SPEC

Spec No.	TQ3C-8EAS0-E1DAM38-00
Date	October 25, 2007

TYPE: KG057QVLCE-G050

< 5.7 inch QVGA transmissive monochrome STN with LED backlight, with touch panel >

CONTENTS

- 1. Application
- 2. Construction and outline
- 3. Mechanical specifications
- 4. Absolute maximum ratings
- 5. Electrical characteristics
- 6. Optical characteristics
- 7. Circuit block diagram
- 8. Interface signals
- 9. Interface timing chart
- 10. Input timing characteristics
- 11. Supply voltage sequence condition
- 12. Backlight characteristics
- 13. Design guidance for analog touch panel (T/P)
- 14. Lot number identification
- 15. Warranty
- 16. Precautions for use
- 17. Reliability test data
- 18. Outline drawing

KYOCERA CORPORATION KAGOSHIMA HAYATO PLANT LCD DIVISION

This specification is subject to change without notice.

Consult Kyocera before ordering.

Original	Designed by: Engineering dept.			Confirmed by: QA dept.	
Issue Date	Prepared	Checked	Approved	Checked	Approved
October 25, 2007	SORtaka	W. Yano	4 Matsumoto	J. Sakaguchi	Je Sal

Spec No.	Part No.	Page
TQ3C-8EAS0-E1DAM38-00	KG057QVLCE-G050	-

Warning

- 1. This Kyocera LCD module has been specifically designed for use only in electronic devices and industrial machines in the area of audio control, office automation, industrial control home appliances, etc. The module should not be used in applications where the highest level of safety and reliability are required and module failure or malfunction of such module results in physical harm or loss of life, as well as enormous damage or loss. Such fields of applications include, without limitation, medical, aerospace, communications infrastructure, atomic energy control. Kyocera expressly disclaims any and all liability resulting in any way to the use of the module in such applications.
- 2. Customer agrees to indemnity, defend and hold Kyocera harmless from and against any and all actions, claims, damages, liabilities, awards, costs, and expenses, including legal expenses, resulting from or arising out of Customer's use, or sale for use, or Kyocera modules in applications.

Caution

1. Kyocera shall have the right, which Customer hereby acknowledges, to immediately scrap or destroy tooling for Kyocera modules for which no Purchase Orders have been received from the Customer in a two-year period.

Spec No.	Part No.	Page
TQ3C-8EAS0-E1DAM38-00	KG057QVLCE-G050	-

Revision record

Date		Designe			Confirmed by : QA dept.		
	Date	Prepa	red	Checked	Approved	Checked	Approved
D	D :	D 1			D		
Rev.No.	Date	Page			Descripti	ons	

Spec No.	Part No.	Page
TQ3C-8EAS0-E1DAM38-00	KG057QVLCE-G050	1

1. Application

This document defines the specification of KG057QVLCE-G050. (RoHS Compliant)

2. Construction and outline

LCD : Transmissive monochrome dot matrix type STN

Duty ratio : 1/240 duty Backlight system : LED

Polarizer : Glare treatment

Additional circuit : Bias voltage circuit, Randomizing circuit,

DC/DC converter circuit, Temperature compensation circuit

Touch panel : Analog type, Non-Glare treatment

3. Mechanical specifications

3-1. Mechanical specifications of LCD

Item	Specification	Unit
Outline dimensions	144 (W)× (104.8) (H) × 14.5 (D)	mm
Active area	115.18 (W) × 86.38 (H) (14.4cm / 5.7 inch (Diagonal))	mm
Effective viewing area	117.2 (W) × 88.4 (H)	mm
Dot format	320 (W) × 240 (H)	dot
Dot size	$0.34 \text{ (W)} \times 0.34 \text{ (H)}$	mm
Dot pitch	0.36 (W) × 0.36 (H)	mm
Base color *1	Normally Black	-
Mass	220	g

^{*1} Due to the characteristics of the LCD material, the color varies with environmental temperature.

3-2. Mechanical specifications of touch panel

Item	Specification	Unit
Input	Radius-0.8 stylus or Finger	-
Actuation force	0.5±0.3	N
Transmittance	Typ. 80	%
Surface hardness	Pencil hardness 2H or more according	-

Spec No.		Part No.	Page	
TQ3C-8EAS0-1	E1DAM38-00	KG057QVLCE-G050	2	

4. Absolute maximum ratings

4-1. Electrical absolute maximum ratings

Item	Symbol	Min.	Max.	Unit
Supply voltage for logic	$V_{ m DD}$	0	6.0	V
Supply voltage for LCD driving	VCONT	0	$V_{ m DD}$	V
Input signal voltage *1	$V_{\rm IN}$	0	$V_{ m DD}$	V
FRM frequency	${ m f}_{ m FRM}$	-	150	$_{ m Hz}$
LED forward current *2	IF	-	27	mA
Reversed voltage *2	VR	-	5	V
Supply voltage for touch panel	V_{TP}	0	6.0	V
Input current of touch panel	I_{TP}	0	0.5	mA

