF	11111111
5	4 5	Header	FF	11111111
6	6	Header	FF	11111111
7	7	Header	00	00000000
8	8	EISA ID manufacturer name ("CMN")	00 0D	00000000
9	9	EISA ID manufacturer name	AE	10101110
10	9 0A	ID product code (LSB)	32	00110010
11	0A 0B	ID product code (MSB)	11	00010001
12	0D 0C	ID S/N (fixed "0")	00	00000000
12	00 0D	ID S/N (fixed "0")	00	00000000
13	0D 0E	ID S/N (fixed "0")	00	00000000
14	0E 0F	ID S/N (fixed "0")	00	00000000
15	10 10	Week of manufacture (fixed week code)	13	00010011
17	10	Year of manufacture (fixed year code)	13	00010011
18	12	EDID structure version ("1")	01	00000001
19	12	EDID structure version (1)	01	00000001
20	14	Video I/P definition ("Digital")	95	10010101
20	15	Active area horizontal ("25.6125cm")	1A	00011010
21	16	Active area vertical ("14.4cm")	0E	00001110
22	17	Display Gamma (Gamma = "2.2")	78	01111000
23	18	Feature support ("RGB, Non-continous")	02	00000010
24	10	Rx1, Rx0, Ry1, Ry0, Gx1, Gx0, Gy1, Gy0	14	00010100
25	19 1A	Bx1, Bx0, By1, By0, Wx1, Wx0, Wy1, Wy0	35	00110100
20	1B	Rx=0.57	92	10010010
28	1C	Ry=0.333	92 55	01010101
20	1D	Gx=0.325	53	01010011
30	1E	Gy=0.525 Gy=0.582	95	10010101
30	1F	Bx=0.16	29	00101001
32		Bx=0.104	29	001001001
33	20	Wx=0.313	50	01010000
34	21	Wy=0.329	54	01010000
35	22	~	00	00000000
35	23	Established timings 1 Established timings 2	00	00000000
30	24	Manufacturer's reserved timings	00	00000000
37	25 26	Standard timing ID # 1	00	00000000
30	26	Standard timing ID # 1	01	00000001
40	27	Standard timing ID # 1	01	00000001
40	28 29	Standard timing ID # 2	01	00000001
41	29 2A	Standard timing ID # 2	01	00000001
42	2A 2B	Standard timing ID # 3	01	00000001
43	2D 2C	Standard timing ID # 3	01	00000001
44	20 2D	Standard timing ID # 4	01	00000001
45	2D 2E		01	00000001
40	2E 2F	Standard timing ID # 5	01	
	2F 30	Standard timing ID # 5	01	00000001
48 49	30	Standard timing ID # 6	01	00000001
49	31	Standard timing ID # 6	UI	0000001
Voroio		11 October 2012		21 / 10

