

- □ Tentative Specification
- Preliminary Specification
- □ Approval Specification

MODEL NO.: V390DK1 SUFFIX: LS1

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your conf comments.	irmation with your signature and

Approved By	Checked By	Prepared By
Chao-Chun Chung	Vita Wu	Chia-Wen Chen

Version 1.0 Date : Jan.24, 2013

CONTENTS

CONTENTS	2
REVISION HISTORY	4
1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 FEATURES	5
1.3 APPLICATION	5
1.4 GENERAL SPECIFICATIONS	5
1.5 MECHANICAL SPECIFICATIONS	7
2. ABSOLUTE MAXIMUM RATINGS	8
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	8
2.2 PACKAGE STORAGE	9
2.3 ELECTRICAL ABSOLUTE RATINGS	9
2.3.1 TFT LCD MODULE	9
2.3.2 BACKLIGHT CONVERTER UNIT	9
3. ELECTRICAL CHARACTERISTICS	10
3.1 TFT LCD MODULE	10
3.2 BACKLIGHT UNIT	13
	13
3.2.2 CONVERTER INTERFACE CHARACTERIST	ICS15
4. BLOCK DIAGRAM OF INTERFACE	17
4.1 TFT LCD MODULE	17
5 .INPUT TERMINAL PIN ASSIGNMENT	18
5.1 TFT LCD MODULE	18
	24
	25
	26
5.5 COLOR DATA INPUT ASSIGNMENT	27
6. INTERFACE TIMING	
	28
6.1.1 Input Timing Spec for FHD, Frame Rate = 100	Hz28
Version 1.0 2	Date : Jan.24, 2013

6.1.2 Input Timing Spec for FHD, Frame Rate = 120Hz	29
6.1.3 Input Timing Spec for FHD, Frame Rate = 50Hz	29
6.1.4 Input Timing Spec for FHD, Frame Rate = 60Hz	30
6.1.5 Input Timing spec for QFHD, Frame Rate = 24Hz	31
6.1.6 Input Timing spec for QFHD, Frame Rate = 30Hz	31
6.2 POWER ON/OFF SEQUENCE	34
7. OPTICAL CHARACTERISTICS	36
7.1 TEST CONDITIONS	36
7.2 OPTICAL SPECIFICATIONS	37
8. PRECAUTIONS	42
8.1 ASSEMBLY AND HANDLING PRECAUTIONS	42
8.2 SAFETY PRECAUTIONS	42
8.3 SAFETY STANDARDS	42
9. DEFINITION OF LABELS	43
9.1 INX MODULE LABEL	43
9.2 CARTON LABEL	44
10. PACKAGING	45
10.1 PACKAGING SPECIFICATIONS	45
10.2 PACKAGING METHOD	45
11. MECHANICAL CHARACTERISTIC	47

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver. 0.0	12/14, 2012	All	All	The tentative specification was first issued.
Ver. 1.0	1/24, 2013	All	All	The preliminary specification was first issued.
		<i>.</i>	7	The promise of the control of the co

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V390DK1-LS1 is a 39" TFT Liquid Crystal Display module with LED Backlight unit and 4ch-LVDS interface.

This module supports 3840 x 2160 Quad Full HDTV format and can display true 1.07G colors (8-bit+FRC).

The driving board module for backlight is built-in.

1.2 FEATURES

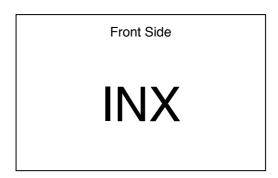
- High brightness (350 nits)
- High contrast ratio (5000:1)
- Fast response time (Gray to Gray typical : 6.5 ms)
- High color saturation (NTSC 72%)
- Quad Full HDTV (3840 x 2160 pixels) resolution, true HDTV format
- LVDS (Low Voltage Differential Signaling) interface
- Optimized response time for 100Hz/120Hz frame rate
- Viewing Angle: 176(H)/176(V) (CR>20) VA Technology
- Ultra wide viewing angle: Super MVA technology
- RoHs compliance
- T-con input frame rate: FHD 50/60Hz, FHD 100/120Hz or QFHD 24/30Hz
 Output frame rate: QFHD 50/60Hz, QFHD 100/120Hz or QFHD 48/60Hz

1.3 APPLICATION

- Standard Living Room TVs
- Public Display Application
- Home Theater Application
- MFM Application

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	853.92 (H) x 480.33 (V) (39" diagonal)	mm	(1)
Bezel Opening Area	861.32 (H) x 485.63 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	3840 x R.G.B. x 2160	pixel	-
Pixel Pitch(Sub Pixel)	0.074125 (H) x 0.222375 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	1.07G colors (8-bit+FRC)	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Anti-Glare coating (Haze 1%)	-	(2)
Rotation Function	Achievable		(3)
Display Orientation	Signal input with "INX"		(3)


Note (1) Please refer to the attached drawings in chapter 11 for more information about the front and back outlines.

Note (2) The spec of the surface treatment is temporarily for this phase. INX reserves the rights to change this feature.

Note (3)

Back Side	
Tcon Board	

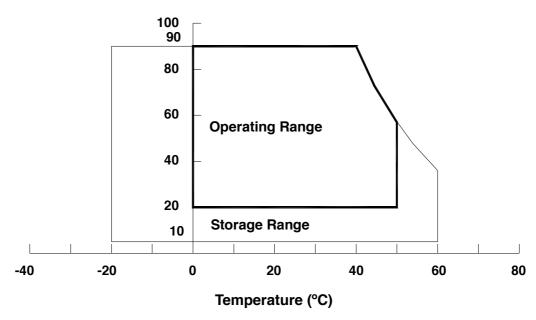
1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	872.32	873.32	874.32	mm	(1),(2)
Module Size Vertical (V)		500.63	501.63	502.63	mm	(1),(2)
		17.4	18.4	19.4	mm	To Rear
Depth (D)		24.6	25.6	26.6	mm	To converter cover
Weight			(7110)		g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Module Depth does not include connectors.

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	V	alue	Unit	Note	
Item	Symbol	Min.	Max.	Offic		
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T_OP	0	50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)	
Vibration (Non-Operating)	V _{NOP}	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) $10 \sim 200$ Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Relative Humidity (%RH)

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time, It is highly recommended to store the module with temperature from 0 to 35 $^{\circ}$ C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Item	Symbol	Value		Unit	Note	
item	Symbol	Min.	Max.	Offit	Note	
Power Supply Voltage	V _{CC}	-0.3	13.5	V	(1)	
Logic Input Voltage	V _{IN}	-0.3	3.6	V	(1)	

2.3.2 BACKLIGHT CONVERTER UNIT

Item	Symbol	Test Condition	Min.	Туре	Max.	Unit	Note
Light Bar Voltage	V _W	Ta = 25 °C	ı	-	60	V_{RMS}	3D Mode
Converter Input Voltage	V_{BL}	-	0	-	30	٧	
Control Signal Level	-	-	-0.3	-	6	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) No moisture condensation or freezing.

Note (3) The control signals include On/Off Control and External PWM Control.

3. ELECTRICAL CHARACTERISTICS

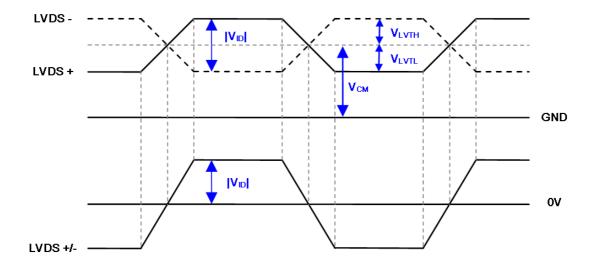
3.1 TFT LCD MODULE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

