## HITACHI

DATE May 13.2008

## CUSTOMER'S ACCEPTANCE SPECIFICATIONS TX20D17VM2BBA

CONTENTS

| Na. | ITEM | SHEET Na. | P/AGE |
| :---: | :---: | :---: | :---: |
| 1 | CONER | 7E64PS 2701- TK20017-/M2BE¢-2 | 1-1/1 |
| 2 | RECORD CF REWISION | 7E34PS 2702- TX20D17-M2BEA-2 | 2-1/1 |
| 3 | GEMERAL DATA | 7EE4PS 2703-TX20D17-M2BEA-2 | 3-1.11 |
| 4 | ABISCLLITE MAXIMLM RATINGS | 7BE4PS 2704- TX20D17/M2BEA-2 | $4-1 / 2-2 / 2$ |
| 5 | ELECTRICAL CHARACTERISTICS | 7B64PS 2705- TX20017/M2BEA-2 | 5-1/3-3/3 |
| 6 | OPTICAE CHARACTERISTICS | 7В54PS 2706- TX20017-M2BEA-2 | 6-1/2-2/2 |
| 7 | BLOCK DIAGRAM |  | T-1/9 |
| a | INTERFACE PIN OONNECTION | 7B94PS 2706- TX20017./M2BBA-2 | $8-1 / 2-2 / 2$ |
| 9 | INTIERFACE TIMNG | 7ES4PS 2709- TX20017MM2BEA-2 | 9-1/3~3/3 |
| 10 | DIMENSIONAL OUTLINE | 7BEB3PS 2710-TX20D17MM2BEA-2 7B34PS 2710-TX20017MM2BBA-2 | $\begin{aligned} & 10-1 / 2 \\ & 10-2 / 2 \end{aligned}$ |
| 11 | DESIGNATION OF LOT MARK | 7EF4PS 2711- TX20017MM2BBA-2 | 11-1/1 |
| 12 | COSMETIC SPECIFICATION | 7B64PS 2712-TX20017MM2BBA-2 | 12-1/4/-4/4 |
| 13 | PRECAUTION | 7BF44PS 2713- TK20017 ${ }^{\text {2 }}$ | 13-1/5~5/5 |

When produat will be ctacantinued, caublomer will be intormed by HITACH with fwelve manthes prior to discontinuation.


## RECORD OF REVISION

| DATE | SHEET No. | SUMMARY |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| May.13,'08 | 7B64PS 2708- TX20D17VM2BBA-2 PAGE 8-1/2 | 8.1 TFT-LCD MODULE(CN1) <br> Changed: <br> CN1 JAE: FA5B040HF1R3000(Sn plating) <br> FA5B040HP1R3000(Au plating) |  |  |  |  |
|  | $\begin{aligned} & \text { 7B64PS 2710- } \\ & \text { TX20D17VM2BBA-2 } \\ & \text { PAGE 10-2/2 } \end{aligned}$ | 10.2 BACK SIDE <br> The lot label size and position is changed. <br> Changed: <br> Note 1 CN1 : FA5B040HF1R3000(JAE) <br> FA5B040HP1R3000(JAE) |  |  |  |  |
|  | 7B64PS 2711-TX20D17VM2BBA-2 PAGE 11-1/1 | 11.3 LOCATION OF LOT MARK Changed: <br> Added: 11.4 REVISION(Rev.) CONTROL |  |  |  |  |
|  |  |  |  |  |  |  |
| KAOHSIUNG HITACHI <br> ELECTRONICS CO.,LTD. DATE |  | May.13,'08 | Sh. | 7B64PS 2702-TX20D17VM2BBA-2 | PAGE | 2-1/1 |

## 3. GENERAL DATA

The specifications are applied to the following TFT-LCD module with Back-light unit. Note : Inverter device for Back-Light is not built in this module.

| Product Name | TX20D17VM2BBA |  |
| :---: | :---: | :---: |
| Effective Display Area | (H)174.0 $\times$ (V) 104.4 | [mm] |
| Display Dots | (H) $800 \times 3) \times(\mathrm{V}) 480$ | [dots] |
| (Display Pixels) | ( $\mathrm{H} 800 \times \mathrm{V} 480$ ) | [pixels] |
| Pixel Pitch | (H)0.2175 $\times$ (V)0.2175 | [mm] |
| Color Pixel Arrangement | R+G+B Vertical Stripe |  |
| Display Mode | Transmissive Mode, Normally White Mode |  |
| Surface Polarizing Film | Polarizing Film with Antiglare Coating |  |
| Number of Colors | 262k | [colors] |
| Interface | C-MOS,R.G.B $\times 6$ bit Digital each |  |
| Color Saturation | 60\%(typ.) for NTSC |  |
| Viewing Direction | 12 O'clock. (The direction it's hard to be discolored) |  |
| Backlight | CCFL, 1pc Side-light type ( $U$ shaped) |  |
| Dimensions Outline | (H)192(typ.) $\times$ (V)123.5(typ.) $\times$ (t)12.7 (max.) | [mm] |
| Weight | Approximately 350 | [g] |
| Touch Panel | Resistance type, The Surface is anti-glare type. |  |


| KAOHSIUNG HITACHI ELECTRONICS CO.,LTD. | DATE | May.13,'08 | Sh. | 7B64PS 2703-TX20D17VM2BBA-2 | PAGE | 3-1/1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

