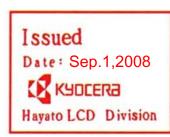
SPEC


Spec No.	TQ3C-8EAC0-E1DEC13-00
Date	August 26, 2008

TYPE: KCG062HVLAK-G000

< 6.2 inch HVGA transmissive color STN with LED backlight>

CONTENTS

- 1. Application
- 2. Construction and outline
- 3. Mechanical specifications
- 4. Absolute maximum ratings
- 5. Electrical characteristics
- 6. Optical characteristics
- 7. Circuit block diagram
- 8. Interface signals
- 9. Interface timing chart
- 10. Data and screen
- 11. Input timing characteristics
- 12. Supply voltage sequence condition
- 13. Backlight characteristics
- 14. Lot number identification
- 15. Warranty
- 16. Precautions for use
- 17. Reliability test data
- 18. Outline drawing

KYOCERA CORPORATION KAGOSHIMA HAYATO PLANT LCD DIVISION

This specification is subject to change without notice.

Consult Kyocera before ordering.

Original	Designed by: Engineering dept. Conf			Confirmed by: QA dept.	
Issue Date	Prepared	Checked	Approved	Checked	Approved
August 26, 2008	S. Kojima	7d. Johnson	G. Matsumoto	J. Sakaguchi	Zo , Surf

Spec No.	Part No.	Page
TQ3C-8EAC0-E1DEC13-00	KCG062HVLAK-G000	-

Warning

- 1. This Kyocera LCD module has been specifically designed for use only in electronic devices and industrial machines in the area of audio control, office automation, industrial control, home appliances, etc. The module should not be used in applications where the highest level of safety and and reliability are required and module failure or malfunction of such module results in physical harm or loss of life, as well as enormous damage or loss. Such fields of applications include, without limitation, medical, aerospace, communications infrastructure, atomic energy control. Kyocera expressly disclaims any and all liability resulting in any way to the use of the module In such applications.
- 2. Customer agrees to indemnity, defend and hold Kyocera harmless from and against any and all actions, claims, damages, liabilities, awards, costs, and expenses, including legal expenses, resulting from or arising out of Customer's use, or sale for use, or Kyocera modules in applications.

Caution

1. Kyocera shall have the right, which Customer hereby acknowledges, to immediately scrap or destroy tooling for Kyocera modules for which no Purchase Orders have been received from the Customer in a two-year period.

Spec No.	Part No.	Page
TQ3C-8EAC0-E1DEC13-00	KCG062HVLAK-G000	-

Revision record

Date		Design	Engineering of		Confirmed by	: QA dept.
		Prepa	Checked	Approved	Checked	Approved
D	.	D		ъ		
Rev.No.	Date	Page		Descripti	ons	

Spec No.	Part No.	Page
TQ3C-8EAC0-E1DEC13-00	KCG062HVLAK-G000	1

1. Application

This document defines the specification of KCG062HVLAK-G000. (RoHS Compliant)

2. Construction and outline

LCD : Transmissive color dot matrix type STN

Duty ratio : 1/240 duty Backlight system : LED

Polarizer : Glare treatment

Additional circuit : Bias voltage circuit, Randomizing circuit,

DC/DC converter circuit, Temperature compensation circuit

3. Mechanical specifications

Item	Specification	
Outline dimensions	174.2 (W)× 73.4 (H) × 12.2 (D)	mm
Active area	147.84 (W) × 55.44 (H) (15.8cm / 6.2 inch (Diagonal))	mm
Effective viewing area	149.8 (W) × 57.4 (H)	mm
Dot format	640×(R,G,B) (W) × 240 (H)	dot
Dot size	0.057 (W) × 0.211 (H)	mm
Dot pitch	0.077 (W) × 0.231 (H)	mm
Base color *1	Normally Black	
Mass	(TBD)	g

^{*1} Due to the characteristics of the LCD material, the color varies with environmental temperature.

Spec No.	Part No.	Page
TQ3C-8EAC0-E1DEC13-00	KCG062HVLAK-G000	2

4. Absolute maximum ratings

4-1. Electrical absolute maximum ratings

Item	Symbol	Min.	Max.	Unit
Supply voltage for logic	$V_{ m DD}$	0	6.0	V
Supply voltage for LCD driving	VCONT	0	$V_{ m DD}$	V
Input signal voltage *1	$V_{\rm IN}$	0	$V_{ m DD}$	V
FRM frequency	$f_{ m FRM}$	-	150	Hz
LED forward current *2	IF	-	(17)	mA
Reversed voltage *2	VR	-	(5)	V

^{*1} Input signal: FRM, LOAD, CP, DISP, D0~D7

4-2. Environmental absolute maximum ratings

Item		Symbol	Min.	Max.	Unit
Operating temperature	*1	T_{OP}	0	50	°C
Storage temperature	*2	T_{STO}	-20	60	$^{\circ}\mathrm{C}$
Operating humidity	*3	H_{OP}	10	*4	%RH
Storage humidity	*3	Hsto	10	*4	%RH
Vibration		-	*5	*5	-
Shock		-	*6	*6	-

^{*1} Operating temperature means a temperature which operation shall be guaranteed. Since display performance is evaluated at 25°C, another temperature range should be confirmed.

