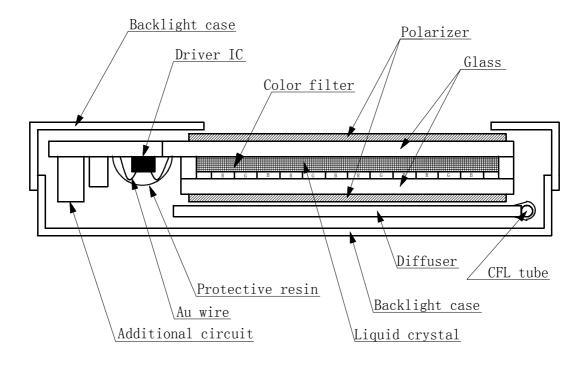
			SPEC.NO.	TQ3C-8EACO	-E1CWC02-01
			DATE	August	3,2000
SPEC					
	FO	R :			
	<u> </u>	CS057QV	/ 1 A J – G 3	2	
		CONTENT	ſS		
 Mechanical Absolute M Electrical Optical CH Circuit Bl Interface Interface Interface Data and S Input Timi Supply Vol Backlight Lot Number Warranty Precaution 	Signals Timing Chart Screen Ing Characterist tage Sequence (Characteristics Identification as for Use ty Data / Enviro	ics Condition	Dat Hay	sued te: AUG. 04 KUDERB ato LCD Div	vision
			KAG	OSHIMA HAYATO DIVISION	
	pecification is t Kyocera before		ange without	notice.	
Original	Designed by	:Engineering	Dept.	Confirmed by	v :QA Dept.
Issue Data	Prepared	Checked	Approved	Checked	Approved
				+	

Caution

- This general specification can be changed, just for your reference only. Kyocera will release specification later exclusive for you. Please refer to it as the formal document of specification.
- 2. This LCD is supposed to be for general electric appliances such as audio, office automation, industrial applications, home appliances and game machines. Do not use the LCD as a display for a medical instrument that is required extremely high reliability and its failure and malfunction may affect human lives. In the case you did, Kyocera will not take responsibility for it.
- 3. Kyocera may scrap the tooling or stop supplying the LCD, after 2 year time frame from your latest purchase of the LCD.

Revision Record													
		Design	ed by:	: Engineering Dept. Confirmed by: QA Dep									
Date		Prepa	red	Checked	Approved	Checked	Approved						
August 3	,2000	Y. Yama	zaki	M.FuTiTani	Willsom ~	S. Haypani	J. Joeh da						
Rev. No.	Dat	e	Page	Descriptions									
0 1	August	3,2000	2	3. Mechanical Specification Change "Weight" → "Mass" 4-2 Environmental absolute maximum ratings *2 Change "Hr." → "h" *6 Change "msec" → "ms"									
			3										
			16	13. Backlight Operating l	Characteristi ife Change "H	$\operatorname{r."}^{cs} \rightarrow \operatorname{"h"}$	-						
			20	17. Reliabili Change "Hr.	ty Data / Envi "→ "h"	ronmental Test							


Revision Record

1. Application

This data sheet defines the specification for a $(320 \times 3) \times 240$ dot, STN Transmissive color dot matrix type Liquid Crystal Display with CFL backlight.

2. Construction and Outline

$(320 \times 3) \times 240$ dots,	COB type LCD with CFL backlight.
Backlight system	: Side-edge type CFL (1 tube).
Inverter	: Option. Recommended Inverter : PH-BLCO8-K3 (HITACHI MEDIA ELECTRONICS) or equivalent.
Polarizer	: Glare treatment.
Additional circuit	: Bias voltage circuit, Randomizing circuit.

This drawing is showing conception only.

3. Mechanical Specifications

ITEM	SPECIFICATION	UNIT				
Outline dimensions	154.6 (W) \times 114.8 (H) \times 8.5 (D)	mm				
Effective viewing area	118.18 (W) $ imes$ 89.38 (H)	mm				
Dot number	(320×3) (W) \times 240 (H)	Dots				
Dot size	0.10 (W) × 0.34 (H)	mm				
Dot pitch	0.12 (W) × 0.36 (H)	mm				
Display color *1	White *2	—				
Base color *1	Black *2	—				
Mass	200	g				

 $\ast 1$ Due to the characteristics of the LC material, the color vary with environmental temperature.