4. ABSOLUTE MAXIMUM RATINGS
4.1 ENVIROMENTAL ABSOLUTE MAXIMUM RATINGS

| Item | Operating |  | Non-operation |  | Unit | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min. | Max. | Min. | Max. |  |  |
| Temperature | -20 | 70 | -30 | 85 | ${ }^{\circ} \mathrm{C}$ | 1) 2) 5) |
| Humidity | 2) |  | 2) |  | \%RH | 1) |
| Vibration | - | 4.9(0.5G) | - | 19.6(2G) | $\mathrm{m} / \mathrm{s}^{2}$ | 3) |
| Shock | - | 29.4(3G) | - | 490(50G) | $\mathrm{m} / \mathrm{s}^{2}$ | 4) |
| Corrosive Gas | Not Acceptable |  | Not Acceptable |  |  |  |
| Illumination at LCD Surface | - | 50,000 | - | 50,000 | Ix |  |
| CFL <br> life time | 50000 h(Average) (Note6) |  |  |  | $\begin{gathered} \text { At } 25^{\circ} \mathrm{C} \\ \mathrm{IL}=4 \mathrm{~mA} \text { max. } \end{gathered}$ |  |

Notes 1) "Temperature" and "Humidity" shall be measured on panel surface.
The ratings apply to every part of this module and shall not be exceeded.
The operating temperature only guarantee the display can be operated; regarding the contrast response time, illumination and other features related to the quality are judged by $\mathrm{Ta}=25^{\circ} \mathrm{C}$ condition.
Generally the illumination will down and LCD response time will becomes slower when the display operated under a lower temperature environment.
2) Ambient temp. $\mathrm{Ta} \leqq 40^{\circ} \mathrm{C}: 85 \% \mathrm{RH}$ max. Without condensation.
$\mathrm{Ta}>40^{\circ} \mathrm{C}$ :Absolute humidity must be lower than the humidity of $85 \%$ at $40^{\circ} \mathrm{C}$ Without condensation.
3) Frequency of the vibration shall be between 20 Hz and 50 Hz . (except resonance point)
4) Pulse width of the shock shall be 10 ms .
5) In Non-operation condition ( $\mathrm{Ta}>70^{\circ} \mathrm{C}$ ) the TFT-LCD module should be put within 96 hrs.

In Non-operation condition ( $\mathrm{Ta}<-20^{\circ} \mathrm{C}$ ) the TFT-LCD module should be put within 240 hrs and without condensation.
6) When brightness reached $50 \%$ of initial brightness.
4.2 ELECTRICAL ABSOLUTE MAXIMUM RATINGS
4.2.1 TFT-LCD MODULE

| $\|c\|$ | Item |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Symbol | Min. | Max. | Unit | Note |  |
| Power Supply Voltage for logic | VDD | 0 | 4.0 | V |  |
| Input signal Voltage for logic | VI | -0.3 | VDD+0.3 | V | $1)$ |
| Electrostatic Durability | VESD0 | $\pm 100$ | V | $2), 3)$ |  |
|  | VESD1 | $\pm 8$ |  | kV | $2), 4)$ |

Notes 1) The specification is applied to pixel data signal, timing signal and clock signal.
2) Discharge circuit to be connected : $200 \mathrm{pF}-250 \Omega$, Environmental : $25^{\circ} \mathrm{C}-70 \% \mathrm{RH}$
3) The specification is applied to I/F connector pins.
4) The specification is applied to the surface of both a metal bezel and a LCD panel
4.2.2 BACK-LIGHT UNIT

GND $=0 \mathrm{~V}$

| Item | Symbol | Min. | Max. | Unit | Note |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Lamp Current | IL | - | 7.0 | mArms | 1) |
| Lamp Voltage | VL | - | 2100 | Vrms | 2) |

Notes 1) To be measured at GND terminal side
2) The specification is applied at connector pins for back-light units.

## 5. ELECTRICAL CHARACTERISTICS

### 5.1 TFT-LCD MODULE

| Item |  |  |  |  |  |  |  |  | Symbol | Min. | Typ. | Max. | Unit | Note |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | VSS $=0 \mathrm{~V}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Power Supply Voltage | VDD | 3.0 | 3.3 | 3.6 | V |  |  |  |  |  |  |  |  |  |
| Input Voltage for <br> Logic Circuits | Hi | VIH | 2.0 | - | VDD | V | $1)$ |  |  |  |  |  |  |  |
|  | Lo | VIL | VSS | - | 0.8 | V | $1)$ |  |  |  |  |  |  |  |
| Power Supply Current | IDD | - | 300 | 400 | mA | $2), 3)$ |  |  |  |  |  |  |  |  |
| Vsync Frequency | fV | - | 60 | 75 | Hz |  |  |  |  |  |  |  |  |  |
| Hsync Frequency | fH | - | 31.6 | 39.2 | kHz |  |  |  |  |  |  |  |  |  |
| DCLK Frequency | fCLK | - | 33.3 | 40 | MHz |  |  |  |  |  |  |  |  |  |

Notes 1) The specification is applied to pixel data signal , timing signal and clock signal.
2) $\mathrm{fV}=60 \mathrm{~Hz}, \mathrm{fCLK}=33.3 \mathrm{MHz}, \mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{DC}$ Current.