Store LCD panels at normal temperature/humidity. Keep them free from vibration and shock. An LCD panel that is kept at a low or a high temperature for a long time can be defective due to other conditions, even if the low or high temperature satisfies the standard.

(Please refer to "Precautions for Use" for details.)

Temp. >40°C, Absolute humidity shall be less than 85%RH at 40°C.

*5

Frequency	10∼55 Hz	Acceleration value
Vibration width	0.15mm	$(0.3\sim 9 \text{ m/s}^2)$
Interval	10-55-10	Hz 1 minutes

 $2\ hours\ in\ each\ direction\ X,\ Y,\ Z\ (6\ hours\ total)$

EIAJ ED-2531

*6 Acceleration: 490 m/s², Pulse width: 11 ms

3 times in each direction: $\pm X$, $\pm Y$, $\pm Z$

EIAJ ED-2531

^{*2} For each "AN1-CA1", "AN2-CA2" and "AN3-CA3"

^{*2} Temp. = -20°C< 48h, Temp. = 60°C< 168h

^{*3} Non-condensing

^{*4} Temp.≤40°C, 85%RH Max.

Spec No.	Part No.	Page
TQ3C-8EAC0-E1DEC13-00	KCG062HVLAK-G000	3

5. Electrical characteristics

 $5-1. V_{DD} = 5.0V$

 $V_{DD} = +5.0V \pm 5\%$, Temp. = $0 \sim 50$ °C

		1	1 DD	ı	<u> </u>	
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage for logic	$V_{ m DD}$	-	4.75	5.00	5.25	V
Supply voltage for LCD driving *1, *2	V _{CONT} = V _{OP}	0∼50°C *3	1.30	1.80	2.30	V
Input signal voltage	77	"High" level	$0.8V_{\mathrm{DD}}$	-	V_{DD}	V
(FRM,LOAD,CP,DISP,D0~D7)	$ m V_{IN}$	"Low" level	0	-	$0.2 V_{ m DD}$	V
Input current	${ m I}_{ m IN}$	Input signal	-100	-	100	μA
Rush current for logic	$I_{ m RUSH}$	When LCD turn on.		3.0A (Peak) × 1ms		
Clock frequency	\mathbf{f}_{CP}	-	-	-	10.00	MHz
Frame frequency *4	$ m f_{FRM}$	-	70	75	80	Hz
Current consumption for logic	${ m I}_{ m DD}$	*5	-	40	60	mA
Power consumption	$\mathrm{P}_{\mathrm{DISP}}$	9	-	200	300	mW

^{*1} The supply voltage ($V_{CONT} = V_{OP}$) to drive the display has individual difference. Please adjust the contrast to be most suitable.

*5 Display pattern:

^{*2} Frame frequency : $f_{FRM} = 75Hz$

^{*3} The LCD module has a temperature compensation circuit.

^{*4} In consideration of display quality, it is recommended that frame frequency be set in the range of 70-80Hz. When you have to use higher frame and clock frequencies, confirm the LCD's performance and quality prior to finalizing the frequency value. Generally, as frame and clock frequencies become higher current consumption increases and display quality will degrade.

Spec No.	Part No.	Page
TQ3C-8EAC0-E1DEC13-00	KCG062HVLAK-G000	4

 $5-2. V_{DD} = 3.3V$

$V_{DD} = +3.3V \pm 0.3V$, Temp. = $0 \sim 50^{\circ}$	$V_{DD} = +3.3$	3V±0.3V.	Temp.	$=0\sim50$	٥(
---	-----------------	----------	-------	------------	----

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage for logic	$V_{ m DD}$	-	3.0	3.3	3.6	V
Supply voltage for LCD driving *1, *2	V _{CONT} =V _{OP}	0∼50°C *3	1.30	1.80	2.30	V
Input signal voltage	77	"High" level	$0.8V_{\mathrm{DD}}$	-	$V_{ m DD}$	V
(FRM,LOAD,CP,DISP,D0~D7)	$ m V_{IN}$	"Low" level	0	-	$0.2 V_{\mathrm{DD}}$	V
Input current	${ m I_{IN}}$	Input signal	-100	-	100	μA
Rush current for logic	I _{RUSH}	When LCD turn on.		$3.0 \text{A (Peak)} \times 1 \text{ms}$		
Clock frequency	$ m f_{CP}$	-	-	-	10.00	MHz
Frame frequency *4	f_{FRM}	-	70	75	80	Hz
Current consumption for logic	${ m I}_{ m DD}$	*5	-	55	83	mA
Power consumption	P _{DISP}	9	-	182	274	mW

^{*1} The supply voltage ($V_{CONT} = V_{OP}$) to drive the display has individual difference. Please adjust the contrast to be most suitable.