	Делет		C) seeds al		Valu	Unit	Note	
	Param	ieter	Symbol	Min.	Тур.	Max.	Onit	Note
Power Sup	ply Voltage		V _{CC}	10.8	12	13.2	V	(1)
Rush Curre	ent		I _{RUSH}	_	_	1.65	А	(2)
		White Pattern	P _T	_	(8.88)	(10.8)	W	
QFHD 120Hz Output Power Consumption		Horizontal Stripe	P _T	_	(20.16)	(24.36)	W	•
Power Con	sumption	Black Pattern	P _T	_	(9.48)	(11.4)	W	•
		White Pattern	_	_	(0.74)	(0.90)	А	•
QFHD 120	-	Horizontal Stripe	_	_	(1.68)	(2.03)	А	•
Power Sup	ply Current	Black Pattern	_	_	(0.79)	(0.95)	А	
		White Pattern	P _T	_	(8.76)	(10.8)	W	(3)
QFHD 60Hz Output Power Consumption	Horizontal Stripe	P _T	_	(19.68)	(23.76)	W		
	Black Pattern	P _T	_	(9.24)	(11.04)	W		
		White Pattern	_	_	(0.73)	(0.90)	А	
QFHD 60H	z Output ply Current	Horizontal Stripe	_	_	(1.64)	(1.98)	Α	
rower Sup	piy Current	Black Pattern	_	_	(0.77)	(0.92)	Α	
	Differential Threshold \	Input High /oltage	V_{LVTH}	+100	_	+300	mV	
	Differential Threshold \	Input Low	V_{LVTL}	-300	_	-100	mV	
LVDS	Common In		V _{CM}	1.0	1.2	1.4	V	(4)
(sir	Differential (single-end)	Differential input voltage		200	_	600	mV	
	Terminating		R _T	_	100	_	ohm	•
CMOS	Input High 7	Threshold Voltage	V _{IH}	2.7	_	3.3	V	
interface	Input Low T	hreshold Voltage	V _{IL}	0	_	0.7	V	


Note (1) The module should be always operated within the above ranges. The ripple voltage should be controlled under 10% of Vcc (Typ.)

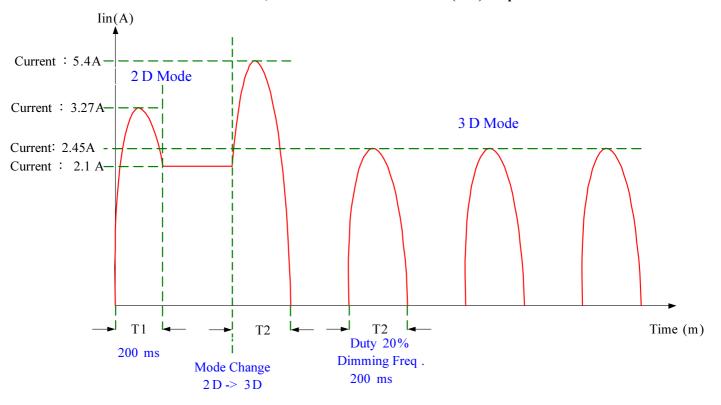
Version 1.0 Date : Jan.24, 2013


Note (2) Measurement condition: Vcc rising time is 470us Vec (LCD Module Input) Si4485DY Vcc ___ C3 0.9Vcc 0.1Vcc **GND** VR1 470us (Low to High) Control Signal Q_2 **1** 2N7002 sw » 1k

Note (3) The specified power supply current is under the conditions at Vcc = 12 V, $Ta = 25 \pm 2 \text{ °C}$, fv = 60 Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The LVDS input characteristics is shown as below:

3.2 BACKLIGHT UNIT


3.2.1 CONVERTER CHARACTERISTICS

Parameter	tor Cumbal		Value			Note
Farameter	Symbol	Min.	Тур.	Max.	Unit	Note
Power Consumption	P _{BL(2D)}	_	(48.1)	(55.3)	W	(1), (2)
Power Consumption	P _{BL(3D)}	_	(36.3)	(40.2)	W	(1), (2)
Converter Input Voltage	VBL	22.8	24.0	25.2	VDC	
Convertor Input Current	I _{BL(2D)}	_	(2.1)	(2.4)	Α	Non Dimming
Converter Input Current	I _{BL(3D)}		(1.63)	(1.73)	Α	
	I _{R(2D)}	_	_	(3.27)	mApeak	V _{BL} =22.8V, (IL=typ.) (3), (6)
Input Inrush Current	I _{R(3D)}	_	_	(5.4)	mApeak	V _{BL} =22.8V,(IL= 360 mA.) (3), (6)
Dimming Frequency	FB	170	180	190	Hz	(5)
Dimming Duty Ratio	DDR	5	-	100	%	(4), (5)
Life Time	-	30,000	-	-	Hrs	(7)

- Note (1) The power supply capacity should be higher than the total converter power consumption P_{BL}. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when converter dimming.
- Note (2) The measurement condition of Max. value is based on 39" backlight unit under input voltage 24V, at 2D/3D Mode and lighting 1 hour later.
- Note (3) For input inrush current measure, the VBL rising time from 10% to 90% is about 20ms.
- Note (4) EPWM signal have to input available duty range. Between 97% and 100% duty (DDR) have to be avoided. (97% < DDR < 100%) But 100% duty(DDR) is possible. 5% duty (DDR) is only valid for electrical operation.
- Note (5) FB and DDR are available only at 2D Mode.
- Note (6) Below diagram is only for power supply design reference.

Test Condition: V_{BL}=22.8V, IL=145 mA at 2 D Mode/IL=(450) mApeak at 3 D Mode

Note (7) The lifetime is defined as the time which luminance of the LED decays to 50% compared to the initial value, Operating condition: Continuous operating at $Ta = 25\pm2^{\circ}C$

3.2.2 CONVERTER INTERFACE CHARACTERISTICS

Parameter		0	Test		Value		11-2	Note	
		Symbol	Condition	Min.	Тур.	Max.	Unit		
On/Off Control Voltage	ON	- VBLON	_	2.0	_	5.0	V		
On/Off Control Voltage	OFF	VBLOIN	_	0	_	0.8	V		
External PWM Control	HI		_	2.0	_	5.25	V	Duty on	(E) (G)
Voltage	LO	VEPWM	_	0	_	0.8	V	Duty off	(5), (6)
External PWM Frequer	псу	F _{EPWM}	ı	150	160	170	Hz	Normal	mode (7)
Error Signal		ERR	_	_	_	_	_	Abnormal: Open	
VBL Rising Time		Tr1		20	_	_	ms	10%-90%V _{BL}	
Control Signal Rising T	ime	Tr	_	_	_	100	ms		
Control Signal Falling T	ime	Tf	_	_	_	100	ms		
PWM Signal Rising Tim	ne	TPWMR	_	_	_	50	us	(2)	
PWM Signal Falling Tin	ne	TPWMF	_	_	_	50	us	(6)
Input Impedance		Rin	_	1	_	_	ΜΩ	EPWN	I, BLON
PWM Delay Time	Delay Time T		_	100	_	_	ms	(6)
51.011.5 J. T.		T _{on}	_	300	_	_	ms		
BLON Delay Time		T _{on1}	_	300	_	_	ms		
BLON Off Time		Toff	_	300	_	_	ms		

Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the external PWM signal during backlight turn on period.

Note (2) The power sequence and control signal timing are shown in the Fig.1. For a certain reason, the converter has a possibility to be damaged with wrong power sequence and control signal timing.

Note (3) While system is turned ON or OFF, the power sequences must follow as below descriptions:

Turn ON sequence: $VBL \rightarrow PWM \text{ signal} \rightarrow BLON$

Turn OFF sequence: BLOFF → PWM signal → VBL

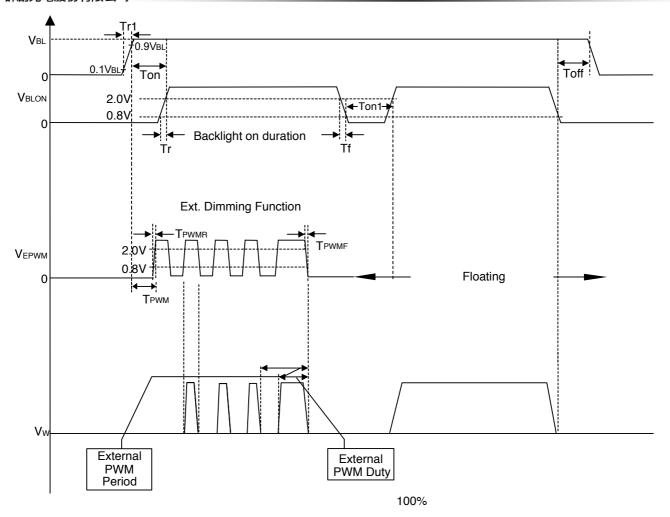
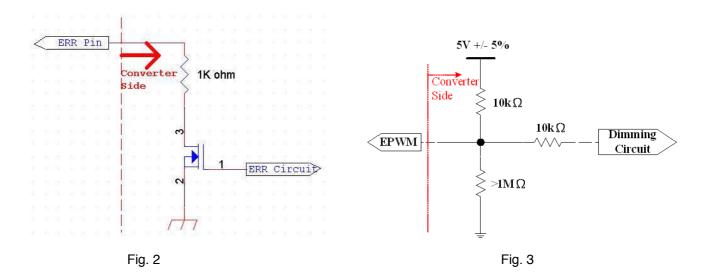
Note (4) When converter protective function is triggered, ERR will output open collector status. Please refers to Fig.2.