Typical value is measured when displaying Black raster.
Maximum is measured when displaying Vertical-stripe pattern of 2 pixel pitch.
3) Current capacity for VDD power source should be larger than 1A.

This TFT-LCD Module has a fuse (0.4A).
5.2 BACK-LIGHT UNIT

| Item | Symbol | Min. | Typ. | Max. | Unit | Note |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Lamp Current | IL | - | 4.0 | 7.0 | mArms | $1), 3)$ |
| Lamp Voltage | VL | - | 1000 | - | Vrms |  |
| Frequency | fL | 50 | - | 70 | kHz | $2)$ |
| Starting Lamp Voltage | VS | 1600 | - | - | Vrms | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ |
|  |  | 2100 | - | - |  | $\mathrm{Ta}=0{ }^{\circ} \mathrm{C}$ |

Notes 1) Larger IL causes the shorter life of a CCFL.
2) Frequency of power supply for a CCFL may cause interference with Hsync frequency and causes beat or flicker on the display.
Therefore, lamp frequency shall be as different as possible from Hsync frequency in order to avoid the interference.
3) To be measured at GND terminal side
4) Starting Lamp Voltage should be kept 1 sec at least.
5) The inverter should be built-in a safety circuit which detects over current, over voltage and distorted wave form of lamp current.

### 5.3 ELECTRICAL CHARACTERISTICS OF TOUCH PANEL

### 5.3.1 ELECTRICAL CHARACTERISTICS

| ITEM |  | SPECIFICAYION | NOTE |
| :--- | :---: | :---: | :--- |
| Resistance <br> Between Terminai | $\mathrm{X} 1-\mathrm{X} 2$ | $380 \sim 1010 \Omega$ | At Connector |
| $\mathrm{Y} 1-\mathrm{Y} 2$ | $180 \sim 520 \Omega$ | At Connector |  |
| Insulation Resistance | $\mathrm{X}-\mathrm{Y}$ | $20 \mathrm{M} \Omega \mathrm{min}$. | Operating Voltage : 25V DC |
| Linearity | X | $1.5 \%$ max. | (Note 1,2,3) |
|  | Y | $1.5 \%$ max. |  |
| Chattering |  |  | 10 ms max. |

5.3.2 MECHANICAL CHARACTERISTICS

| ITEM | SPECIFICAYION | NOTE |
| :--- | :---: | :--- |
| Pen Input Pressure | $5 \sim 80 \mathrm{gF}$ | R0.8mm polyacetal pen |
| Surface Hardness | 3 H | JIS K5400 |

5.3.3 OPTICAL CHARASTERISTICS

| ITEM | SPECIFICAYION | NOTE |
| :--- | :---: | :---: |
| Transparency | $80 \% \mathrm{~min}$. |  |

Note 1: Operating Volatge 5V DC
Note 2: Test Area of Linearity
Note 3 : (1) Marerial of Pen = Poly - Acetalresin
(2) End Shape $=$ R0.8mm
(3) Test force $=150 \mathrm{gF}$


Note 4 : Measurement condition of Linearity
Linearity Definition


Va : maximum voltage in the active area of touch panel
Vb : minimum voltage in the active area of touch panel
$X$ : random measuring point
Vxm : Actual voltage of Lx point
Vxi : Theoretical voltage of Lx point


Linearity:[|Vxi-Vxm|/(Va-Vb)]*100\%

## 6. OPTICAL CHARCACTERISTICS

The following items are measured on the conditions that this unit operation (TFT-LCD And the Back-light) and measuring systems are stable. It takes about 15 minutes.
The ambient light excluding The Back-light unit is nothing.

- Measuring equipment: TOPCON BM-7, Prichard 1980A, or equivalent
- Measuring point : Active area center

$$
\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{fV}=60 \mathrm{~Hz}, \mathrm{IL}=4.0 \mathrm{~mA}
$$

| Item |  | Symbol | Condition | Min. | Typ. | Max. | Unit | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contrast Ratio |  | CR | $\begin{gathered} \theta=0^{\circ} \\ \text { 1) } \end{gathered}$ | 100 | 200 | - |  | 2) |
| Response Time | RISE | ton |  | - | 20 | 40 | ms | 3) |
|  | FALL | toff |  | - | 10 | 20 | ms | 3) |
| Brightness (White) |  | Bwh |  | 360 | 480 | - | $\mathrm{cd} / \mathrm{m}^{2}$ |  |
| Brightness Uniformity |  | Buni |  | 70 | - | - | \% | 4) |
| Color Position On CIE | Red | X |  | 0.57 | 0.62 | 0.67 |  |  |
|  |  | y |  | 0.29 | 0.34 | 0.39 |  |  |
|  | Green | X |  | 0.24 | 0.29 | 0.34 |  |  |
|  |  | y |  | 0.55 | 0.60 | 0.65 |  |  |
|  | Blue | x |  | 0.09 | 0.14 | 0.19 |  |  |
|  |  | y |  | 0.02 | 0.07 | 0.12 |  |  |
|  | White | x |  | 0.25 | 0.30 | 0.35 |  |  |
|  |  | y |  | 0.26 | 0.31 | 0.36 |  |  |
| Viewing Angle$(C R \geqq 10)$ | $x-x^{\prime}$ | $\theta \mathrm{x}$ | $\theta=0^{\circ}$ | 50 | - | - | deg. |  |
|  |  | $\theta \mathrm{x}^{\prime}$ | $\theta=180^{\circ}$ | 50 | - | - |  |  |
|  | $y-y^{\prime}$ | $\theta \mathrm{y}$ | $\theta=90^{\circ}$ | 50 | - | - |  | ) |
|  |  | $\theta \mathrm{y}^{\prime}$ | $\theta=270^{\circ}$ | 50 | - | - |  |  |