*5 Display pattern:

^{*2} Frame frequency : $f_{FRM} = 75Hz$

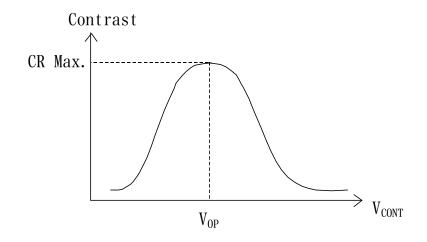
^{*3} The LCD module has a temperature compensation circuit.

^{*4} In consideration of display quality, it is recommended that frame frequency be set in the range of 70-80Hz. When you have to use higher frame and clock frequencies, confirm the LCD's performance and quality prior to finalizing the frequency value. Generally, as frame and clock frequencies become higher current consumption increases and display quality will degrade.

Spec No.	Part No.	Page
TQ3C-8EAC0-E1DEC13-00	KCG062HVLAK-G000	5

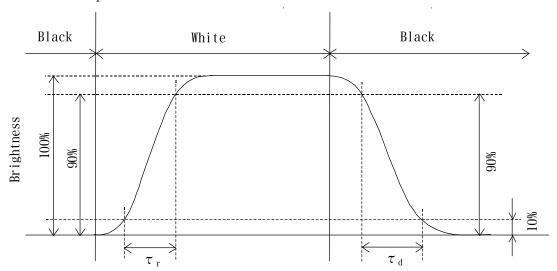
6. Optical characteristics

Measuring spot = ϕ 6.0mm, Temp. = 25°C

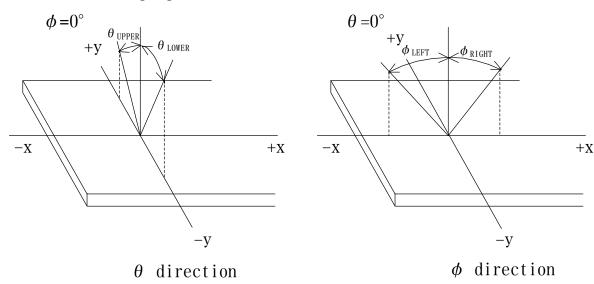

					aring spot	·	
Item		Symbol	Condition	Min.	Тур.	Max.	Unit
D	Rise	τr	$\theta = \phi = 0^{\circ}$	-	320	420	ms
Response time	Down	τd	$\theta = \phi = 0^{\circ}$	-	170	270	ms
		heta upper		-	30	-	1
77 1			CR≧2	-	20	-	deg.
Viewing angle	range	ϕ left	UK≦2	-	50	-	1
		φ right		-	50	-	deg.
Contrast ratio		CR	$\theta = \phi = 0^{\circ}$	15	30	-	-
Brightness		L	IF=15mA/Line	(140)	(200)	-	cd/m²
	D . 1	X	$\theta = \phi = 0^{\circ}$	(0.42)	(0.47)	(0.52)	
	Red	У	$0 - \psi - 0$	(0.30)	(0.35)	(0.40)	
	C	X	$\theta = \phi = 0^{\circ}$	(0.24)	(0.29)	(0.34)	
Chromaticity	Green	У	$\theta - \psi - 0^{-1}$	(0.48)	(0.53)	(0.58)	
coordinates Blue	D1	X	$\theta = \phi = 0^{\circ}$	(0.10)	(0.15)	(0.20)	-
	Blue	У	$U - \Psi - U$	(0.07)	(0.12)	(0.17)	
	W71-:4 a	X	$\theta = \phi = 0^{\circ}$	(0.21)	(0.26)	(0.31)	
	White	У	$U - \Psi - U$	(0.25)	(0.30)	(0.35)	

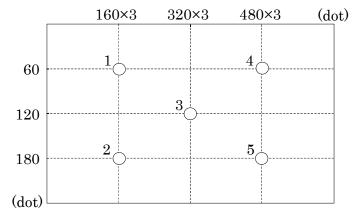
Optimum contrast is obtained by adjusting the LCD driving voltage (V_{OP}) while at the viewing angle of $\theta = \phi = 0^{\circ}$.