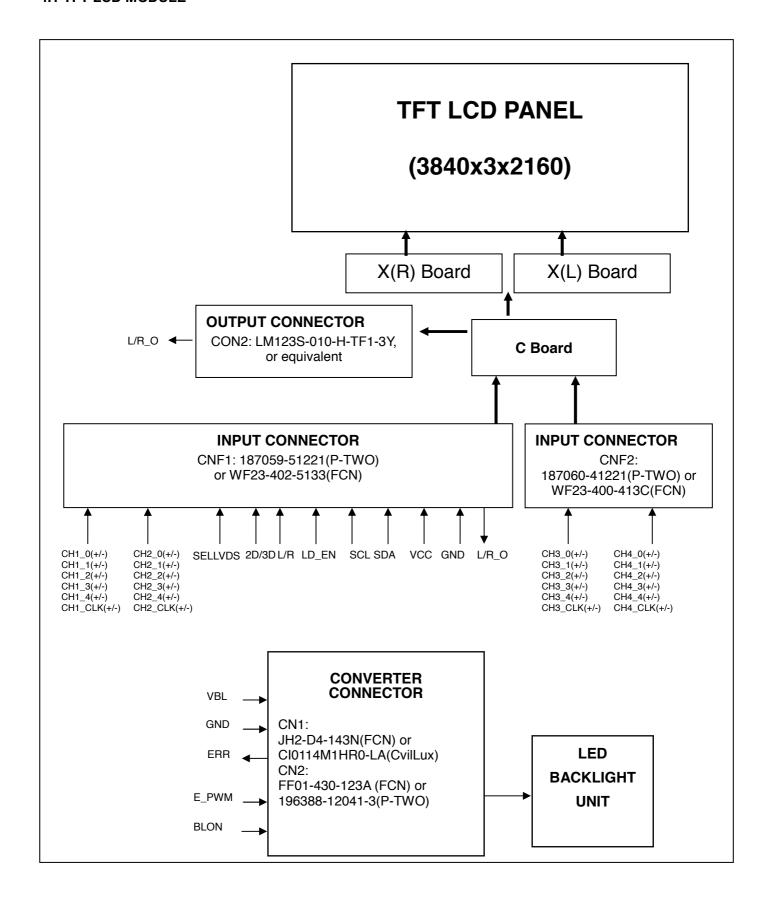
Note (5) The EPWM interface that inserts a pull up resistor to 5V in Max Duty (100%), please refers to Fig.3.

Note (6) EPWM is available only at 2D Mode.

Note (7) EPWM signal have to input available frequency range.

Note (8) [Recommend] EPWM duty ratio is set at 100%(Max. Brightness) in 3D Mode.


Fig. 1

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

5 .INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

CNF1 Connector Pin Assignment (187059-51221(P-TWO) or WF23-402-5133 (FCN))

Matting connector: FI-RE51HL (JAE)

Pin	Name	Description	Note	
1	N.C.	No Connection	(1)	
2	SCL	I2C Clock (for mode selection & function setting)		
3	SDA	I2C Data (for mode selection & function setting)		
4	N.C.	No Connection	(1)	
5	L/R_O	Output signal for Left Right Glasses control	(2)	
6	N.C.	No Connection	(1)	
7	SELLVDS	Input signal for LVDS Data Format Selection	(3)(9)	
8	N.C.	No Connection		
9	N.C.	No Connection	(1)	
10	N.C.	No Connection		
11	GND	Ground		
12	CH1[0]-	First pixel Negative LVDS differential data input. Pair 0		
13	CH1[0]+	First pixel Positive LVDS differential data input. Pair 0		
14	CH1[1]-	First pixel Negative LVDS differential data input. Pair 1	(4)	
15	CH1[1]+	First pixel Positive LVDS differential data input. Pair 1	(4)	
16	CH1[2]-	First pixel Negative LVDS differential data input. Pair 2		
17	CH1[2]+	First pixel Positive LVDS differential data input. Pair 2		
18	GND	Ground		
19	CH1CLK-	First pixel Negative LVDS differential clock input.	(4)	
20	CH1CLK+	First pixel Positive LVDS differential clock input.	(4)	
21	GND	Ground		
22	CH1[3]-	First pixel Negative LVDS differential data input. Pair 3		
23	CH1[3]+	First pixel Positive LVDS differential data input. Pair 3	(4)	
24	CH1[4]-	First pixel Negative LVDS differential data input. Pair 4	(4)	
25	CH1[4]+	First pixel Positive LVDS differential data input. Pair 4		
26	2D/3D	Input signal for 2D/3D Mode Selection	(5)(10)	
27	L/R	Input signal for Left Right eye frame synchronous	(6)	
28	CH2[0]-	Second pixel Negative LVDS differential data input. Pair 0	(4)	

437 0 0.52	100 10121		
29	CH2[0]+	Second pixel Positive LVDS differential data input. Pair 0	
30	CH2[1]-	Second pixel Negative LVDS differential data input. Pair 1	
31	CH2[1]+	Second pixel Positive LVDS differential data input. Pair 1	
32	CH2[2]-	Second pixel Negative LVDS differential data input. Pair 2	
33	CH2[2]+	Second pixel Positive LVDS differential data input. Pair 2	
34	GND	Ground	
35	CH2CLK-	Second pixel Negative LVDS differential clock input.	(4)
36	CH2CLK+	Second pixel Positive LVDS differential clock input.	(4)
37	GND	Ground	
38	CH2[3]-	Second pixel Negative LVDS differential data input. Pair 3	
39	CH2[3]+	Second pixel Positive LVDS differential data input. Pair 3	(4)
40	0 CH2[4]-	Second pixel Negative LVDS differential data input. Pair 4	(4)
41	CH2[4]+	Second pixel Positive LVDS differential data input. Pair 4	
42	LD_EN	Input signal for Local Dimming Enable	(7)(9)
43	N.C.	No Connection	(8)
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	N.C.	No Connection	(1)
48	VCC	+12V power supply	
49	vcc	+12V power supply	
50	vcc	+12V power supply	
51	VCC	+12V power supply	
			•

CNF2 Connector pin assignment (187060-41221 (P-TWO) or WF23-400-413C (FCN))

Matting connector: FI-RE41HL (JAE)

Pin	Name	Description	Note
1	N.C.	No Connection	(1)
2	N.C.	No Connection	
3	N.C.	No Connection	
4	N.C.	No Connection	
5	N.C.	No Connection	
6	N.C.	No Connection	

7	N.C.	No Connection		
8	N.C.	No Connection		
9	GND	Ground		
10	CH3[0]-	Third pixel Negative LVDS differential data input. Pair 0		
11	CH3[0]+	Third pixel Positive LVDS differential data input. Pair 0		
12	CH3[1]-	Third pixel Negative LVDS differential data input. Pair 1	(4)	
13	CH3[1]+	Third pixel Positive LVDS differential data input. Pair 1	(4)	
14	CH3[2]-	Third pixel Negative LVDS differential data input. Pair 2		
15	CH3[2]+	Third pixel Positive LVDS differential data input. Pair 2		
16	GND	Ground		
17	CH3CLK-	Third pixel Negative LVDS differential clock input.	(4)	
18	CH3CLK+	Third pixel Positive LVDS differential clock input.	(4)	
19	GND	Ground		
20	CH3[3]-	Third pixel Negative LVDS differential data input. Pair 3		
21	CH3[3]+	Third pixel Positive LVDS differential data input. Pair 3	(4)	
22	CH3[4]-			
23	CH3[4]+	Third pixel Positive LVDS differential data input. Pair 4		
24	GND	Ground		
25	GND	Ground		
26	CH4[0]-	Fourth pixel Negative LVDS differential data input. Pair 0		
27	CH4[0]+	Fourth pixel Positive LVDS differential data input. Pair 0		
28	CH4[1]-	Fourth pixel Negative LVDS differential data input. Pair 1	(4)	
29	CH4[1]+	Fourth pixel Positive LVDS differential data input. Pair 1	(4)	
30	CH4[2]-	Fourth pixel Negative LVDS differential data input. Pair 2		
31	CH4[2]+	Fourth pixel Positive LVDS differential data input. Pair 2		
32	GND	Ground		
33	CH4CLK-	Fourth pixel Negative LVDS differential clock input.	(4)	
34	CH4CLK+	Fourth pixel Positive LVDS differential clock input.	(4)	
35	GND	Ground		
36	CH4[3]-	Fourth pixel Negative LVDS differential data input. Pair 3	(4)	
37	CH4[3]+	Fourth pixel Positive LVDS differential data input. Pair 3		
			1	