Note 1) Definition of Viewing Angle

2) Definition of Contrast Ratio(CR):
$\mathrm{CR}=\frac{\text { (Luminance at displaying WHITE) }}{\text { (Luminance at displaying BLACK) }}$
3) Definition of Response Time

Displaying
data signal

4) Definition of Birghtness Uniformity


The brightness unjformity (Buni) is defined as the following equation.

$$
\text { Buni }=\frac{B \min }{B \max } \times 100
$$

where, Bmax $=$ Maximum brightness among 9 measuring points Bmin $=$ Minimum brightness among 9 measuring points

## 7. BLOCK DIAGRAM

### 7.1 TFT-LCD MODULE



### 7.2 BACK-LIGHT UNIT



Color of wires from CCFL to CN2 3 (GND) : White
1 (VL) : Pink

## 8．INTERFACE PIN CONNECTION

## 8．1 TFT－LCD MODULE

CN1 《JAE；FA5B040HP1R3000（Au plating）》

| Pin No． | Symbol | Description | Note |
| :---: | :---: | :---: | :---: |
| 1 | VDD | Power Supply（typ．＋3．3V） | 1） |
| 2 | VDD |  |  |
| 3 | VDD |  |  |
| 4 | VDD |  |  |
| 5 | NC | Non－Connect | 4） |
| 6 | DTMG | Display Timing |  |
| 7 | VSS | GND（OV） | 2） |
| 8 | NC | Non－Connect | 4） |
| 9 | VSS | GND（0V） | 2） |
| 10 | （IC） |  | 3） |
| 11 | VSS | GND（OV） | 2） |
| 12 | B5 | Blue Data |  |
| 13 | B4 |  |  |
| 14 | B3 |  |  |
| 15 | VSS | GND（0V） | 2） |
| 16 | B2 | Blue Data |  |
| 17 | B1 |  |  |
| 18 | B0 |  |  |
| 19 | VSS | GND（0V） | 2） |
| 20 | G5 | Green Data |  |
| 21 | G4 |  |  |
| 22 | G3 |  |  |
| 23 | VSS | GND（0V） | 2） |
| 24 | G2 | Green Data |  |
| 25 | G1 |  |  |
| 26 | G0 |  |  |
| 27 | VSS | GND（0V） | 2） |
| 28 | R5 | Red Data |  |
| 29 | R4 |  |  |
| 30 | R3 |  |  |
| 31 | VSS | GND（0V） | 2） |
| 32 | R2 | Red Data |  |
| 33 | R1 |  |  |
| 34 | R0 |  |  |
| 35 | （IC） |  | 3） |
| 36 | VSS | GND（0V） | 2） |
| 37 | VSS |  |  |
| 38 | DCLK | Dot Clock |  |
| 39 | VSS | GND（0V） | 2） |

Notes 1）All VDD pins shall be connected to +3.3 V （Typ．）．
2）All VSS pins shall be grounded．Metal bezel is internally connected to VSS．
3）Keep open electrically．HITACHI test use only．
4）Unconnected to the module

## 8．2 BACK－LIGHT UNIT

CN2 《JST ；BHR－03VS－1》

| Pin No． | Symbol |  | Description |
| :---: | :---: | :--- | :---: |
| 1 | VL | Power Supply | Note |
| 2 | NC | Non－Connect |  |
| 3 | GND | GND $(0 \mathrm{~V})$ |  |

8.3 T/P unit Pin No. Symbol Description

| 1 | X 2 | Analog signal digitizer (Right) |
| :---: | :---: | :--- |
| 2 | Y 1 | Analog signal digitizer (Up) |
| 3 | X 1 | Analog signal digitizer (Left) |
| 4 | Y 2 | Analog signal digitizer (Down) |

8.4 RELATIONSHIP BETWEEN DISPLAYED COLOR AND INPUT DATA


Notes 1) Definition of gray scale:
Color( n ) $\cdots$ Number in parenthesis indicates gray scale level. Higher n corresponds to darker level.
2) Data: 1 : High, 0 : Low

## 9. INTERFACE TIMING

### 9.1 TIMING CHART

(Data : Latched at Fall edge of DCLK)