6-1. Definition of contrast ratio


$$CR(Contrast ratio) = \frac{Brightness with all pixels "White"}{Brightness with all pixels "Black"}$$

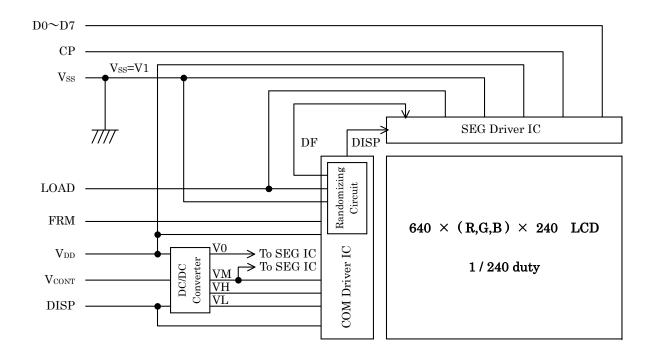
6-2. Definition of Vop



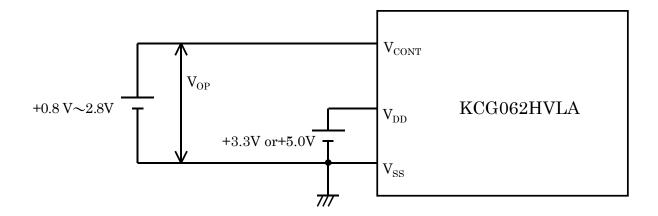

6-3. Definition of response time

6-4. Definition of viewing angle

6-5. Brightness measuring points



- 1) Rating is defined on the average in the viewing area.
- 2) Measured 30 minutes after the LED is powered on. (Ambient temp. = 25°C)
- 3) Backlight: IF=15mA/1 LED line



Spec No.	Part No.	Page
TQ3C-8EAC0-E1DEC13-00	KCG062HVLAK-G000	7

7. Circuit block diagram

7-1. Power supply

Spec No.	Part No.	Page
TQ3C-8EAC0-E1DEC13-00	KCG062HVLAK-G000	8

8. Interface signals

8-1. Pin assignment of LCD panel

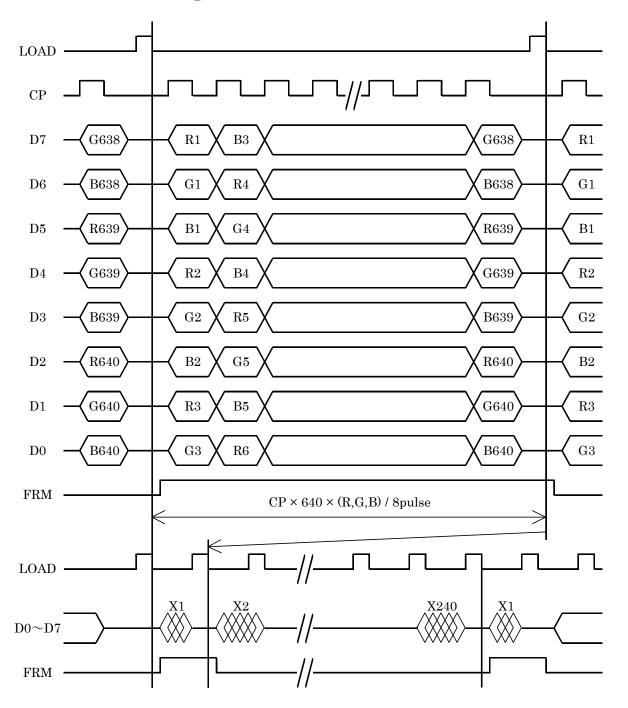
No.	Symbol	Description	Level
1	FRM	Synchronous signal for driving scanning line	Н
2	LOAD	Data signal latch clock	$\mathrm{H} ightarrow \mathrm{L}$
3	CP	Data signal shift clock	$\mathrm{H} ightarrow \mathrm{L}$
4	DISP	Display control signal	H(ON),L(OFF)
5	$V_{ m DD}$	Power supply for logic	-
6	V_{SS}	GND	-
7	VCONT	LCD adjust voltage	-
8	D7		
9	D6		
10	D5		
11	D4	D'adam data	H(OM) I (OFF)
12	D3	Display data	H(ON),L(OFF)
13	D2		
14	D1		
15	D0		
16	$V_{ m DD}$	Down supply for logic	
17	$V_{ m DD}$	Power supply for logic	-
18	$V_{\rm SS}$		
19	$V_{\rm SS}$	GND	-
20	$V_{\rm SS}$		

LCD connector : 08-6210-020-340-800+ (ELCO)

Recommended matching FFC or FPC : 0.5 mm pitch

8-2. Pin assignment of LED

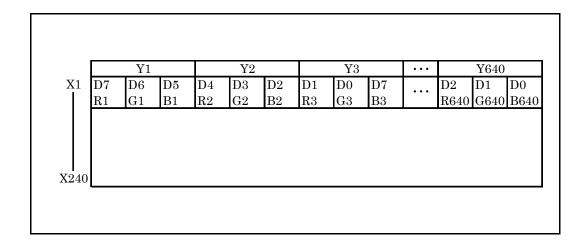
No.	Symbol	Description
1	AN1	Anode 1
2	AN2	Anode 2
3	AN3	Anode 3
4	AN4	Anode 4
5	CA4	Cathode 4
6	CA3	Cathode 3
7	CA2	Cathode 2
8	CA1	Cathode 1