Version 2.0

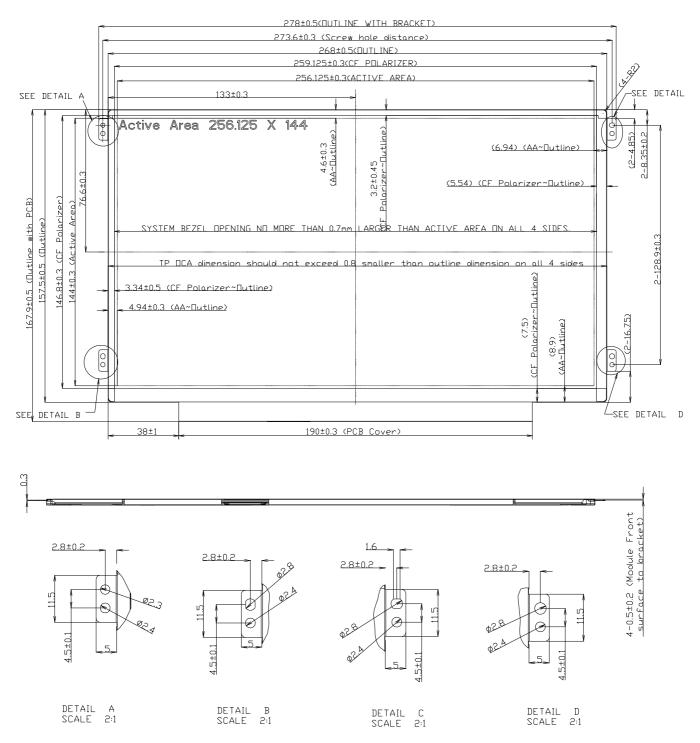
11 October 2013

PRODUCT SPECIFICATION

50			0.4	0000001
50	32	Standard timing ID # 7	01	00000001
51	33	Standard timing ID # 7	01	0000001
52	34	Standard timing ID # 8	01	00000001
53	35	Standard timing ID # 8	01	0000001
54	36	Detailed timing description # 1 Pixel clock ("76.42MHz")	DA	11011010
55	37	# 1 Pixel clock (hex LSB first)	1D	00011101
56	38	# 1 H active ("1366")	56	01010110
57	39	# 1 H blank ("226")	E2	11100010
58	ЗA	# 1 H active : H blank	50	01010000
59	3B	# 1 V active ("768")	00	00000000
60	3C	# 1 V blank ("32")	20	00100000
61	3D	# 1 V active : V blank	30	00110000
62	3E	# 1 H sync offset ("136")	88	10001000
63	3F	# 1 H sync pulse width ("30")	1E	00011110
64	40	# 1 V sync offset : V sync pulse width ("8 : 12")	8C	10001100
65	41	# 1 H sync offset : H sync pulse width : V sync offset : V sync width	00	00000000
66	42	# 1 H image size ("256 mm")	00	00000000
67	43	# 1 V image size ("144 mm")	90	10010000
68	44	# 1 H image size : V image size	10	00010000
69	45	# 1 H boarder ("0")	00	00000000
70	46	# 1 V boarder ("0")	00	00000000
	47	# 1 Non-interlaced, Normal, no stereo, Separate sync, H/V pol	4.0	
71	47	Negatives	18	00011000
72	48	Detailed timing description # 2	00	0000000
73	49	# 2 Flag	00	00000000
74	4A	# 2 Reserved	00	00000000
75	4B	# 2 ASCII string Model name	FE	11111110
76	4C	# 2 Flag	00	0000000
77	40 4D	# 2 Character of Model name ("N")	4E	01001110
78	4E	# 2 Character of Model name ("1")	31	00110001
79	4F	# 2 Character of Model name ("1")	31	00110001
80	50	# 2 Character of Model name ("6")	36	00110110
81	51	# 2 Character of Model name ("B")	42	01000010
82	52	# 2 Character of Model name ("G")	47	01000111
83				01000101
	53	# 2 Character of Model name ("E")	45	
84	54	# 2 Character of Model name ("-")	2D	00101101
85	55	# 2 Character of Model name ("E")	45	01000101
86	56	# 2 Character of Model name ("A")	41	01000001
87	57	# 2 Character of Model name ("2")	32	00110010
88	58	# 2 New line character indicates end of ASCII string	0A	00001010
89	59	# 2 Padding with "Blank" character	20	00100000
90	5A	Detailed timing description # 3	00	0000000
91	5B	# 3 Flag	00	0000000
92	5C	# 3 Reserved	00	0000000
93	5D	# 3 ASCII string Vendor	FE	11111110
94	5E	# 3 Flag	00	0000000
95	5F	# 3 Character of string ("C")	43	01000011
96	60	# 3 Character of string ("M")	4D	01001101
97	61	# 3 Character of string ("N")	4E	01001110
98	62	# 3 New line character indicates end of ASCII string	0A	00001010
99	63	# 3 Padding with "Blank" character	20	00100000
100	64	# 3 Padding with "Blank" character	20	00100000
101	65	# 3 Padding with "Blank" character	20	00100000
102	66	# 3 Padding with "Blank" character	20	00100000
103	67	# 3 Padding with "Blank" character	20	00100000
104	68	# 3 Padding with "Blank" character	20	00100000
·I		· •		