*The DTMG signal for this module is defined as above-mentioned timings for Vsync and Hsync.
This module synchronizes with only DTMG and don't require inputting Vsync and Hsync signals.
During Blanking priod, DTMG should be "Low" level

| KAOHSIUNG HITACHI <br> ELECTRONICS CO.,LTD. | DATE | May.13,'08 | Sh. <br> No. | 7B64PS 2709-TX20D17VM2BBA-2 | PAGE | $9-1 / 3$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

### 9.2 INTERFACE TIMING SPECIFICATIONS

| Item |  | Symbol | Min. | Typ. | Max. | Unit | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DCLK | Period | tcLk | 25 | 30 | 33 | ns |  |
|  | Width-Low | twCL | 12 | - | - |  |  |
|  | Width-Hi | twch | 12 | - | - |  |  |
|  | Rise time | trCLK | - | - | 25 |  |  |
|  | Fall time | tfCLK | - | - | 25 |  |  |
|  | Duty | D | 0.45 | 0.5 | 0.55 | - | $\mathrm{D}=$ tcLK $/$ tcLk |
| Hsync | Set up time | tsH | 5 | - | - | ns | for DCLK |
|  | Hold time | the | 10 | - | - |  |  |
|  | Period | thp | 944 | 1056 | 1088 | tclk | for Hsync |
|  | Width-Active | twh | 4 | 128 | - |  |  |
|  | Rise/Fall time | thr, $\mathrm{thff}^{\text {f }}$ | - | - | 30 | ns |  |
| Vsync | Set up time | tsv | 0 | - | - | tclk | for Hsync |
|  | Hold time | thv | 2 | - | - |  |  |
|  | Period | tvp | 515 | 525 | 610 | thp |  |
|  | Width-Active | twv | 1 | 2 | - |  |  |
|  | Rise/Fall time | tvr, tvf | - | - | 50 | ns |  |
| DTMG | Set up time | ts | 5 | - | - | ns | for DCLK |
|  | Hold time | t-H1 | 10 | - | - |  |  |
|  | Rise/Fall time | tir, tif | - | - | 30 | ns |  |
|  | Horizontal Back porch | thBP | 7 | 216 | - | tclk |  |
|  | Horizontal Front porch | thfP | - | 40 | - |  |  |
|  | Vertical Back porch | tvBP | 4 | 34 | - | $\mathrm{tHP}^{\text {P }}$ |  |
|  | Vertical Front porch | tVFP | - | 11 | - |  |  |
| Data | Set up time | tso | 5 | - | - | ns | for DCLK |
|  | Hold time | thi | 10 | - | - |  |  |
|  | Rise/Fall time | tor,tof | - | - | 25 | ns |  |

### 9.3 TIMING BETWEEN INTERFACE SIGNAL AND POWER SUPPLY



> POWER ON
> $\mathrm{t}_{1} \leqq 15 \mathrm{~ms}$
> $0 \mathrm{~ms}<\mathrm{t}_{2} \leqq 45 \mathrm{~ms}$
> $0.1 \mathrm{~s} \leqq \mathrm{t}_{3}$

> POWER OFF
> $5 \mathrm{~ms} \leqq \mathrm{t}_{4}$
> $0 \mathrm{~ms} \leqq \mathrm{t}_{5} \leqq 45 \mathrm{~ms}$
> $0 \mathrm{~ms} \leqq \mathrm{t}_{6} \leqq 20 \mathrm{~ms}$
> $0.4 \mathrm{~s} \leqq \mathrm{t}_{7}$

Note 1) Set $0 \mathrm{~V} \leqq \mathrm{VI}(\mathrm{t}) \leqq \mathrm{VDD}(\mathrm{t})$.
Here, $\mathrm{VI}(\mathrm{t}), \mathrm{VDD}(\mathrm{t})$ indicate the transitional state of $\mathrm{VI}, \mathrm{VDD}$ when power supply is turned ON or OFF.
2) Do not keep interface signal high-impedance when power on.



Note : 1) CN1 FA5B040HP1R3000(JAE)
2) CN2 BHR-03VS-1(JST)

## 11. DESIGNATION OF LOT MARK

11.1 LOT MARK


Notes
1)

| Year | Mark |
| :---: | :---: |
| 2008 | 8 |
| 2009 | 9 |
| 2010 | 0 |
| 2011 | 1 |
| 2012 | 2 |

2) 

| Month | Mark | Month | Mark |
| :---: | :---: | :---: | :---: |
| 1 | 01 | 7 | 07 |
| 2 | 02 | 8 | 08 |
| 3 | 03 | 9 | 09 |
| 4 | 04 | 10 | 10 |
| 5 | 05 | 11 | 11 |
| 6 | 06 | 12 | 12 |

3) 

| Week (Days) | Mark |
| :---: | :---: |
| $1 \sim 7$ | 1 |
| $8 \sim 14$ | 2 |
| $15 \sim 21$ | 3 |
| $22 \sim 28$ | 4 |
| $29 \sim 31$ | 5 |

4) The special mark may be added by manufacturing accordingly to production number.
11.2 REVISION(REV.) CONTROL

REV. column is controlled by the manufacturing. A-Z except $I$ and $O$ is to be written on this column