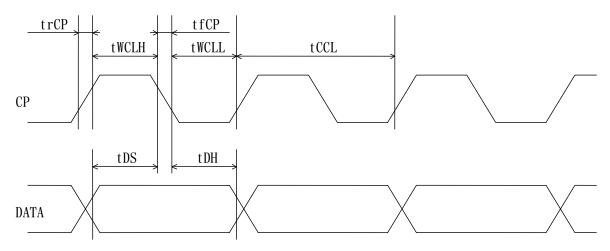

LCD side connector : FPC Recommended matching connector

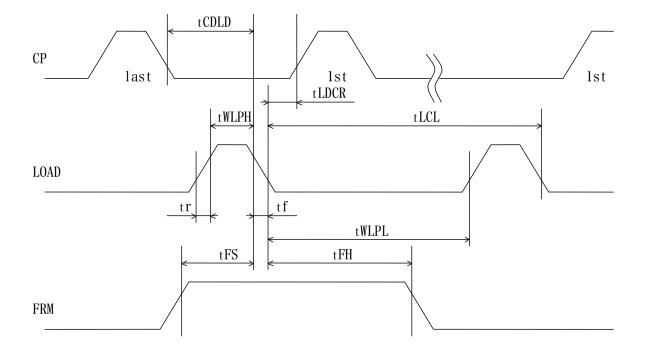
: IMSA-9637S-08A-GF (IRISO)

Spec No.	Part No.	Page
TQ3C-8EAC0-E1DEC13-00	KCG062HVLAK-G000	9

9. Interface timing chart


^{*} The cycle of the LOAD signal should be stable and continuously applied without interruption.


^{*} The above-mentioned timing chart is a reference to set up a LCD module, not an electrical rating.


Spec No.	Part No.	Page
TQ3C-8EAC0-E1DEC13-00	KCG062HVLAK-G000	10

10. Data and screen

11. Input timing characteristics

Spec No.	Part No.	Page
TQ3C-8EAC0-E1DEC13-00	KCG062HVLAK-G000	11

11-1. Switching characteristics ($V_{DD} = 5.0V$)

Input characteristics : $V_{DD} = +5.0V \pm 5\%$, Temp. = $0 \sim 50$ °C

Item		Symbol	Min.	Max.	Unit
CP cycle *	' 1	tCCL	100	-	ns
CP "H" pulse width		tWCLH	30	-	ns
CP "L" pulse width		tWCLL	30	=	ns
CP rise up time		trCP	-	15	ns
CP fall down time		tfCP	-	15	ns
Data set up time		tDS	25	-	ns
Data hold time		tDH	25	-	ns
LOAD "H" pulse width		tWLPH	40	-	ns
LOAD "L" pulse width		tWLPL	400	-	ns
LOAD cycle	*2	tLCL	500	-	ns
$CP \rightarrow LOAD$ delay time		tCDLD	60	-	ns
$LOAD \rightarrow CP$ delay time		tLDCR	60	-	ns
Input signal rise up time		tr	-	20	ns
Input signal fall down time		tf	-	20	ns
FRM data set up time		tFS	120	-	ns
FRM data hold time		tFH	30	-	ns

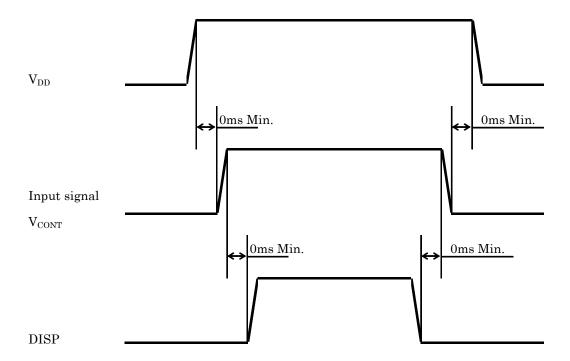
^{*1} CP cycle is adjusted so that FRM signal is 75Hz.

11-2. Switching characteristics ($V_{DD} = 3.3V$)

Input characteristics : $V_{DD} = +3.3V \pm 0.3V$, Temp. = $0 \sim 50$ °C

Item	Symbol	Min.	Max.	Unit
CP cycle *1	tCCL	100	-	ns
CP "H" pulse width	tWCLH	40	-	ns
CP "L" pulse width	tWCLL	40	-	ns
CP rise up time	trCP	-	20	ns
CP fall down time	tfCP	-	20	ns
Data set up time	tDS	35	-	ns
Data hold time	tDH	35	-	ns
LOAD "H" pulse width	tWLPH	50	-	ns
LOAD "L" pulse width	tWLPL	400	-	ns
LOAD cycle *:	2 tLCL	500	-	ns
$CP \rightarrow LOAD$ delay time	tCDLD	60	-	ns
$LOAD \rightarrow CP$ delay time	tLDCR	80	-	ns
Input signal rise up time	tr	-	20	ns
Input signal fall down time	tf	-	20	ns
FRM data set up time	tFS	120	-	ns
FRM data hold time	tFH	30	-	ns

^{*1} CP cycle is adjusted so that FRM signal is 75Hz.