*2 Negative-type display

Display data ${''H}''$:R,G,B Dots ON : White Display data ${''L}''$:R,G,B Dots OFF : Black

4. Absolute Maximum Ratings

4-1 Electrical absolute maximum ratings

ITEM	SYMBOL	MIN.	MAX.	UNIT
Supply voltage for logic	VDD	0	7.0	V
Supply voltage for LCD driving *1	VEE	0	33.0	V
Input signal voltage *2	Vin	0	VDD	V

*1 VO \geq V1 \geq V2 \geq V3 \geq V4 \geq V5 = O(V)

*2 Input signal :CP, LOAD, FRM, DISP, D0 ${\sim}$ D7

4-2 Environmental absolute maximum ratings

ITEM		SYMBOL	MIN	MAX	UNIT	
Operating temperature	*1	Тор	0	60	UNIT °C °C %RH %RH —	
Storage temperature	*2	Тѕто	-20	60	°C	
Operating humidity	*3	Нор	10	*4	%RH	
Storage humidity	*3	Нsто	10	*4	%RH	
Vibration		_	*5	*5	_	
Shock		_	*6	*6	_	

- *1 LCD's display quality shall not be guaranteed at the temperature range of : below 0°C and upper 40°C.
- *2 Temp. = -20° C < 48 h , Temp = 60° C < 168 h Store LCD panel at normal temperature/humidity. Keep it free from vibration and shock. LCD panel that is kept at low or high temperature for a long time can be defective due to the other conditions, even if the temperature satisfies standard.
- *3 Non-condensation.
- *4 Temp. \leq 40°C, 85% RH Max. Temp. > 40°C, Absolute Humidity shall be less than 85%RH at 40°C.

*5

Frequency	10~55 Hz	Converted to acceleration value :		
Vibration width	0.15 mm	$(0.3 \sim 9 \text{ m/s}^2)$		
Interval	10-55-10 Hz	1 minute		

² hours in each direction $\rm X/Y/Z$ (6 hours as total) EIAJ ED-2531

```
*6 Acceleration: 490m/s^2
Pulse width : 11 ms
3 times in each direction : \pm X/\pm Y/\pm Z.
EIAJ ED-2531
```

5. Electrical Characteristics

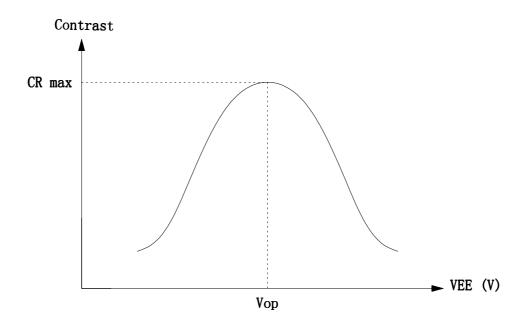
Temp. = 25° C, VDD = $+5.0V \pm 5\%$

ITEM	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply voltage for logic	VDD	—	4.75	5.00	5.25	V
LCD driving voltage *1	Vop=	0 °C	25.4	26.4	27.4	V
	VEE	25 °C	24.4	25.4	26.4	V
		60 °C	22.6	23.6	24.6	V
Input voltage	Vin	"H" level	0.8VDD	_	VDD	V
		"L" level	0	_	0.2VDD	V
Clock frequency	f cp		2.02	2.16	16.0	MHz
Frame frequency *2	f frm		70	75	80	Hz
Current consumption for logic	IDD		_	3.0	4.5	mA
Current consumption for LCD driving	IEE	*3	_	7.5	11.3	mA
Power consumption	Pdisp		_	210	325	mW

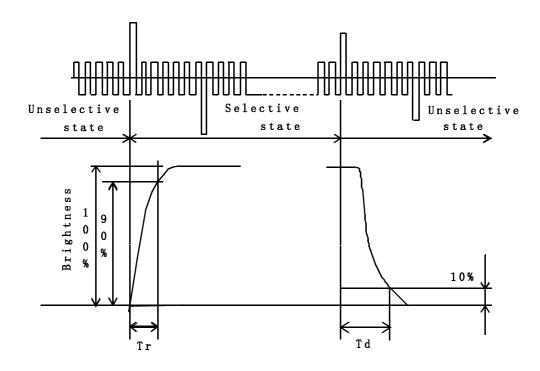
*1 Maximum contrast ratio is obtained by adjusting the LCD supply voltage (Vop= VEE) for driving LCD.

- *2 In consideration of display quality, it is recommended that frame frequency is set in the range of 70-80Hz. When you have to use higher frame and clock frequencies, confirm the LCD's performance and quality prior to finalizing the frequency values: Generally, as frame and clock frequencies become higher current consumption will get bigger and display quality will be degraded.
- *3 Display high frequency pattern, (see below). VDD = 5.0V , Vop = VEE , $f_{\rm FRM}$ = 75 Hz , fcp = 2.16MHz Pattern:

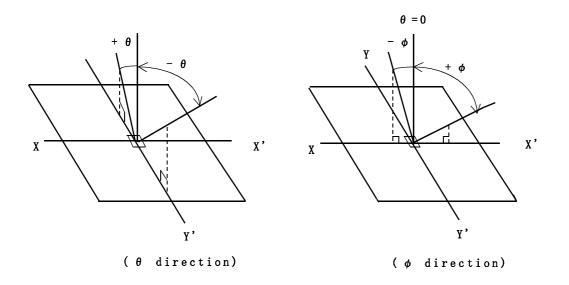
	1	2	3	4	5	6	 	 	 	 	 	 	9	60	(d o †	t)
1																
2																
3																
:																
:																
239																
240																
(dot)																