### 11.3 LOCATION OF LOT MARK

Lot mark is printed on a label. The label is on rear side of module as shown in the drawing at Section 10.
The style of character may be changed without notice.
11.4 REVISION(Rev.) CONTROL

| Rev No. |  |
| :---: | :--- |
| A | CN1 JAE: FA5B040HF1R3000 |
| B | CN1 JAE : FA5B040HP1R3000 |



## 12. COSMETIC SPECIFICATIONS

12.1 CONDITION FOR COSMETIC INSPECTION
(1) Viewing zone
a) The figure shows the correspondence between eyes (of inspector) and TFT-LCD module.
$\theta \leqq 45^{\circ}$ : when non-operating inspection $\theta \leqq 5^{\circ}$ : when operating inspection
b) Inspection should be executed only from
 front side and only A-zone.
Cosmetic of B-zone and C-zone are ignored.
(refer to 12.2 Definition of zone)
(2) Environmental
a) Temperature : $25^{\circ} \mathrm{C}$

The appearance inspection at Back-light on is done at $25^{\circ} \mathrm{C}$ on a TFT-LCD panel.
b) Ambient light : More than $2000[1 \mathrm{x}]$ and non-directive.
c) Back-light : when non-operating inspection, Back-light should be off.
(3) Operating inspection

Operating inspection should be done with 8 color mode (without gray scale).

### 12.2 DEFINITION OF ZONE

A-zone : LCD Display area (pixel area)
B-zone: Area between A-zone and C-zone
C-zone : Metallic bezel area (include I/F connector)

12.3 COSMETIC SPECIFICATIONS

When displaying conditions are not stable (ex. at turn on or off), the following specifications are not applied.

| No | ITEM |  |  | Max. acceptable number | Unit | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Dot defect | Sparkle mode | 1-dot | 4 | pcs | 1),2),4) |
|  |  |  | 2-dots | 1 | Units | 1),2),5) |
|  |  |  | 3-dots | 0 |  |  |
|  |  |  | 4-dots | 0 |  |  |
|  |  |  | Density | 2 | pcs/ $/ 220 \mathrm{~mm}$ | 1),2),6) |
|  |  |  | Total | 5 | pcs | 1),2) |
|  |  | Black mode | 1-dot | 5 | pcs | 1),3),4) |
|  |  |  | 2-dots | 2 | Units | 1),3),5) |
|  |  |  | 3-dots | 0 |  |  |
|  |  |  | 4-dots | 0 |  |  |
|  |  |  | Density | 3 | pcs $/$ ¢20 mm | 1),3),6) |
|  |  |  | Total | 5 | pcs | 1),3) |
|  |  |  | Total | 10Serious one is not allowed | pCs | 1) |
| 2 | Line defect |  |  |  | - | - |
| 3 | Uneven | brightness |  |  |  |  |
| 4 | $\begin{aligned} & \text { Stains, Foreign Materials } \\ & \left.\qquad \begin{array}{c} \text { Line shape } \\ W: \text { width }(\mathrm{mm}) \\ L: \text { length }(\mathrm{mm}) \end{array}\right] \end{aligned}$ | W $\leqq 0.02$ | L: Ignore | Ignore | pcs | 7) |
|  |  | $\mathrm{W} \leqq 0.03$ | $\mathrm{L} \leqq 2.0$ | 10 |  |  |
|  |  |  | L>2.0 | 0 |  |  |
|  |  | W $\leqq 0.06$ | $\mathrm{L} \leqq 1.0$ | 10 |  |  |
|  |  |  | L>1.0 | 0 |  |  |
|  |  | W $>0.06$ | - | (See dot shape) |  |  |
| 5 | Stains, Foreign Materials $\left[\begin{array}{c}\text { Dot shape } \\ \mathrm{D}: \text { ave. dia (mm) }\end{array}\right]$ | $\mathrm{D} \leqq 0.22$ |  | Ignore | pcs | 7) |
|  |  | $\begin{aligned} & \hline D \leqq 0.33 \\ & \hline D>0.33 \\ & \hline \end{aligned}$ |  | 5 |  |  |
|  |  |  |  | 0 |  |  |
| 6 | $\left[\begin{array}{c}\text { Scratch on polarizer } \\ {\left[\begin{array}{c}\text { Line shape } \\ W: \text { width }(\mathrm{mm}) \\ L \\ \text { : length }(\mathrm{mm})\end{array}\right]}\end{array}\right.$ | $\mathrm{W} \leqq 0.01$ | L : Ignore | Ignore | pcs | 8) |
|  |  | $W \leqq 0.02$ | $\mathrm{L} \leqq 40$ | 10 |  |  |
|  |  |  | L>40 | 0 |  |  |
|  |  | $\mathrm{W} \leqq 0.04$ | $\mathrm{L} \leqq 20$ | 10 |  |  |
|  |  |  | L>20 | 0 |  |  |
| 7 | $\begin{aligned} & \text { Scratch on polarizer } \\ & {\left[\begin{array}{c} \text { Dot shape } \\ \text { D: ave. dia }(\mathrm{mm}) \end{array}\right]} \end{aligned}$ | $\mathrm{D} \leqq 0.2$ |  | Ignore | pcs | 8) |
|  |  | $\mathrm{D} \leqq 0.4$ |  | 10 |  |  |
|  |  | D>0.4 |  | 0 |  |  |


| No | ITEM |  | Max. acceptable number | Unit | Note |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | Bubbles, peeling In polarizer [D:ave.dia(mm)] | $\mathrm{D} \leqq 0.3$ | Ignore | pcs | 8) |
|  |  | $\mathrm{D} \leqq 0.5$ | 10 |  |  |
|  |  | $\mathrm{D} \leqq 1.0$ | 5 |  |  |
|  |  | $\mathrm{D}>1.0$ | 0 |  |  |
| 9 | Wrinkles on polarizer |  | Serious one is not allowed | - | - |