^{*2} LOAD cycle is constant.

^{*2} LOAD cycle is constant.

Spec No.	Part No.	Page
TQ3C-8EAC0-E1DEC13-00	KCG062HVLAK-G000	12

12. Supply voltage sequence condition

In normal operation, logic within the LCD module reverses the polarity of the drive voltage every few lines to prevent DC damage to the liquid crystal material. But when a voltage is present on V_{CONT} outside of the time when the V_{DD} logic voltage is stable, a drive voltage is applied to the liquid crystal material without the polarity reversals. This sometimes result in a deterioration of display quality and a reduction in life time.

- * Input signal: FRM, LOAD, CP, D0~D7
- * The above sequence should be designed as to maintain each normal voltage when the liquid crystal module load is applied to your system.
- * Control the supply voltage sequence to not float any signal line when the LCD panel is being driven.

Spec No.	Part No.	Page
TQ3C-8EAC0-E1DEC13-00	KCG062HVLAK-G000	13

13. LED Backlight characteristics

LED ratings

Item		Symbol	Min.	Тур.	Max.	Unit	Note
Forward current	*1	IF	-	(15)	-	mA	Ta=0∼50°C
			-	(22.4)	(24.5)	V	IF=15mA, Ta=0°C
Forward voltage	*1	VF	-	(21.7)	(23.8)	V	IF=15mA, Ta=25°C
			-	(21.0)	(23.1)	V	IF=15mA, Ta=50°C
Operating life time	*2, *3	Т	-	(TBD)	-	h	IF=15mA

^{*1} For each "AN1-CA1", "AN2-CA2" and "AN3-CA3"

 $^{\ ^*2}$ When brightness decrease 50% of initial brightness.

^{*3} Life time is estimated data.

^{*} An input current below 8.0mA may reduce the brightness uniformity of the LED backlight. This is because the amount of light from each LED chip is different. Therefore, please evaluate carefully before finalizing the input current.

Spec No.	Part No.	Page
TQ3C-8EAC0-E1DEC13-00	KCG062HVLAK-G000	14

14. Lot number identification

The lot number shall be indicated on the back of the backlight case of each LCD.

No1. - No5. above indicate

- 1. Year code
- 2. Month code
- 3. Date
- 4. Version Number
- 5. Country of origin (Japan or China)

Year	2008	2009	2010	2011	2012	2013
Code	8	9	0	1	2	3

Month	Jan.	Feb.	Mar.	Apr.	May	Jun.
Code	1	2	3	4	5	6

Month	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Code	7	8	9	X	Y	Z

15. Warranty

15-1. Incoming inspection

Please inspect the LCD within one month after your receipt.

15-2. Production warranty

Kyocera warrants its LCD's for a period of 12 months from the ship date. Kyocera shall, by mutual agreement, replace or re-work defective LCD's that are shown to be Kyocera's responsibility.

Spec No.	Part No.	Page
TQ3C-8EAC0-E1DEC13-00	KCG062HVLAK-G000	15

16. Precautions for use

16-1. Installation of the LCD

- 1) The LCD module has a grounding hole. Please ground the module to prevent noise and to stabilize its performance as circumstances demand.
- 2) A transparent protection plate shall be added to protect the LCD and its polarizer.
- 3) The LCD shall be installed so that there is no pressure on the LSI chips.
- 4) The LCD shall be installed flat, without twisting or bending.
- 5) Please design the housing window so that its edges are between the active area and the effective area of the LCD screen.
- 6) Please refer to the following our recommendable value of Clamp-down torque when installing. Clamp-down torque: 0.32±0.03N·m

Please set up 'SPEED-LOW', 'SOFT START-SLOW' when using electric driver.

Recommendable screw JIS tapping screw two types nominal dia.3.0mm installing boss hole depth 4.2 ± 0.5 mm

Please be careful not to use high torque which may damage LCD module in installation.

7) A transparent protection sheet is attached to the polarizer. Please remove the protection film slowly before use, paying attention to static electricity.

16-2. Static electricity

- 1) Since CMOS ICs are mounted directly onto the LCD glass, protection from static electricity is required.
- 2) Workers should use body grounding. Operator should wear ground straps.

16-3. LCD operation

- 1) The LCD shall be operated within the limits specified. Operation at values outside of these limits may shorten life, and/or harm display images.
- 2) Adjust the "Supply voltage for LCD driving (V_{CONT})" to obtain optimum viewing angle and contrast ratio.

16-4. Storage

- 1) The LCD shall be stored within the temperature and humidity limits specified. Store in a dark area, and protect the LCD from direct sunlight or fluorescent light.
- 2) Always store the LCD so that it is free from external pressure onto it.