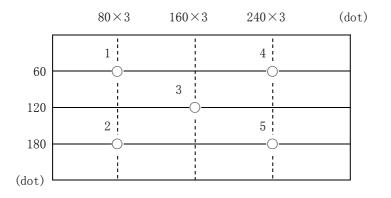

6. Optical Characteristics

Temp. = $25^{\circ}C$

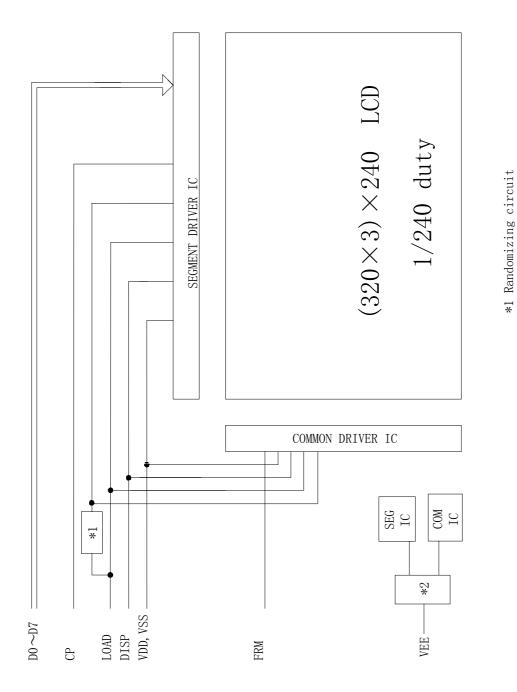

	SYMBOL	CONDI	ITION	MIN.	TYP.	MAX.	UNIT	
Rise	Tr	$\theta = \phi$	=0°	_	220	320	ms	
Down	Td	$\theta = \phi = 0^{\circ}$			110	210	ms	
range	θ		$\phi = 0^{\circ}$	(-50)		(40)	deg.	
	ϕ	$CR \leq 2$	$\theta = 0^{\circ}$	(-50)	_	(50)	deg.	
cio	CR	$\theta = \phi = 0^{\circ}$		20.0	40.0	_	_	
5. OmA)	L	_	_	140	200	_	cd/m^2	
Red	х	0	00	0.50	0.55	0.60		
	у	$\theta = \phi = 0$		0.30	0.35	0.40		
Green	х	0 1 00		0.26	0.31	0.36		
	у	$\theta = \phi$	=0	0.47	0.52	0.57		
Blue	х			0.11	0.16	0.21		
	у	$\theta = \phi$	=0	0.12	0.17	0.22	_	
White	Х	0 – 1	-0°	0.27	0.32	0.37		
	у	$\theta = \phi$	-0	0.30	0.35	0.40		
Black	Х	0 = /	-0°	0.25	0.30	0.35		
	у	$\Theta = \phi$	-0	0.26	0.31	0.36		
	Down 'ange io . OmA) Red Green Blue /hite	Rise Tr Down Td ange θ φ io CR . OmA) L Red x y Green x y Blue x y Hite x y Black x	RiseTr $\theta = \phi$ DownTd $\theta = \phi$ cange θ $CR \ge 2$ ioCR $\theta = \phi$ ioCR $\theta = \phi$. OmA)L $$ Redx $\theta = \phi$ Sheenx $\theta = \phi$ yBluexy $\theta = \phi$ Whitex $\theta = \phi$ yBlackx ϕ $\phi = \phi$	RiseTr $\theta = \phi = 0^{\circ}$ DownTd $\theta = \phi = 0^{\circ}$ ange θ $CR \ge 2$ $\phi = 0^{\circ}$ ϕ $CR \ge 2$ $\phi = 0^{\circ}$ ioCR $\theta = \phi = 0^{\circ}$ ioCR $\theta = \phi = 0^{\circ}$ OmA L $$ Red x $\theta = \phi = 0^{\circ}$ OmA L $$ Red x $\theta = \phi = 0^{\circ}$ OmA U u M u M u u M u M u M u M u M	RiseTr $\theta = \phi = 0^{\circ}$ $-$ DownTd $\theta = \phi = 0^{\circ}$ $-$ ange θ $CR \ge 2$ $\phi = 0^{\circ}$ (-50) ϕ $CR \ge 2$ $\phi = 0^{\circ}$ (-50) ioCR $\theta = \phi = 0^{\circ}$ 20.0 $.0mA)$ L $ 140$ Redx $\theta = \phi = 0^{\circ}$ 0.50 y $\theta = \phi = 0^{\circ}$ 0.26 σ 0.26 0.47 Bluex $\theta = \phi = 0^{\circ}$ 0.11 y $\theta = \phi = 0^{\circ}$ 0.27 θ 0.27 0.30 θ $\phi = 0^{\circ}$ 0.25 θ $\phi = 0^{\circ}$ 0.25	RiseTr $\theta = \phi = 0^{\circ}$ -220DownTd $\theta = \phi = 0^{\circ}$ -110range θ $CR \ge 2$ $\phi = 0^{\circ}$ (-50)- ϕ $CR \ge 2$ $\phi = 0^{\circ}$ (-50)- ϕ $CR \ge 2$ $\phi = 0^{\circ}$ 20.040.0 $.0mA)$ L-140200Red x $\theta = \phi = 0^{\circ}$ 0.500.55 y $\theta = \phi = 0^{\circ}$ 0.260.31Green x $\theta = \phi = 0^{\circ}$ 0.110.16 y $\theta = \phi = 0^{\circ}$ 0.270.32Blue x $\theta = \phi = 0^{\circ}$ 0.270.35 y $\theta = \phi = 0^{\circ}$ 0.250.300.35 β x $\theta = \phi = 0^{\circ}$ 0.250.30 β x $\theta = \phi = 0^{\circ}$ 0.250.30 β $\beta = \phi = 0^{\circ}$ 0.25 0.300.35	Rise Tr $\theta = \phi = 0^{\circ}$ - 220 320 Down Td $\theta = \phi = 0^{\circ}$ - 110 210 range θ $CR \ge 2$ $\phi = 0^{\circ}$ (-50) - (40) range θ $CR \ge 2$ $\phi = 0^{\circ}$ (-50) - (40) range θ $CR \ge 2$ $\phi = 0^{\circ}$ (-50) - (40) io CR $\theta = \phi = 0^{\circ}$ (-50) - (40) io CR $\theta = \phi = 0^{\circ}$ 20.0 40.0 - io CR $\theta = \phi = 0^{\circ}$ 20.0 40.0 - io CR $\theta = \phi = 0^{\circ}$ 20.0 40.0 - io CR $\theta = \phi = 0^{\circ}$ 0.50 0.55 0.60 io Ω $\theta = \phi = 0^{\circ}$ 0.26 0.31 0.36 io γ $\theta = \phi = 0^{\circ}$ 0.11 0.16 0.21 io γ $\theta = \phi = 0^{\circ}$ 0.27 0.32 0.37 io γ $\theta = \phi = 0^{\circ}$	