39	CH4[4]+	Fourth pixel Positive LVDS differential data input. Pair 4	
40	GND	Ground	
41	GND	Ground	

CON2 Connector Pin Assignment (LM123S010HTF13Y or equivalent)

1	N.C.	No Connection	
2	N.C.	No Connection	(1)
3	N.C.	No Connection	
4	GND	Ground	_
5	N.C.	No Connection	(1)
6	L/R_O	Output signal for Left Right Glasses control	(2)
7	N.C.	No Connection	
8	N.C.	No Connection	(1)
9	N.C.	No Connection	(1)
10	N.C.	No Connection	

Note (1) Reserved for internal use. Please leave it open.

Note (2) The definition of L/R_O signal as follows

L= 0V, H=+3.3V

L/R_O	Note
L	Right glass turn on
Н	Left glass turn on

Note (3) LVDS format selection.

L= Connect to GND, H=Connect to +3.3V or Open

SELLVDS	Note
L	JEIDA Format
H or Open	VESA Format

Note (4) LVDS Data Mapping

LVDS 4-port FHD 100/120Hz Input

Port	Channel of LVDS	Data Stream
1st Port	First Pixel	1, 5, 9,1913, 1917
2nd Port	Second Pixel	2, 6, 10,1914, 1918
3rd Port	Third Pixel	3, 7, 11,1915, 1919
4th Port	Fourth Pixel	4, 8, 12,1916, 1920

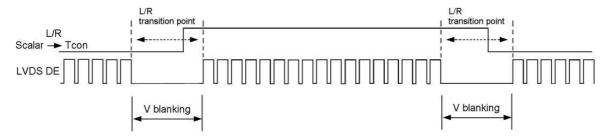
LVDS 2port FHD 50/60Hz Input

Port	Channel of LVDS	Data Stream
1st Port	First Pixel	1, 3, 5,1917, 1919
2nd Port	Second Pixel	2, 4, 6,1918, 1920

LVDS 4-port QFHD 24/30Hz Input

Port	Channel of LVDS	Data Stream
1st Port	First Pixel	1, 5, 9,3833, 3837
2nd Port	Second Pixel	2, 6, 10,3834, 3838
3rd Port	Third Pixel	3, 7, 11,3835, 3839
4th Port	Fourth Pixel	4, 8, 12,3836, 3840

Note (5) 2D/3D mode selection.

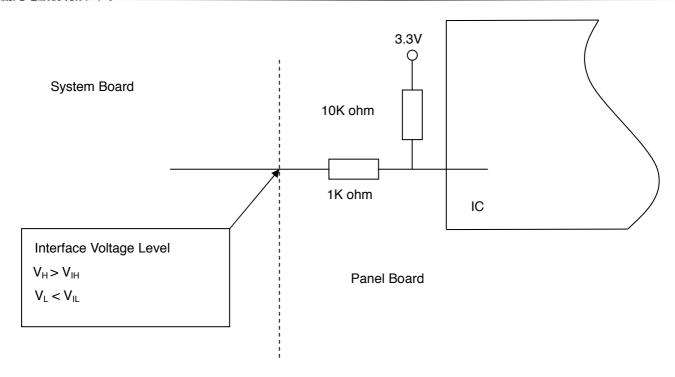

L= Connect to GND or Open, H=Connect to +3.3V

2D/3D	Note
L or Open	2D Mode
Н	3D Mode

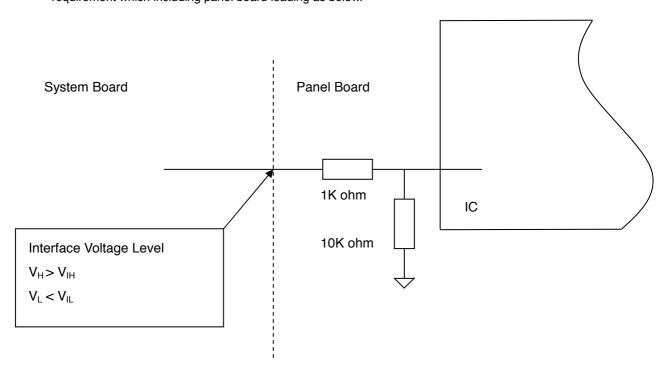
Note (6) Input signal for left and right eye frame synchronous

 V_{IL} =0~0.7 V, V_{IH} =2.7~3.3 V

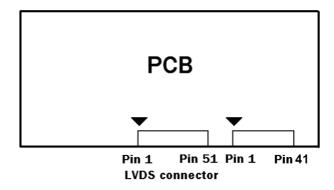
L/R	Note
L	Right synchronous signal
Н	Left synchronous signal


Note (7) Local dimming enable selection.

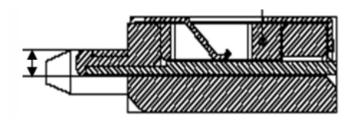
L= Connect to GND , H=Connect to +3.3V or Open


LD_EN	Note
L	Local Dimming Disable
H or Open	Local Dimming Enable

- Note (8) Reserved for internal use. Open is preferred. However, it is also acceptable to reserve the wire connecting with specific High/Low voltage level.
- Note (9) Interface optional pin has internal scheme as following diagram. Customer should keep the interface voltage level requirement which including panel board loading as below.



Note (10) Interface optional pin has internal scheme as following diagram. Customer should keep the interface voltage level requirement which including panel board loading as below.



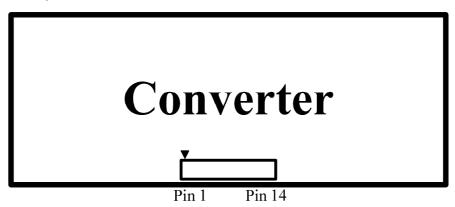
Note (11) LVDS connector pin order defined as follows

Note (12) LVDS connector mating dimension range request is 0.93mm~1.0mm as below

5.2 BACKLIGHT UNIT

The pin configuration for the housing and leader wire is shown in the table below. CN2: FF01-430-123A(FCN) or 196388-12041-3(P-TWO).

Pin №	Symbol	Feature
1	VLED+	
2	VLED+	Positive of LED String
3	VLED+	
4	NC	NC
5	VLED-	
6	VLED-	
7	VLED-	
8	VLED-	Negative of LED String
9	VLED-	Negative of LED String
10	VLED-	
11	VLED-	
12	VLED-	

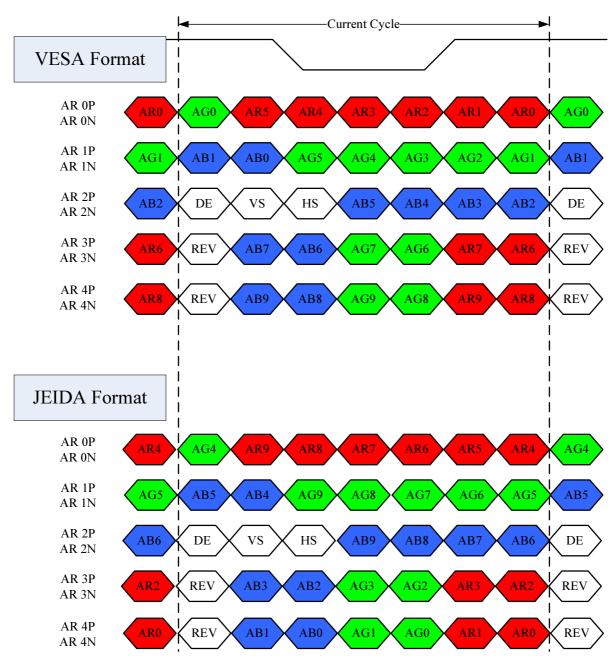

5.3 CONVERTER UNIT

CN1 (Header): JH2-D4-143N(FCN) or Cl0114M1HR0-LA (CvilLux)

Pin No.	Symbol	Feature					
1							
2							
3	VBL	+24V					
4							
5							
6							
7							
8	GND	GND					
9							
10							
11	ERR	Normal (GND) ; Abnormal (Open collector)					
12	BLON	BL ON/OFF					
13	NC	NC					
14	E_PWM	External PWM Control					

Note (1) If Pin14 is open, E_PWM is 100% duty.