16-5. Usage

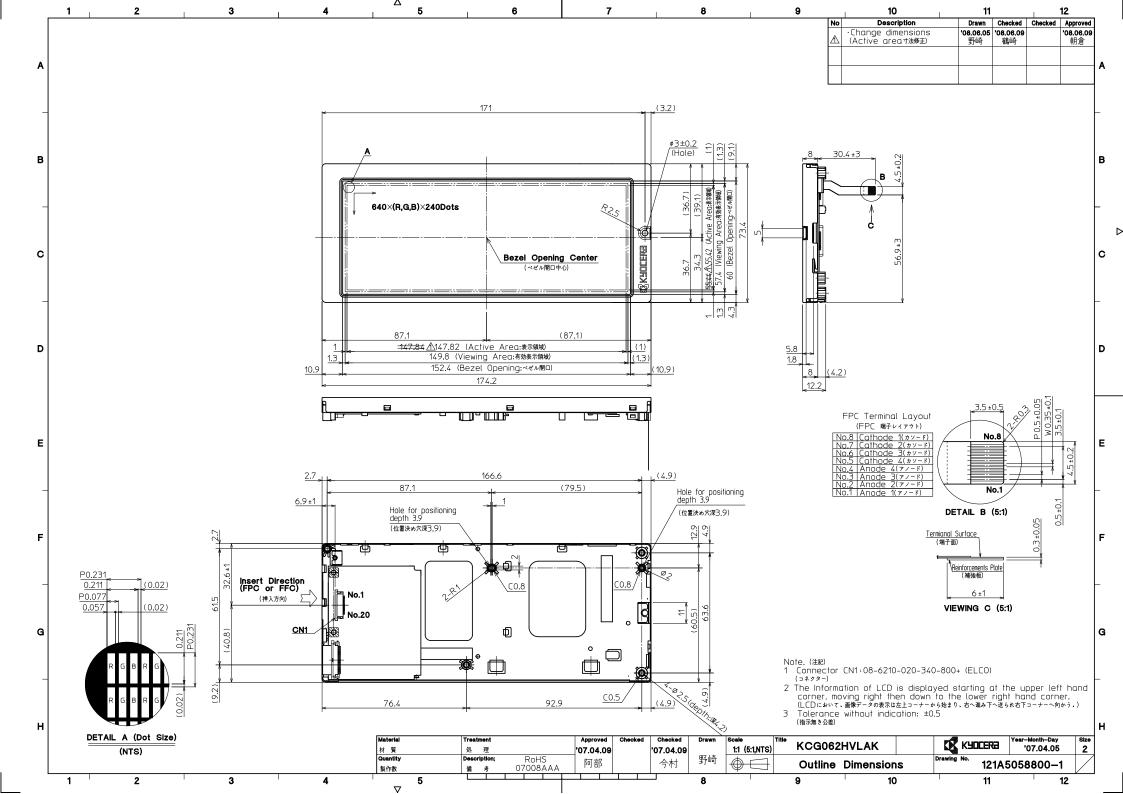
- 1) <u>DO NOT</u> store in a high humidity environment for extended periods. Polarizer degradation bubbles, and/or peeling off of the polarizer may result.
- 2) The front polarizer is easily scratched or damaged. Prevent touching it with any hard material, and from being pushed or rubbed.
- 3) The LCD screen may be cleaned by wiping the screen surface with a soft cloth or cotton pad using a little Ethanol.
- 4) Water may cause damage or discoloration of the polarizer. Clean condensation or moisture from any source immediately.
- 5) Always keep the LCD free from condensation during testing. Condensation may permanently spot or stain the polarizer.
- 6) Do not pull the LED lead wires and do not bend the root of the wires. Housing should be designed to protect LED lead wires from external stress.
- 7) Do not disassemble LCD module because it will result in damage.
- 8) This Kyocera LCD module has been specifically designed for use in general electronic devices, but not for use in a special environment such as usage in an active gas. Hence, when the LCD is supposed to be used in a special environment, evaluate the LCD thoroughly beforehand and do not expose the LCD to chemicals such as an active gas.
- 9) Please do not use solid-base image pattern for long hours because a temporary afterimage may appear. We recommend using screen saver etc. in cases where a solid-base image pattern must be used.
- 10) Liquid crystal may leak when the module is broken. Be careful not to let the fluid go into your eyes and mouth. In the case the fluid touches your body; rinse it off right away with water and soap.

Spec No.	Part No.	Page
TQ3C-8EAC0-E1DEC13-00	KCG062HVLAK-G000	16

17. Reliability test data

Test item	Test condition	Test time	Jud	gement
High temp. atmosphere	60°C	240h	Display function Display quality Current consumption	: No defect : No defect : No defect
Low temp. atmosphere	-20°C	240h	Display function Display quality Current consumption	: No defect : No defect : No defect
High temp. humidity atmosphere	40°C 90% RH	240h	Display function Display quality Current consumption	No defectNo defectNo defect
Temp. cycle	-20°C 0.5h R.T. 0.5h 60°C 0.5h	10cycles	Display function Display quality Current consumption	: No defect: No defect: No defect
High temp. operation	50°C	500h	Display function Display quality Current consumption	No defectNo defectNo defect

^{*} Each test item uses a test LCD only once. The tested LCD is not used in any other tests.