Optimum contrast is obtained by adjusting the LCD driving voltage(Vop) while at the viewing angle of $~\theta~=~\phi~=~0^\circ$.


6-1 Contrast ratio is defined as follows:

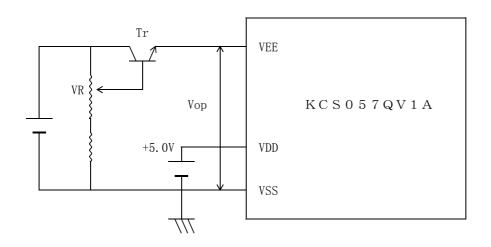

6-3. Definition of response time

6-4. Definition of viewing angle



6-5. Measuring points

- 1) Rating is defined as the average brightness inside the viewing area.
- 2) 30 minutes after CFL is turned on. (Ambient Temp.= 25° C)
- The inverter should meet the eccentric conditions;
 Sine, symmetric waveform without spike in positive and negative.
- 4) Measuring Inverter : PH-BLC08-K3(HITACHI MEDIA ELECTRONICS)


7. Circuit Block Diagram of LCD

*2 Bias voltage circuit

- 8 -

7-1. Power supply

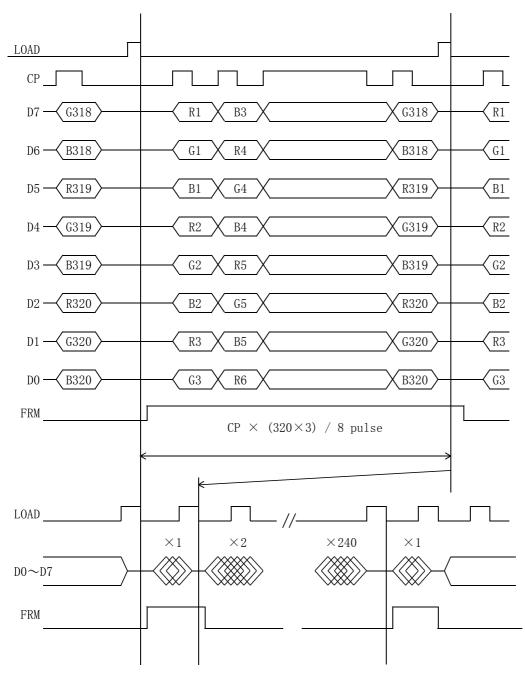
8. Interface signals

8-1. LCD

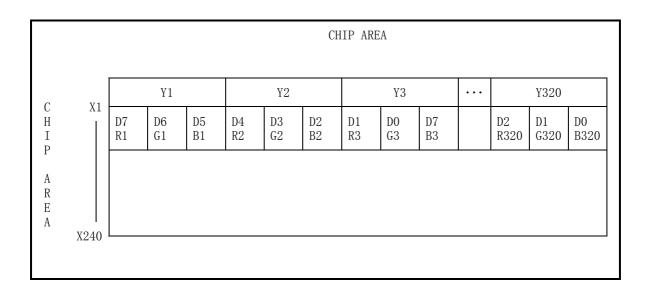
CN1 : 53261-1510(Molex)