Note 1) Dot defect: defect area $>1 / 2$ dot
2) Sparkle mode : brightness of dot is more than $30 \%$ at black raster. (visible to eye)
3) Black mode : brightness of dot is less than $70 \%$ at white raster. (visible to eye)
4) 1 dot : defect dot is isolated, not attached to other defect dot.
5) $N$ dots: $N$ defect dots are consecutive. ( $N$ means the number of defects dots)
6) Density : number of defect dots inside $20 \mathrm{~mm} \phi$.
7) Those stains which can be wiped out easily are not defects
8) Polarizer area inside of B-zone is not applied.
12.4 TOUCH PANEL APPEARANCE

| ITEM | CRITERIA |  |  | APPLIED |
| :---: | :---: | :---: | :---: | :---: |
| Line Defect | Lengh(mm) | Width(mm) | Determine | Zone |
|  | $>3$ | $>0.05$ | None | A |
|  | $\leqq 3$ | $\leqq 0.05$ | Ignored |  |
| Scratch | $\geqq 10$ | $\geqq 0.10$ | None |  |
|  | $<10$ | $0.10>W \geqq 0.05$ | max 4 points |  |
|  | $<10$ | $<0.05$ | Ignored |  |
| Line defect can not across Active area, silver area and insulation area. |  |  |  | B |
| Foreign Material (Note 2) | Defect Type. |  | Determine | A |
|  | D $>0.3 \mathrm{~mm}$ |  | None |  |
|  | $0.3 \mathrm{~mm} \geqq \mathrm{D}>0.2 \mathrm{~mm}$ |  | max 3 points |  |
|  | $0.2 \mathrm{~mm} \geqq \mathrm{D}>0.1 \mathrm{~mm}$ |  | max 5 points |  |
|  | $0.1 \mathrm{~mm} \geqq \mathrm{D}$ |  | Ignored |  |
|  | $\mathrm{D} \leqq 0.5 \mathrm{~mm}$ |  | Ignored | B |

Note 1) $\mathrm{D}=($ Long $\phi+$ Short $\phi) / 2$

| ITEM | CRITERIA |  |  |
| :---: | :---: | :---: | :---: |
| Tip Corner |  | X | $\leqq 3.0 \mathrm{~mm}$ |
|  |  | Y | $\leqq 3.0 \mathrm{~mm}$ |
|  |  | Z | $\leqq T$ |
| Tip Side |  | X | $\leqq 3.0 \mathrm{~mm}$ |
|  |  | Y | $\leqq 3.0 \mathrm{~mm}$ |
|  |  | Z | $\leqq \mathrm{T}$ |
| Crack | $\pi$ | None allowed |  |

## 13. PRECAUTION

1. Please pay attention to the followings when you use this TFT-LCD Module with Back-light unit.
2. Life support applications: HITACHI's products are not authorized for use in life support systems.
13.1 PRECAUTION TO HANDLING AND MOUNTING
(1) You should consider the mouting structure so that uneven force (ex. twisted stress) is not applied to the module.
(2) To improve the strength of module against the mechanical shock the space between the module and the case should be less than 1.0 mm .
(3) Protection material in front of LCD's screen surface is recommended to protect a polarizer, LCD-glass and metal bezel. Please be note that the protection material should not touch them direct.
(4) Acetic acid type and chloline type materials for the cover case are not desiable because the former generate corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
(5) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub by dustclothes with chemical treatment. Do not touch the surface of polarizer with bare hand or greasy close. (Some cosmetics are detrimental to the polarizer.)
(6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials chamois soaked Normal-Hexane. Normal-Hexane is recommended for clearning the adhesives used to attach front/rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
(7) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer cuses deformations and color fading.
(8) The module should never be opened or modified.

It may cause not to operate properly.
(9) Metallic bezel of a module should not be handled with bare hand or dirty gloves. Otherwise, color of a metallic frame may become dirty during its storage. It is recommended to use clean soft gloves and clean finger stalls when a module is handled at incoming inspection process and production (assembly) process.
(10) When you adopt a metallic shield board on backside of TFT-LCD Module, it should not be too close to TFT-LCD Module.
(11) Do not pull or do not fold the CCFL cable.

May.13,'08 Sh.
No. 7B64PS 2713-TX20D17VM2BBA-2 PAGE

13-1/5
13.2 Mounting Precaution of T/P
(1) When assembling the Touch Panel and you case, please refer to the figure below.