^{*} The LCD is tested in circumstances in which there is no condensation.

^{*} The reliability test is not an out-going inspection.

^{*} The result of the reliability test is for your reference purpose only.

The reliability test is conducted only to examine the LCD's capability.

Spec No.	TQ3C-8EAC0-E2DEC12-00
Date	August 26, 2008

KYOCERA INSPECTION STANDARD

TYPE: KCG062HVLAK-G000

KYOCERA CORPORATION KAGOSHIMA HAYATO PLANT LCD DIVISION

Original	Designed by:	Engineering de	pt.	Confirmed by	: QA dept.
Issue Date	Prepared	Checked	Approved	Checked	Approved
August 26, 2008	S. Kojima	7d Johnson	G Matricmoto	J. Sakaguchi	Jo , Suf

Spec No.	Part No.	Page
TQ3C-8EAC0-E2DEC12-00	KCG062HVLAK-G000	-

Revision record

	Data	Designe	d by:	Engineering of	lept.	Confirmed by	: QA dept.
	Date	Prepa	red	Checked	Approved	Checked	Approved
-		,					
Rev.No.	Date	Page			Descripti	ons	

Spec No.	Part No.	Page
TQ3C-8EAC0-E2DEC12-00	KCG062HVLAK-G000	1

Visuals specification 1) Note

Item		Note				
General	1.When defects specified in this Inspection Standards are inspected, operating voltage (Vop) shall be set at the level where optimized contrast is available. Display quality is applied up to effective viewing area. (Bi-level INSPECTION)					
	applied to any defect w	2. This inspection standard about the image quality shall be applied to any defect within the effective viewing area and shall not be applicable to outside of the area.				
	-	ch are not specified in this standard dard shall be determined by mutual omer and Kyocera.				
	Inspection distance Temperature	: 500 Lux minimum. : 300 mm(from the sample) : 25±5°C : right above				
Definition of inappation	Dinholo Dright and	The color of a small area is				
Definition of inspection item	Pinhole, Bright spot Black spot, Scratch Foreign particle	The color of a small area is different from the remainder. The phenomenon does not change with voltage.				
	Contrast variation	The color of a small area is different from the remainder. The phenomenon change with voltage.				
	Polarizer (Scratch, Bubble, Dent)	Scratch, Bubble and Dent in the polarizer which can be observed in on / off state.				

Spec No.	Part No.	Page
TQ3C-8EAC0-E2DEC12-00	KCG062HVLAK-G000	2

2)Standard

2)Standard					
Inspection item		Judg	ement stan	dard	
Pinhole, Bright spot, Black spot, Foreign particle		$\begin{array}{ccc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & \\ & & \\ &$	d = (o	ı+b)/2)
	Category	Size(r			ptable number
	A		≤ 0.2		Neglected Neglected
	В	0.2 < d			5
	С	0.2 < d 0.3 < d			3
	D	0.5 < d			0
	Б	0.0 \ u	:		0
Scratch, Foreign particle		L			
	7	Width (mm)	Length	(mm)	Acceptable number
	A	W ≤0.03	-		Neglected
	В		L	≤ 2.0	Neglected
	C 0.03	< W ≦0.10	2.0< L	≤ 4.0	3
	D		4.0< L		0
	E 0.10	< W	-		According to 'Circular'
Contrast variation	a	b	d = (a +	-b)/2	
	Category	Size (mm)	Acce	ptable number
	A	d	$l \le 0.5$		Neglected
	В	0.5 < d			3
	С	0.7 < d			0
			•		

Spec No.	Part No.	Page
TQ3C-8EAC0-E2DEC12-00	KCG062HVLAK-G000	3

Inspection item		Judg	ement standa	ard		
Polarizer (Scratch, Bubble, Dent)	(1) Scratch					
(Scratch, Bubble, Belle)		L	V			
		Width (mm)	Length (m	am) Acceptable No.		
	A	W ≦0.1	-	Neglected		
	В	1< W ≤0.3	$L \le$	5.0 Neglected		
	C 0.	1 < ₩ ≡0.5	5.0< L	0		
	D 0.	3< W	-	0		
			a b			
		(a)	b			
		a	↓	= (a+b)/2		
	Category		d mm)	Acceptable number		
	A	d	d mm) 1 ≤ 0.2	Acceptable number Neglected		
	A B	0.2 < d	$\begin{array}{c c} \hline \text{mm})\\ \hline 1 \leq 0.2\\ \leq 0.3\\ \end{array}$	Acceptable number Neglected 5		
	A	d	$\begin{array}{c} \downarrow \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Acceptable number Neglected		