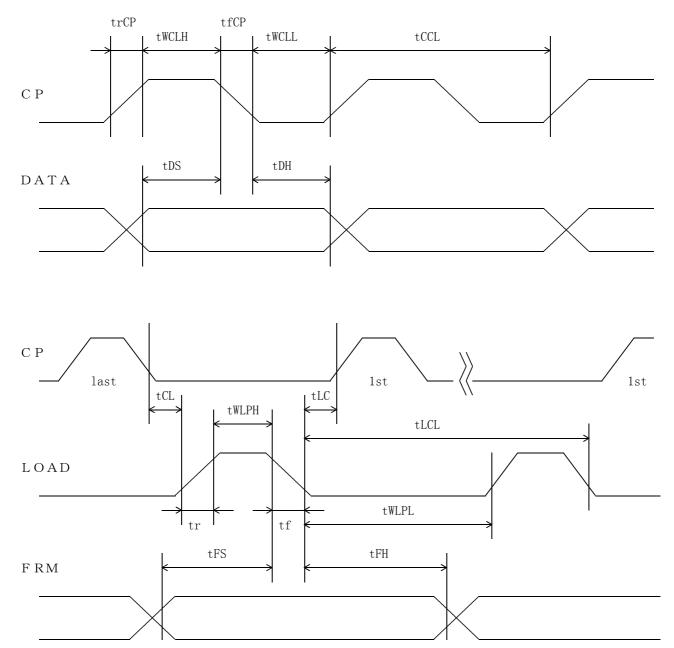
-	. 00201 10	IO (MOICA)		
	PIN NO.	SYMBOL	DESCRIPTION	LEVEL
	1	FRM	Synchronous signal for driving scanning line	Н
	2	LOAD	Data signal latch clock	${\rm H}\rightarrow{\rm L}$
	3	CP	Data signal shift clock	$\mathbb{H} \to \mathbb{L}$
	4	DISP	Display control signal	H(ON), L(OFF)
	5	VDD	Power supply for logic	
	6	VSS	GND	
	7	VEE	Power supply for LCD	—
	8	D7		
	9	D6	Display data	
	10	D5		
	11	D4		H(ON), L(OFF)
	12	D3		
	13	D2		
	14	D1		
	15	DO		

Recommended matching connector : 51021-1500(Molex)


NOTE) This is assignment is the reverse of what Molex defined. Remember that for your designing.

8-2. CFL


PIN No	SYMBOL	DESCRIPTION	LEVEL
1	HV	Power supply for CFL	AC
2	NC	—	
3	GND	Ground line(from inverter)	


LCD side connector : BHR-03VS-1 (JST) Recommended matching connector : SM02-(8.0)B-BHS-1 (JST)

9. Interface Timing Chart

$1\,0\,.$ Data and Screen

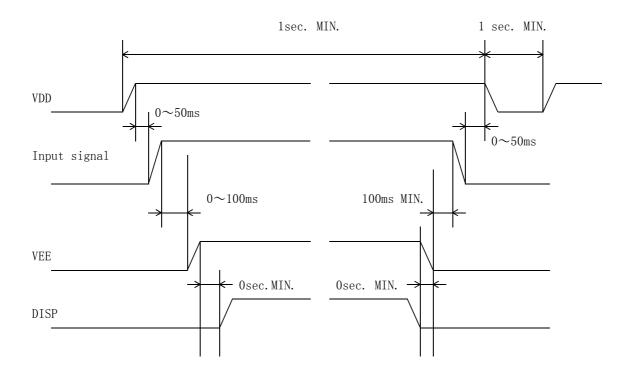
1 1. Input Timing Characteristics of LCD

11-1. Switchig characteristics

Input Characteristics ; VDD = +5.0V \pm 5%, Temp. = 25 $^{\circ}\mathrm{C}$

-	, I	1		
ITEM	SYMBOL	MIN.	MAX.	UNIT
CP Cycle *1,*2	tCCL	62	_	ns
CP "H" Pulse Width *2	tWCLH	25	_	ns
CP "L" Pulse Width *2	tWCLL	25	_	ns
CP Rise Up Time *2	trCP	_	30	ns
CP Fall Down Time *2	tfCP	_	30	ns
Data Set Up Time	tDS	20	_	ns
Data Hold Time	tDH	15	—	ns
LOAD "H" Pulse Width	tWLPH	50	_	ns
LOAD "L" Pulse Width	tWLPL	370	_	ns
LOAD Cycle *3	tLCL	420	_	ns
CP→LOAD Delay Time	tCL	0	_	ns
LOAD→CP Delay Time *4	tLC	120-tWLPH	_	ns
Input Signal Rise Up Time	tr	_	30	ns
Input Signal Fall Down Time	tf		30	ns
FRM Data Set Up Time	tFS	100	_	ns
FRM Data Hold Time	tFH	30		ns

*1 CP Cycle is adjust so that FRM signal is 75Hz.