Note (2) Input connector pin order defined as follows


Input Connector

5.4 LVDS INTERFACE

JEIDA Format : SELLVDS = L

VESA Format : SELLVDS = H or Open

R0~R9: Pixel R Data (9; MSB, 0; LSB)

G0~G9: Pixel G Data (9; MSB, 0; LSB) B0~B9: Pixel B Data (9; MSB, 0; LSB)

DE : Data enable signal DCLK : Data clock signal

Notes: (1) RSVD (reserved) pins on the transmitter shall be "H" or "L".

5.5 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

			Data Signal																												
	Color					Re	ed						Green								BI	ue									
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	B9	B8	B7	B6	B5	B4	ВЗ	B2	B1	B0
Basic Colors	Black Red Green Blue Cyan Magenta Yellow White	0 1 0 0 0 1 1 1	0 1 0 0 0 1 1	0 1 0 0 0 1 1 1	0 1 0 0 0 1 1	0 0 1 0 1 0 1	0 0 1 1 1 0	0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 1 1 1 0	0 0 0 1 1 1 0															
Gray Scale Of Red	Red (0) / Dark Red (1) Red (2) : : : : : : : : : : : : : : : : : : :	0 0 0	0 0 0	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 1 : : 0 1 1	0 1 0 : : 1 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 0 0 0	000000	0 0 00 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 : ; 0 0 0	0 0 0 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 0 0 0	0 0 0 : : 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 : : 0 0
Gray Scale Of Green	Green (0) / Dark Green (1) Green (2) : : : : : : : : : : : : : : : : : : :	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1 1	0 0 0 1 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 1 : 0 1	0 1 0 : : 1 0 1	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 0 0 0	0 0 0 : : 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 : : : 0 0 0
Gray Scale Of Blue	Blue (0) / Dark Blue (1) Blue (2) : : : : : : : : : : : : : : : : : : :	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 : : 0 0	0 0 0 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 00 0	000000	000000	0 0 0 0 0 0	0 0 0 0 0 0	000000	000000	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 : : 1 1	0 0 0 1 1 1	0 0 1 0 1 1	0 1 0 : : 1 0 1						

Note (1) 0: Low Level Voltage , 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram. (Ta = 25 ± 2 °C)

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
LVDC	Input cycle to cycle jitter	T _{rcl}	-	-	200	ps	(1)
LVDS Receiver Clock	Spread spectrum modulation range	Fclkin_mod	F _{clkin} -1.5%	-	F _{clkin} +1.5%	MHz	(2)
Clock	Spread spectrum modulation frequency	F _{SSM}	-	1	66	KHz	(2)
LVDS Receiver Data	Receiver skew margin	T _{RSKM}	-400	-	400	ps	(3)

6.1.1 Input Timing Spec for FHD, Frame Rate = 50Hz

Signal	It	em	Symbol	Min.	Тур.	Max.	Unit	Note
LVDS Clock	Freq	uency	F _{clkin} (=1/TC)	60	74.25	79	MHz	(4)
Frame Rate	2D	Mode	F _r	47	50	53	Hz	(5)
		Total	Tv	1104	1350	1395	Th	Tv=Tvd+Tvb
Vertical		Display	Tvd		1080		Th	
Active		Blank	Tvb	24	270	315	Th	
Display Term	2D Mode	Front porch	Tvfp	10	_	1	Th	
Temi		Back porch	Tvbp	10	_	1	Th	(6)
		Vsync	Tvswid	4	_		Th	
		Total	Th	1060	1100	1340	Тс	Th=Thd+Thb
Horizontal		Display	Thd		960		Tc	
Active		Blank	Thb	100	140	380	Tc	
Display		Front porch	Thfp	5	_	_	Тс	
Term		Back porch	Thbp	5		_	Тс	(6)
		Hsync	Thswid	2	_	_	Tc	

6.1.2 Input Timing Spec for FHD, Frame Rate = 60Hz

Signal	lt	em	Symbol	Min.	Тур.	Max.	Unit	Note
LVDS Clock	Freq	uency	F _{clkin} (=1/TC)	60	74.25	79	MHz	(4)
Frame Rate	2D	Mode	F _r	57	60	63	Hz	(5)
		Total	Tv	1104	1125	1395	Th	Tv=Tvd+Tvb
Vertical		Display	Tvd		1080		Th	
Active		Blank	Tvb	24	45	315	Th	
Display	2D Mode	Front porch	Tvfp	10	_	_	Th	
Term		Back porch	Tvbp	10	_	_	Th	(6)
		Vsync	Tvswid	4	_	_	Th	
		Total	Th	1060	1100	1340	Tc	Th=Thd+Thb
Horizontal		Display	Thd		960		Тс	
Active		Blank	Thb	100	140	380	Тс	
Display		Front porch	Thfp	5	_	_	Тс	
Term		Back porch	Thbp	5	_	_	Tc	(6)
		Hsync	Thswid	2	_	_	Тс	

6.1.3 Input Timing Spec for FHD, Frame Rate = 100Hz

Signal	It	em	Symbol	Min.	Тур.	Max.	Unit	Note		
LVDS Clock	Freq	uency	F _{clkin} (=1/TC)	60	74.25	79	MHz	(4)		
Frame Rate	2D	Mode	F _r	97	100	103	Hz	(5)		
	2D Mode	Total	Tv	1104	1350	1395	Th	Tv=Tvd+Tvb		
Vertical		Display	Tvd		1080		Th			
Active		Blank	Tvb	24	270	315	Th			
Display		Front porch	Tvfp	10	_	_	Th			
Term				Back porch	Tvbp	10	_	_	Th	(6)
		Vsync	Tvswid	4	_	_	Th			
Horizontal		Total	Th	530	550	670	Тс	Th=Thd+Thb		
Active		Display	Thd			Tc				

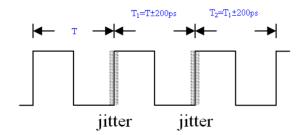
Display	Blank	Thb	50	70	190	Тс	
Term	Front porch	Thfp	5	_	_	Тс	
	Back porch	Thbp	5	_	_	Тс	(6)
	Hsync	Thswid	2	_		Tc	

6.1.4 Input Timing Spec for FHD, Frame Rate = 120Hz

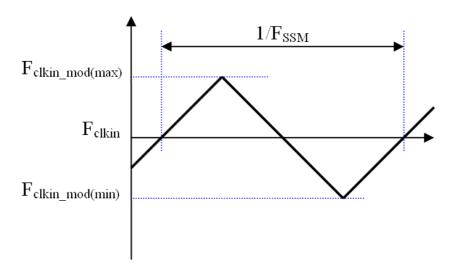
Signal	lt	em	Symbol	Min.	Тур.	Max.	Unit	Note
LVDS Clock	2D	Mode	F _{clkin}	60	74.25	79	MHz	(4)
LVD3 Clock	3D	Mode	(=1/TC)		74.25		MHz	(4)
Frame Rate	2D	Mode	_	117	120		Hz	(5)
Frame hate	3D	Mode	F _r		120		Hz	(5)
		Total	Tv	1104	1125	1395	Th	Tv=Tvd+Tvb
		Display	Tvd		1080		Th	
	2D Mode	Blank	Tvb	24	45	315	Th	
	ZD Wode	Front porch	Tvfp	10	_		Th	
Vertical		Back porch	Tvbp	10	_		Th	(6)
Active		Vsync	Tvswid	4	_		Th	
Display	Total Tv	Total	Tv		1125		Th	
Term		Display	Tvd		1080		Th	
			Th					
		Front porch	Tvfp	10	_	_	_	
		Back porch	Tvbp	10	I			(6)
		Vsync	Tvswid	4	I			
Horizontal		Total	Th	530	550	670	Tc	Th=Thd+Thb
Active Display	2D Mode	Display	Thd		480		Tc	
Term		Blank	Thb	50	70	190	Tc	
		Front porch	Thfp	5	_	_	Tc	
		Back porch	Thbp	5	_		Tc	(6)
		Hsync	Thswid	2	_	_	Tc	
	3D Mode	Total	Th	530	550	670	Tc	Th=Thd+Thb