(2) The clearance between the Touch Panel and case shall be designed so that the case edge never presses the input screen when it is deformed by heat or other causes.
(3) The case shall be designed not to touch the tail portion (FPC for Touch Panel).
(4) The boundary space between the effective area and the insulated area is unstable. Touching this area may effect the operation of the Touch Panel.
The case must be designed so that it does not touch the boundary space.

### 13.3 PRECAUTION TO OPERATION

(1) You should adopt radiation structure to satisfy the temperature specification.
(2) Optical response time, luminance and chromaticity depend on the temperature of a TFT-LCD module. (At lower temperature it becomes longer.).
(3) Response time and saturation time of CCFL luminance become longer at lower temperature operation.
(4) Sudden temperature change may cause dew on and/or in the a module. Dew males damage to a polarizer and/or electrical contacting portion.
Dew causes fading of displayed quality.
(5) Fixed patterns displayed on a module for a long time may cause after-image. It will be recovered soon.
(6) Please connect the Back-light connector to the inverter circuit directly. The long cable between CCFL and the inverter may cause the brightness drop of CCFL and may cause the rise of starting lamp voltage(Vs).
(7) The module should not be connected or removed while a main system works.
(8) Inserting or pulling I/F connectors causes any truble when power supply and signal datas are on-state. I/F connectors should be inserted and pulled after power supply and signal datas are turned off.
(9) Resistance range: Your controller shall be set up to allow the resistance range of Touch Panel specified in our CAS.
(10) Pointed position of Touch Panel may shift owing to a change in resistance of Touch Panel depending on the operation condition. To compensate this shift, the set shall be given a calibration function.
(11) Input shall be made with a stylus pen (poly acetal, R0.8). Chances are very high that use of a metal piece including a ball point pen or sharp edge will impair accuracy.
(12) The Touch Panel is an auxiliary input device. The system shall be designed to have other input device.

### 13.4 ELECTROSTATIC DISCHARGE CONTROL

(1) Since a module consists of a TFT cell and electronic circuits with CMOS-ICs, which are very weak to electrostatic discharge, persons who are handling a module should be grounded through adequate methods such as a list band.
I/F connector pins should not be touched directly with bare hands.
(2) Protection film for a polarizer on a module should be slowly peeled off so that the electrostatic charge can be minimized.

### 13.5 PRECAUTION TO STRONG LIGHT EXPOSURE

A module should not be exposed under strong light. Otherwise, characteristics of a polarizer and color filter in a module may be degraded.

### 13.6 PRECAUTION TO STORAGE

When TFT-LCD Modules are stored for long time, following precautions should be taken care of:
(1) Modules should be stored in a dark place. It is prohibited to apply sunlight or fluorescent light during storage. Modules should be stored at 0 to $35^{\circ} \mathrm{C}$ at normal humidity ( $60 \% \mathrm{RH}$ or less).
(2) The surface of polarizers should not come in contact with any other object. It is recommended that modules should be stored in the HITACHI's shipping box.

### 13.7 PRECAUTION TO HANDLE PROTECTIVE FILM

(1) When the protective film is peeled off, static electricity is generated between the film and the polarizer. This film should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
(2) The protective film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protective film against the polarizer during the time you peel off the film, the glue is apt to remain more on the polarizer. So please carefully peel off the protective film without rubbing it against the polarizer.
(3) When the module with protective film attached is stored for long time, sometimes there remains a very small amount of glue, still on the polarizer after the protective film is peeled off. Please refrain from storing the module at the module at the high temperature and high humidity for glue is apt to remain in these condition.
(4) The glue may be taken for the modules failure, but you can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with Norm-Hexane.

### 13.8 SAFETY

(1) If module is broken, be careful to handle not to injure.
(TFT-LCD and Lamp are made of glass.)
Please wash hands sufficiently when you touch the liquid crystal coming out from broken LCDs.
(2) As Back-light unit has high voltage circuit internal, do not open the case and do not insert foreign materials in the case.
(3) The CCFL inverter should be designed to include the function of output shutdown in case the output overcurrent happen due to any backlight trouble.
The shutdown function should be assured to work in abnormal condition at the actual systems.
(4) Wear finger cots or gloves whenever or assembling a TOUCH PANEL its glass edges are shape.

### 13.9 ENVIROMENTAL PROTECTION

(1) This TFT-LCD Module include Cold Cathode Fluorescent Lamp (CCFL).

CCFL contains a small amount of mercury. Please follow local ordinance or regulations for disposal.
(2) Flexible circuits board, printed circuits board and solder used in a module contain small amount of lead $(\mathrm{Pb})$. Please follow local ordinance or regulations for its disposal.

### 13.10 USE RESTRICTIONS AND LIMTATIONS

(1) This product is not authorized for use in life support devices or systems, military applications or other applications which pose a significant risk of personal injury.
(2) In no event shall HITACHI, Ltd., be liable for any incidental, indirect or consequential damages in connection with the installation or use of this product, even if informed of the possibility thereof in advance. These limitations apply to all causes of action in the aggregate, including without limitation breach of contact, breach of warranty, negligence, strict liability, misrepresentation and other torts.

### 13.11 OTHERS

(1) Electrical components which may not affect electrical performance are subjective to change without notice because of their availability.