*2 The formula of condition $(1)trCP + tfCP \leq tCCL - (tWCLH + tWCLL)$ $(2)trCP, tfCP \leq 30 \text{ ns}$ Please use on condition that (1), (2) are filled.

*3 LOAD Cycle is const.

*4 tLC \geq 0

1 2. Supply Voltage Sequence Condition

<u>DO NOT</u> apply DC voltage to the LCD panel. DC voltage induce irreversible electrochemical reactions and reduce LCD life. Always follow the power supply ON/OFF sequence of VDD first, input signal second, VEE third and finally DISP. This will prevent DC driving of the LCD or CMOS LSI latch up as shown below.

- * The above sequence should be designed as to keep each normal figure on condition that liquid crystal module is loaded on your system.
- * Control the input signal and VEE to the above ON OFF timing when you switch ON/OFF the display during VDD and DISP are on. and design the circuit as VEE's OFF level become GND level at the some time.

13. Backlight Characteristics

CFL ratings

1emp 25 C	Temp.=	= 25°C
-----------	--------	--------

ITEM		SYMBOL	MIN.	TYP.	MAX.	NOTE
Starting discharge Voltage		VS	_	_	795 Vrms.	0 °C
uischarge voltage	*1	12	_	_	530 Vrms.	25 °C
Discharging tube current	*2	IL	2.0 mArms.	5.0 mArms.	6.0 mArms.	
Discharging tube voltage		VL	—	320 Vrms.	—	
Operating life (IL=5.0 mArms.)	*3	Т	25,000 h	40,000 h	—	_
Operating frequency		F	30 kHz	_	100 kHz	_

*1 The Non-load output voltage (VS) of the inverter should be designed to have some margin, because VS may increase due to the leak current which may be caused by wiring of CFL cables. (Reference value: 1035 Vrms MIN.)

*2 Do not apply more than (6.0)mA discharge tube current. Because CFL maybe broken due to over current.

*3 When the illuminance or quantity of light has decreased to 50 % of the initial value. Average life time of CFL will be decreased when LCD is operating at lower and Higher temperature.

14. Lot Number Identification

The lot number shall be indicated on the back of the backlight case of each LCD.

 $\mathrm{K}\,\mathrm{C}\,\mathrm{S}\,\mathrm{0}\,5\,7\,\mathrm{Q}\,\mathrm{V}\,\mathrm{1}\,\mathrm{A}\,\mathrm{J}-\mathrm{G}\,\mathrm{3}\,\mathrm{2}-\quad \Box\quad \Box-\Box\quad \Box$