	Display	Thd		480		Тс	
	Blank	Thb	50	70	190	Tc	
	Front porch	Thfp	5	_		Tc	
	Back porch	Thbp	5	_	_	Тс	(6)
	Hsync	Thswid	2	_	_	Тс	

6.1.5 Input Timing spec for QFHD, Frame Rate = 24Hz

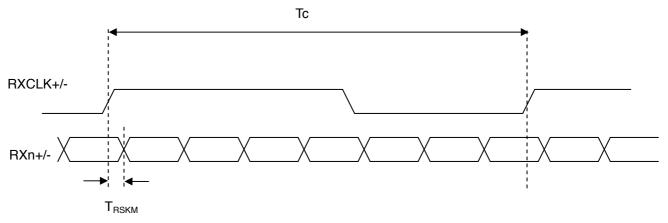

Signal	It	em	Symbol	Min.	Тур.	Max.	Unit	Note
LVDS Clock	Frequency		F _{clkin} (=1/TC)	60	74.25	79	MHz	(4)
Frame Rate	2D Mode		F _r	23	24	25	Hz	(5)
		Total	Tv	2208	2250	2450	Th	Tv=Tvd+Tvb
Vertical		Display	Tvd		2160		Th	
Active	2D Mode	Blank	Tvb	48	90	290	Th	
Display		Front porch	Tvfp	20	_	_	Th	
Term		Back porch	Tvbp	20	_	_	Th	(6)
		Vsync	Tvswid	8	_	_	Th	
		Total	Th	992	1375	1440	Тс	Th=Thd+Thb
Horizontal		Display	Thd		960		Тс	
Active		Blank	Thb	32	415	480	Tc	
Display Term		Front porch	Thfp	12	_	_	Тс	
		Back porch	Thbp	10	_	_	Тс	(6)
		Hsync	Thswid	4	_	_	Tc	

6.1.6 Input Timing spec for QFHD, Frame Rate = 30Hz


Signal	Ite	em	Symbol	Min.	Тур.	Max.	Unit	Note
LVDS Clock	Frequency		F _{clkin} (=1/TC)	60	74.25	79	MHz	(4)
Frame Rate	2D I	Mode	F _r	29	30	31	Hz	(5)
Vertical Active	2D Mode	Total	Tv	2208	2250	2450	Th	Tv=Tvd+Tvb
7.00170		Display	Tvd		2160		Th	

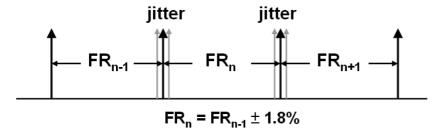
Display	Blank	Tvb	48	90	290	Th	
Term	Front porch	Tvfp	20	_	_	Th	
	Back porch	Tvbp	20			Th	(6)
	Vsync	Tvswid	8			Th	
	Total	Th	992	1100	1340	Tc	Th=Thd+Thb
Horizontal	Display	Thd		960		Tc	
Active	Blank	Thb	32	140	380	Tc	
Display Term	Front porch	Thfp	12	ı		Tc	
	Back porch	Thbp	10			Tc	(6)
	Hsync	Thswid	4	_	_	Tc	

Note (1) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $|T_1 - T|$



Note (2) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (3) The LVDS timing diagram and the receiver skew margin is defined and shown in following figure.



Note (4) Please make sure the range of pixel clock has follow the below equations.

Fclkin (max)
$$\geq$$
 (Fr \times Tv \times Th) \geq Fclkin(min)

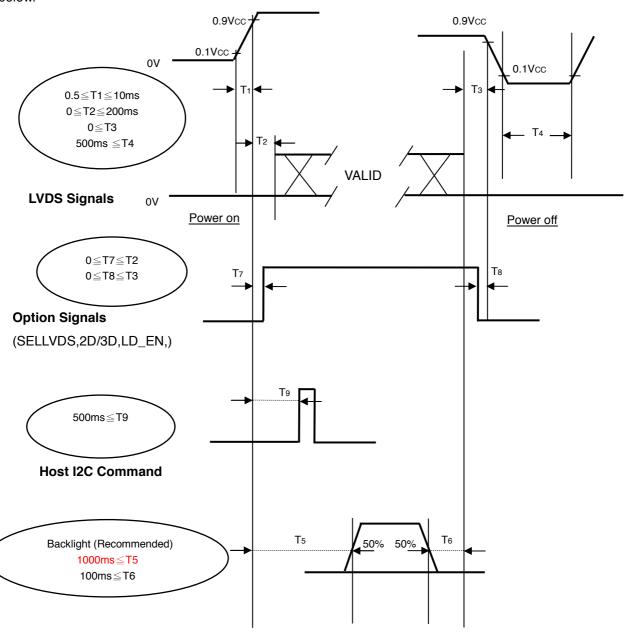
Note (5)

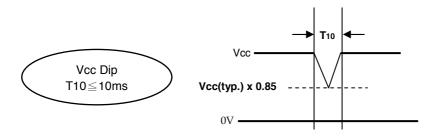
- a. The frame-to-frame jitter of the input frame rate is defined as the following figure.
- b. $FRn = FRn-1 \pm 1.8\%$.

Note (6)

- c. Hsync and Vsync signals are necessary for this module.
- d. The polarity of Hsync & Vsync should be positive.
- e. Please follow the input signal timing diagram as below :

H blank = H total - H Display


V blank = V total - V Display

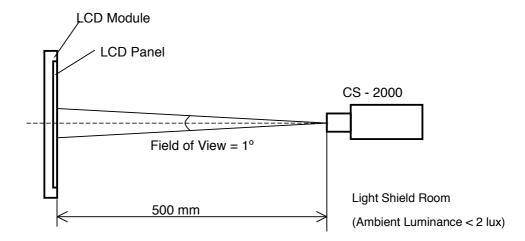

6.2 POWER ON/OFF SEQUENCE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of VCC=off, please keep the level of input signals on the low or high impedance.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.
- Note (6) Vcc must decay smoothly when power-off.


7. OPTICAL CHARACTERISTICS

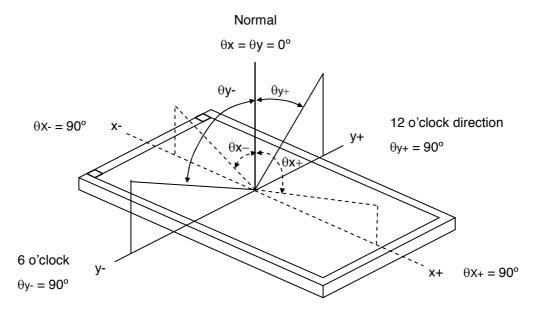
7.1 TEST CONDITIONS

Item	Symbol	Value	Unit				
Ambient Temperature	Ta	25±2	°C				
Ambient Humidity	На	50±10	%RH				
Supply Voltage	V _{CC}	12±1.2	V				
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERIS"						
Vertical Frame Rate	Fr	120	Hz				

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring in a windless room.

Local Dimming Function should be Disable before testing to get the steady optical characteristics (According to 5.1 CNF1 Connector Pin Assignment, Pin no. "42")

7.2 OPTICAL SPECIFICATIONS

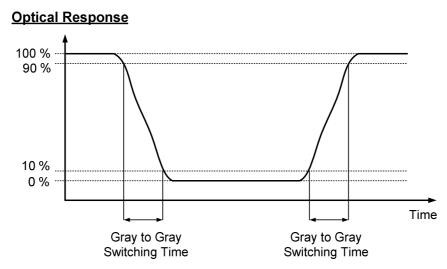

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

Item		Symbol		Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR			(3500)	(5000)	-	-	Note (2)
Response Time		Gray to gray				(6.5)	(13)	ms	Note (3)
Center Luminance of White		L _C	2D		(280)	(350)	-	cd/m ²	Note (4)
			3D			(60)	-	cd/m ²	Note (8)
White Variation		δW					1.3	-	Note (6)
Cross Talk		СТ	2D	θ _x =0°, θ _Y =0° Viewing angle at normal direction	-		4	%	Note (5)
			3D-W			4	-	%	Note (8)
			3D-D			11	-	%	Note (8)
Color Chromaticity	Red	Rx			Typ 0.03	(0.645)	Typ.+	-	
		Ry				(0.335)		-	
	Green	Gx				(0.306)		-	
		Gy				(0.617)		-	
	Blue	Bx				(0.149)		-	
		Ву				(0.058)		-	
	White	Wx				(0.280)		-	
		Wy				(0.290)		-	
	Correlated color temperature				(9800)		K		
	Color Gamut	C.G.			-	(72)	-	%	NTSC
Viewing Angle	Horizontal	θ_x +		CR≥20	80	88	-	- - Deg.	(1)
		θ _x -			80	88	-		
	Mand	θ _Y +			80	88	-		
	Vertical	θ	Y-		80	88	-		
Transmission direction of the up polarizer		¢) _{up}	-	-	90	-	Deg.	(7)

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80 (or Eldim EZ-Contrast 160R).