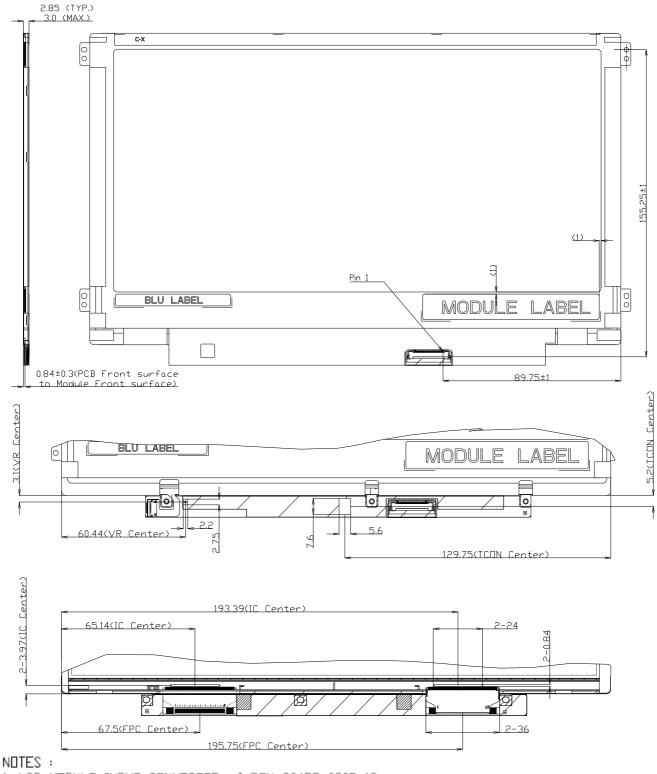
Version 2.0

11 October 2013



PRODUCT SPECIFICATION

105	69	# 3 Padding with "Blank" character	20	00100000
106	6A	# 3 Padding with "Blank" character	20	00100000
107	6B	# 3 Padding with "Blank" character	20	00100000
108	6C	Detailed timing description # 4	00	00000000
109	6D	# 4 Flag	00	00000000
110	6E	# 4 Reserved	00	00000000
111	6F	# 4 ASCII string Model Name	FE	11111110
112	70	# 4 Flag	00	00000000
113	71	# 4 Character of Model name ("N")	4E	01001110
114	72	# 4 Character of Model name ("1")	31	00110001
115	73	# 4 Character of Model name ("1")	31	00110001
116	74	# 4 Character of Model name ("6")	36	00110110
117	75	# 4 Character of Model name ("B")	42	01000010
118	76	# 4 Character of Model name ("G")	47	01000111
119	77	# 4 Character of Model name ("E")	45	01000101
120	78	# 4 Character of Model name ("-")	2D	00101101
121	79	# 4 Character of Model name ("E")	45	01000101
122	7A	# 4 Character of Model name ("A")	41	01000001
123	7B	# 4 Character of Model name ("2")	32	00110010
124	7C	# 4 New line character indicates end of ASCII string	0A	00001010
125	7D	# 4 Padding with "Blank" character	20	00100000
126	7E	Extension flag	00	00000000
127	7F	Checksum	48	01001000