	_	DATE MONTH
	<u> </u>	YEAR

YEAR	2000	2001	2002	2003	2004	2005
CODE	0	1	2	3	4	5

MONTH	JAN.	FEB.	MAR.	APR.	MAY	JUN.
CODE	1	2	3	4	5	6
MONTH	JUL.	AUG.	SEP.	OCT.	NOV.	DEC.
CODE	7	8	9	Х	Y	Z

1 5. Warranty

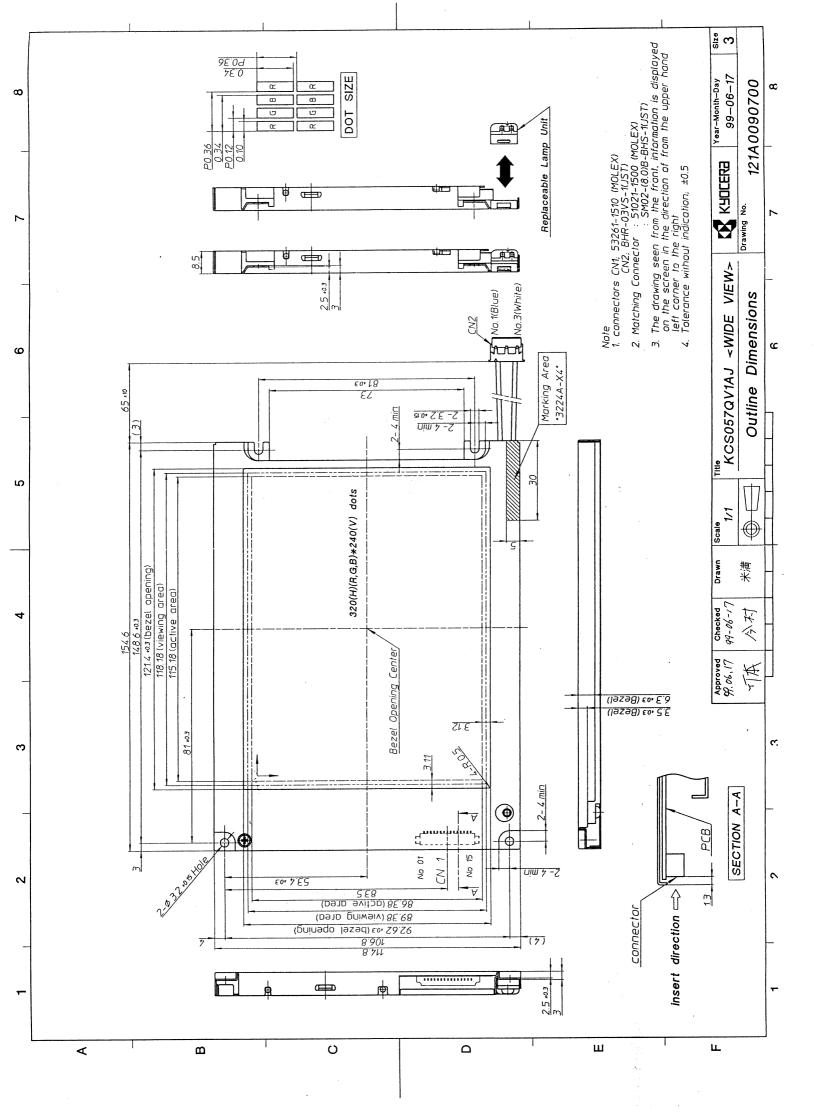
15-1. Incoming inspection

Please inspect the LCD within one month after your receipt.

15-2. Production Warranty

Kyocera warrants its LCDs for a period of 12 months after receipt by the purchaser, and within the limits specified. Kyocera shall, by mutual agreement, replace or rework defective LCDs that are shown to be Kyocera's responsibility.

- 1 6. Precautions for use
 - 16-1. Installation of the LCD
 - 1. Please ground either of the mounting (screw) holes located at each corner of an LCD module, in order to stabilize brightness and display quality.
 - 2. A transparent protection plate shall be added to protect the LCD and its polarizers.
 - 3. The LCD shall be installed so that there is no pressure on the LSI chips.
 - 4. The LCD shall be installed flat, without twisting or bending.
 - 5. The display window size should be the same as the effective viewing area.
 - 6. In case you use outside frame of effective viewing area as outward appearance of your product, unevenness of its outward appearance is out of guarantee.
 - 7. Do not pull the CFL lead wires and do not bend the root of the wires. Housing should be designed to protect CFL lead wires from external stress.
 - 16-2. Static Electricity
 - 1. Since CMOS ICs are mounted directly onto the LCD glass, protection from static electricity is required. Operation should wear ground straps.
 - 16-3. LCD Operation
 - 1. The LCD shall be operated within the limits specified. Operation at values outside of these limits may shorten life, and/or harm display images.
 - 2. Vop must be adjusted to optimize viewing angle and contrast.
 - 3. Operation of the LCD at temperature below the limit specified may cause image degradation and/or bubbles. It may also change the characteristics of the liquid crystal. <u>This phenomenon may not recover.</u> The LCD shall be operated within the temperature limits specified.
 - 16-4. Storage
 - 1. The LCD shall be stored within the temperature and humidity limits specified. Store in a dark area, and protected the LCD from direct sunlight or fluorescent light.
 - 2. The LCD should be packaged to prevent damage.


16-5. Screen Surface

- 1. <u>DO NOT</u> store in a high humidity environment for extended periods. Image degradation, bubbles, and/or peeling off of polarizer may result.
- 2. The front polarizer is easily scratched or damaged. Prevent touching it with any hard material, and from being pushed or rubbed.
- 3. The LCD screen may be cleaned with a soft cloth or cotton pad. Methanol, or Isopropyl Alcohol may be used, but insure that all solvent residue is removed.
- 4. Water may cause damage or discoloration of the polarizer. Clean any condensation or moisture from any source immediately.
- 5. Always keep the LCD free from condensation during testing. Condensation may permanently spot or stain the polarizers.

17. Reliability Data / Environmental Test

TEST ITEM	TEST CONDITION	TEST TIME	RESULT
High Temp. Atmosphere	60°C	240 h	Display Quality : No defect Display Function : No defect Current Consumption : No defect
Low Temp. Atmosphere	−20°C	240 h	Low Temp. Bubble : None Solid Crystallization of Liquid Crystal : None Display Quality : No defect Display Function : No defect Current Consumption : No defect
High Temp. Humidity Atmosphere	40℃ 90%RH	240 h	Display Quality : No defect Display Function : No defect Peel-off of Organic Sealing : None Current Consumption : No defect
Temp. Cycle	-20℃ 0.5 h R.T. 0.5 h 60℃ 0.5 h	10 cycles	Display Quality : No defect Display Function : No defect Peel-off of Organic Sealing : None Bubble on Cell : None
High Temp. Operation	60°C Vop	500 h	Display Quality : No defect Current Consumption : No defect

- \ast Each test item uses a test LCD only once. The tested LCD is not used in any other tests.
- \ast The LCD is tested in circumstances in which there is no condensation.
- * The tested LCD is inspected after 24 hours of storage at room temperature and room humidity after each test is finished.
- * The reliability test is not an out-going inspection.
- * The result of the reliability test are for your reference purpose only. The reliability test is conducted only to examine the LCD's capability.