Note (2) Definition of Contrast Ratio (CR):


The contrast ratio can be calculated by the following expression.

L1023: Luminance of gray level 1023

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

Note (3) Definition of Gray-to-Gray Switching Time :

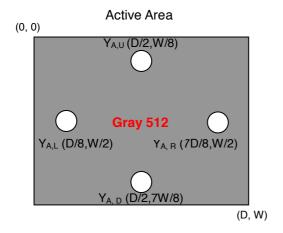
The driving signal means the signal of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023.

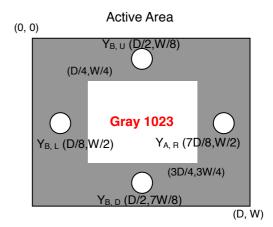
Gray to gray average time means the average switching time of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023 to each other.

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 1023 at center point.

L_C = L (5), where L (x) is corresponding to the luminance of the point X at the figure in Note (6).

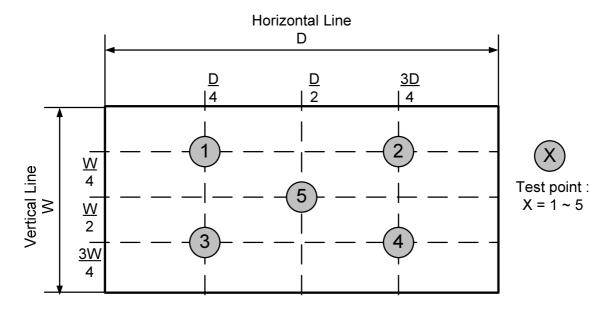

Note (5) Definition of Cross Talk (CT):


$$CT = I Y_B - Y_A I / Y_A \times 100 (\%)$$

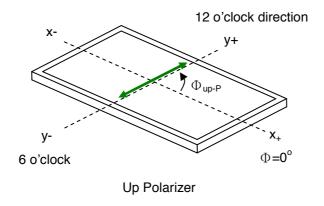
Where:

YA = Luminance of measured location without gray level 1023 pattern (cd/m2)

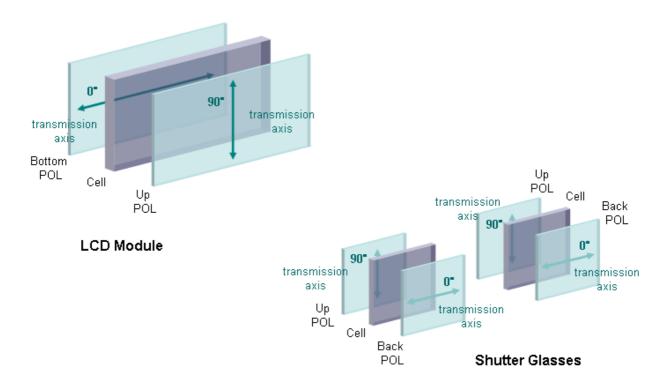
YB = Luminance of measured location with gray level 1023 pattern (cd/m2)



Note (6) Definition of White Variation (δW):


Measure the luminance of gray level 1023 at 5 points

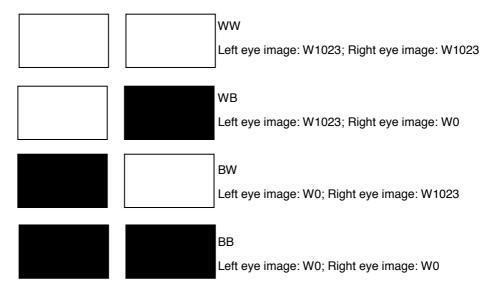
$$\delta W = \frac{\text{Maximum} [L (1), L (2), L (3), L (4), L (5)]}{\text{Minimum} [L (1), L (2), L (3), L (4), L (5)]}$$

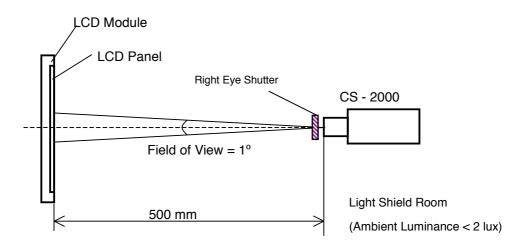


Note (7) This is a reference for designing the shutter glasses of 3D application. Definition of the transmission direction of the up polarizer (Φ_{up-P}) on LCD Module :

The transmission axis of the front polarizer of the shutter glasses should be parallel to this panel transmission direction to get a maximum 3D mode luminance.

Version 1.0 40 Date : Jan.24, 2013




Note (8) Definition of the 3D mode performance (measured under 3D mode, use INX's shutter glass):

a. Test pattern

Left eye image and right eye image are displayed alternated

b. Measurement setup

Shutter glasses are well controlled under suitable timing, and measure the luminance of the center point of the panel through the right eye glass. The transmittance of the glass should be larger than 40.0% under 3D mode operation. The luminance of the test pattern "WW", denoted L(WW); the luminance of the test pattern "WB", denoted L(WB); the luminance of the test pattern "BB", denoted "L(BB)

c. Definition of the Center Luminance of White, Lc (3D): L(WW)

d. Definition of the 3D mode white crosstalk, CT (3D-W) :
$$CT(3D-W) \equiv \left| \frac{L(WB) - L(BB)}{L(WW) - L(BB)} \right|$$

e. Definition of the 3D mode dark crosstalk, CT (3D-D) :
$$CT(3D-D) \equiv \left| \frac{L(WW) - L(BW)}{L(WW) - L(BB)} \right|$$

Version 1.0 41 Date: Jan.24, 2013

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of LED will be higher than that of room temperature.

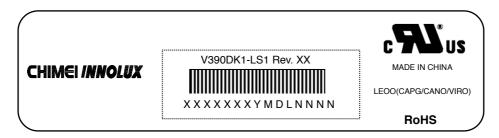
8.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

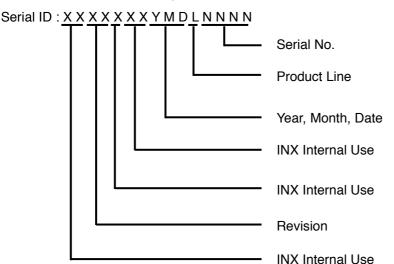
8.3 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

Regulatory	Item	Standard	
	UL	UL60950-1:2006 or Ed.2:2007	
Information Technology equipment	cUL	CAN/CSA C22.2 No.60950-1-03 or 60950-1-07	
	СВ	IEC60950-1:2005 / EN60950-1:2006+ A11:2009	
	UL	UL60065 Ed.7:2007	
Audio/Video Apparatus	cUL	CAN/CSA C22.2 No.60065-03:2006 + A1:2006	
	СВ	IEC60065:2001+ A1:2005 / EN60065:2002 + A1:2006+ A11:2008	


If the module displays the same pattern for a long period of time, the phenomenon of image sticking may be occurred.

9. DEFINITION OF LABELS


9.1 INX MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Model Name: V390DK1-LS1

Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

Manufactured Date:

Year: 2001=1, 2002=2, 2003=3, 2004=4...2010=0, 2011=1, 2012=2...

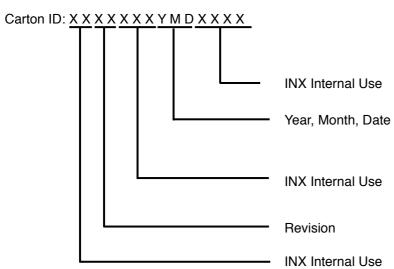
Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

Revision Code: Cover all the change

Serial No. : Manufacturing sequence of product

Product Line : $1 \rightarrow Line 1$, $2 \rightarrow Line 2$, ...etc.