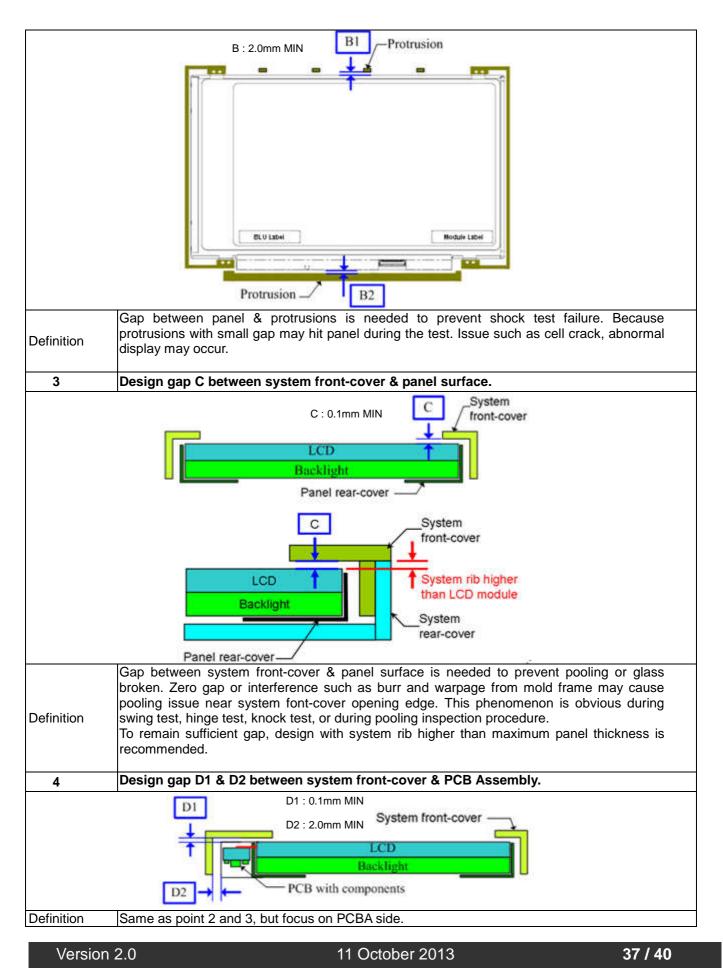
Appendix. OUTLINE DRAWING

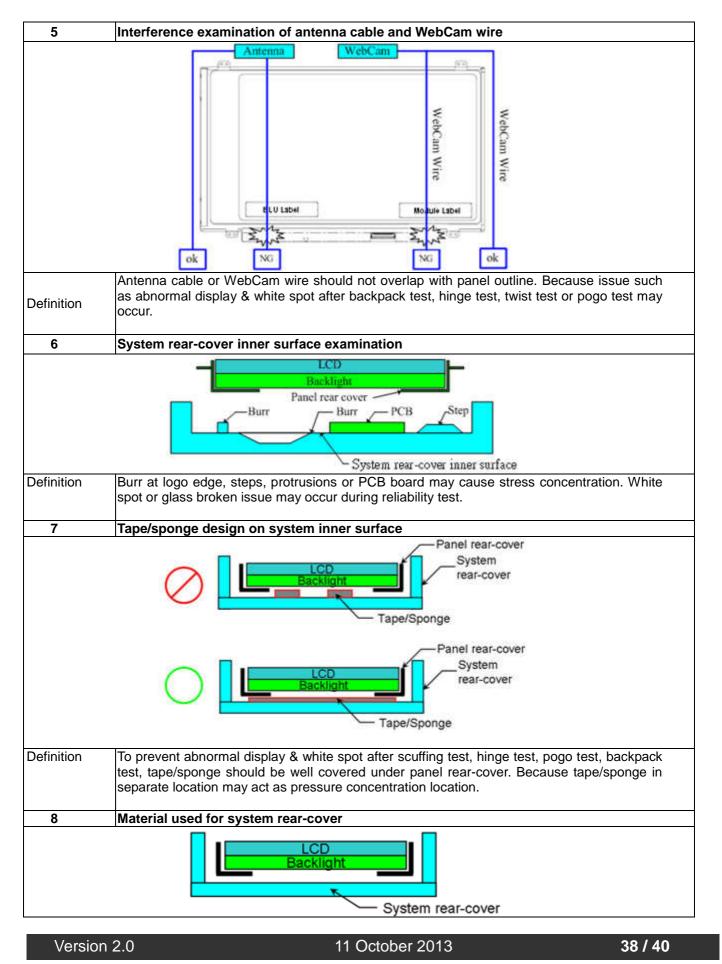
PRODUCT SPECIFICATION

- 1. LCD MODULE INPUT CONNECTOR : I-PEX 20455-030E-12.
- 2. IN ORDER TO AVOID ABNORMAL DISPLAY, POOLING AND WHITE SPOT, NO OVERLAPPING IS SUGGESTED AT CABLES, ANTENNAS, CAMERA, WLAN, WAN OR FOREIGN OBJECTS OVER FPC, T-CON AND VR LOCATIONS.
- 3. LVDS CONNECTOR IS MEASURED AT PIN1 AND ITS MATING LINE.
- 4. MODULE FLATNESS SPEC 0.5mm MAX.
- 5. "()" MARKS THE REFERENCE DIMENSIONS,

```
Version 2.0
```

11 October 2013


35 / 40


Appendix, SYSTEM COVER DESIGN NOTICE

0.	. SYSTEM COVER DESIGN NOTICE	Ver.2
	Permanent deformation of system cover after reliability test	
	System front-cover System rear-cover	
	System Front-cover System rear-cover	
Definition	System cover including front and rear cover may deform during reliab deformation of system front and rear cover after reliability test shoul panel. Because it may cause issues such as pooling, abnormal display, cell crack.	Id not interfere with
1.	Design gap A between panel & any components on system rear-cov	ver
	Max. Thickness	
	A : 0.6mm MIN	
Definition		ck or pogo test fail. ues such as pooling,