			Document NO.	TQ3C-8EACO-	-E2CWC02-00
		-	DATE	May 24	4,2000
		-			
	F	OR:			
КУ	YOCERA I	N S P E C T	ION STA	N D A R D	
	ТҮРЕ :	KCS05	7 Q V 1 A J - (3 3 2	
		110000			
			KYOCEF	RA CORPORATION	
			KAGOSH	HIMA HAYATO PL IVISION	
				I	
Original	Designed by	:Engineerin	g Dept.	Confirmed by	:QA Dept.
Original Issue Data	Designed by Prepared	:Engineerin Checked	g Dept. Approved	Checked	:QA Dept. Approve J. J. Shide

Designed by : Engineering Dept. Confirmed by : QA Dept. Date Prepared Checked Approved Checked Approved Page Rev. No. Date Descriptions

Revision Record

Visuals specification

1)Note

Item		Note				
General	 When defects specified in this Inspection Standards are inspected, operating voltage(Vop) shall be set at the level where optimized contrast is available. Display quality is applied up to effective viewing area. (Bi-Level INSPECTION) 					
	 This inspection standard about the image quality shall b applied to any defect within the effective viewing area and shall not be applicable to outside of the area. Should any defects which are not specified in this 					
	3. Should any defects which are not specified in this standard happen, additional standard shall be determined by mutual agreement between customer and Kyocera.					
	4. Inspection conditions					
	Luminance: 500 Lux minimum .Inspection distance: 300 mm (from the sample)Temperature: $25 \pm 5 \ ^{\circ}$ CDirection: right above					
Definition of Inspection item	Pinhole, Bright spot Black spot, Scratch Foreign particle	The color of a small area is different from the remainder. The phenomenon dose not change with voltage.				
	Contrast variation	The color of a small area is different from the remainder. The phenomenon changes with voltage.				
	Polarizer (Scratch, Bubble, Dent)	Scratch, Bubble and Dent in the polarizer which can be observed in on / off state.				

Judgement standard						
Ę	>		d = (a +	b) / 2		
Category	Category Size (mm) Acceptable number					
А	d	≦ 0.2	neg	lected		
В	0.2 < d	≦ 0.3		5		
C $0.3 < d \le 0.5$ 3						
D $0.5 < d$ 0				0		
W						
Wid	th (mm)	Len	gth (mm)	Acceptable No.		
A	$\mathbb{W} \leq 0.03$	-		neglected		
В	-			neglected		
	< ₩ ≦0.1			3		
		4.0 <	C L	0		
E 0.1 <	X W	-		According to Circular		
Category A B	Size (r d 0.5 < d	$ \leq 0.5 $ $ \leq 0.7 $	Acceptab neg	b) / 2 le number ilected 3 0		
	Category A B C D D Wid A C 0.03< D E 0.1 < Category A	CategorySizeAdB $0.2 < d$ C $0.3 < d$ D $0.5 < d$ O $0.5 < d$ C $0.03 < W \leq 0.03$ B $0.03 < W \leq 0.11$ D $0.1 < W$ E $0.1 < W$ CategorySize (n)A d A d A d CategorySize (n)A d B $0.5 < d$	CategorySize (mm)A $d \leq 0.2$ B $0.2 < d \leq 0.3$ C $0.3 < d \leq 0.5$ D $0.5 < d$ $0.5 < d$ $0.5 < d$ $0.03 < W \leq 0.1$ $0.03 < W \leq 0.1$ $0.03 < W \leq 0.1$ $0.1 < W$ $0.1 < W$ $0.1 < W$ $0.1 < W$ $0.5 < d \leq 0.7$	$d = (a + \frac{d = (a + \frac{d = 0.2 \text{ mg}}{A} + \frac{d \leq 0.2 \text{ mg}}{A} + \frac{d \leq 0.2 \text{ mg}}{B} + \frac{d \leq 0.3 \text{ c}}{C} + \frac{d \leq 0.3 \text{ c}}{D} + \frac{d \leq 0.3 \text{ c}}{D} + \frac{d \leq 0.5 \text{ c}}{D}$		

Inspection item		Juc	lgement standard					
Polarizer (Scratch, Bubble, Dent)	(1) Scratch W L							
	Widt	Width (mm) Length (mm) Acceptable No.						
	A $W \leq 0.1$ — neglected							
	B 0.1 <	< ₩ ≦0.3 -	$L \leq 5.0$) neglected				
	C $0.1 < W \ge 0.3$ $5.0 < L$ 0 D $0.3 < W$ - 0							
	(2)Bubble (dent)							
		a d = (a +	- b) / 2					
	Category	Size ((mm) Accepta	able number				
	А	d	≦ 0.2 ne	eglected				
	В	0.2 < d	≦ 0.3	5				
	С	0.3 < d	≦ 0.5	3				
	D	0.5 < d		0				