9.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation.

Model Name: V390DK1-LS1

Serial ID includes the information as below:

Manufactured Date:

Year: 2010=0, 2011=1, 2012=2...etc.

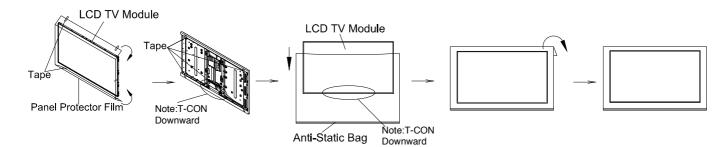
Month: 1~9, A~C, for Jan. ~ Dec.

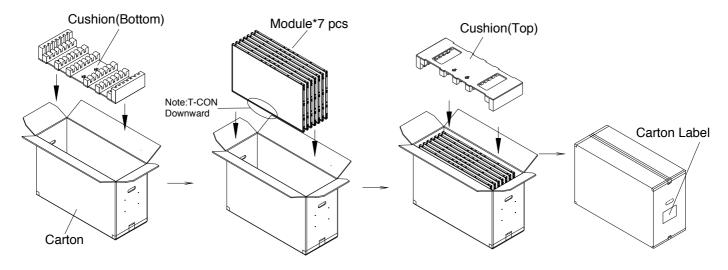
Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

Revision Code: Cover all the change

10. PACKAGING

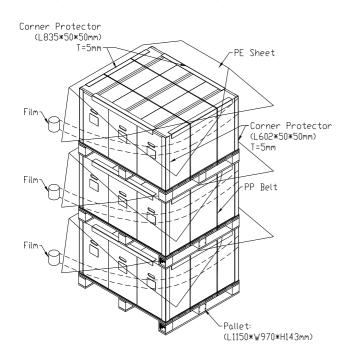
10.1 PACKAGING SPECIFICATIONS

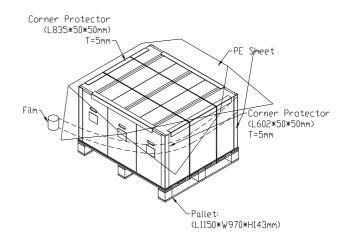

(1) 7 LCD TV modules / 1 Box


(2) Box dimensions: 954(L) X 378 (W) X 602 (H)

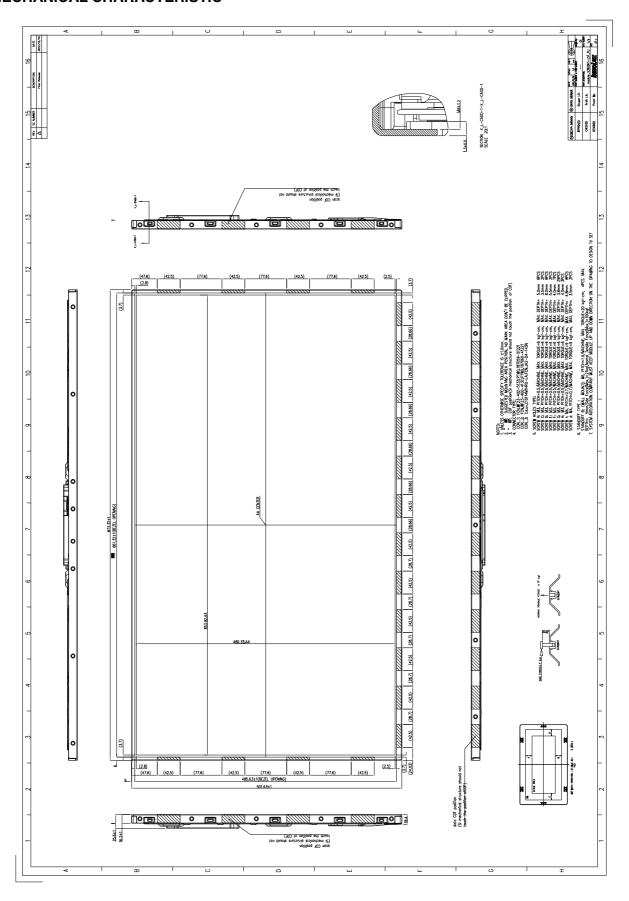
(3) Weight: approximately 54 Kg (7 modules per box)

10.2 PACKAGING METHOD

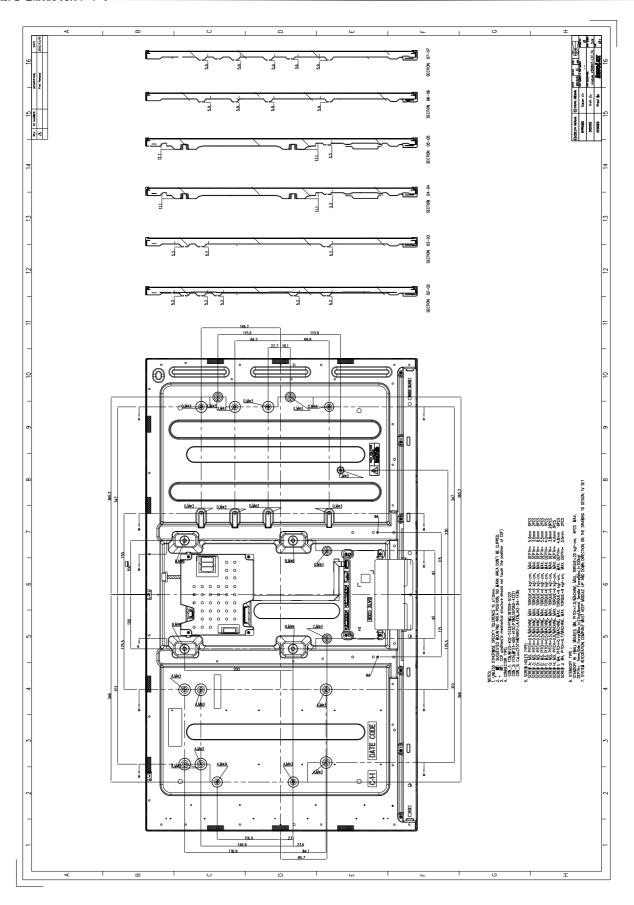

Packaging method is shown in following figures.

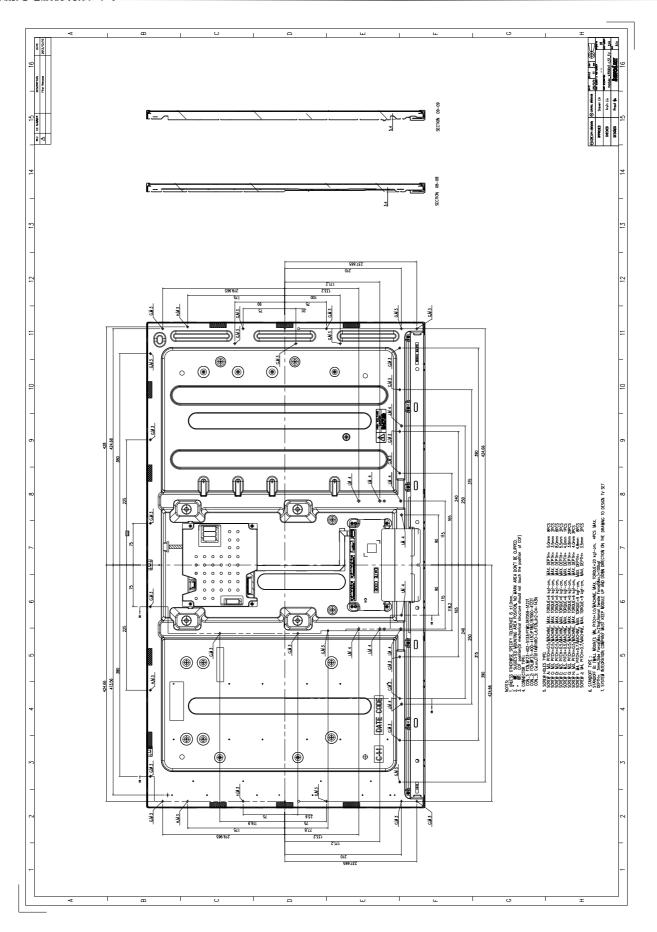


Sea / Land Transportation (40ft HQ / 40ft Container)



Air Transportation




11. MECHANICAL CHARACTERISTIC