^{*1} Input signal: FRM, LOAD, CP, DISP, D0~D3

4-2. Environmental absolute maximum ratings

Item		Symbol	Min.	Max.	Unit
Operating temperature	*1	Тор	-20	70	°C
Storage temperature	*2	Тѕто	-30	80	°C
Operating humidity	*3	Нор	10	*4	%RH
Storage humidity	*3	${ m H}_{ m STO}$	10	*4	%RH
Vibration		-	*5	*5	-
Shock		-	*6	*6	-

^{*1} Operating temperature means a temperature which operation shall be guaranteed. Since display performance is evaluated at 25°C, another temperature range should be confirmed.

Store LCD panels at normal temperature/humidity. Keep them free from vibration and shock. An LCD panel that is kept at a low or a high temperature for a long time can be defective due to other conditions, even if the low or high temperature satisfies the standard.

(Please refer to "Precautions for use" for details.)

Temp. >40°C, Absolute humidity shall be less than 85%RH at 40°C.

^{*2} For each "AN1-CA1", "AN2-CA2" and "AN3-CA3"

^{*2} Temp. = -30°C< 48h, Temp. = 80°C< 48h

^{*3} Non-condensing

^{*4} Temp.≤40°C, 85%RH Max.

Spec No.	Part No.	Page
TQ3C-8EAS0-E1DAM38-00	KG057QVLCE-G050	3

*5

Frequency	10∼55 Hz	Acceleration value
Vibration width	0.15mm	$(0.3\sim 9 \text{ m/s}^2)$
Interval	10-55-10	Hz 1 minutes

2 hours in each direction X, Y, Z (6 hours total) $\rm EIAJ\ ED\text{-}2531$

 $^{*}6$ Acceleration: 490 m/s², Pulse width: 11 ms

3 times in each direction: $\pm X$, $\pm Y$, $\pm Z$

EIAJ ED-2531

Spec No.	Part No.	Page
TQ3C-8EAS0-E1DAM38-00	KG057QVLCE-G050	4

5. Electrical characteristics

 $5-1. V_{DD} = 5.0V$

 $V_{DD} = +5.0V \pm 5\%$, Temp. = -20 \sim 70°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage for logic	$ m V_{DD}$	-	4.75	5.00	5.25	V
Supply voltage for LCD driving *1, *2	$V_{CONT} = V_{OP}$	-20~70°C *3	1.45	1.95	2.45	V
Input signal voltage	$ m V_{IN}$	"High" level	$0.8 V_{\mathrm{DD}}$	-	$ m V_{DD}$	V
(FRM,LOAD,CP,DISP,D0∼D3)	VIN	"Low" level	0	-	$0.2 V_{\mathrm{DD}}$	V
Input current	${ m I}_{ m IN}$	Input signal	-100	-	100	μA
Rush current for logic	I_{RUSH}	When LCD turn on.	3.0A (Peak) × 1ms			
Clock frequency	f_{CP}	-	-	-	10.00	MHz
Frame frequency *4	${ m f}_{ m FRM}$	-	70	75	80	Hz
Current consumption for logic	${ m I}_{ m DD}$	*5	-	17	22	mA
Power consumption	$\mathrm{P}_{\mathrm{DISP}}$	9	-	85	110	mW

^{*1} Maximum contrast ratio is obtained by adjusting the LCD supply voltage ($V_{CONT} = V_{OP}$) for driving the LCD.

*5 Display pattern:

^{*2} Frame frequency : $f_{FRM} = 75Hz$

^{*3} The LCD module has a temperature compensation circuit.

^{*4} In consideration of display quality, it is recommended that frame frequency be set in the range of 70-80Hz. When you have to use higher frame and clock frequencies, confirm the LCD's performance and quality prior to finalizing the frequency value. Generally, as frame and clock frequencies become higher current consumption increases and display quality will degrade.

Spec No.	Part No.	Page
TQ3C-8EAS0-E1DAM38-00	KG057QVLCE-G050	5

 $5-2. V_{DD} = 3.3V$

$V_{DD} = +3.3V \pm 0.3V$,	Temp. $=$	0~60°C
-----------------------------	-----------	--------

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage for logic	$V_{ m DD}$	-	3.0	3.3	3.6	V
Supply voltage for LCD driving *1, *2	V _{CONT} = V _{OP}	-20~70°C *3	1.45	1.95	2.45	V
Input signal voltage	$ m V_{IN}$	"High" level	$0.8 V_{\mathrm{DD}}$	-	$V_{ m DD}$	V
(FRM,LOAD,CP,DISP,D0-D3)	VIN	"Low" level	0	-	$0.2 \mathrm{V}_\mathrm{DD}$	V
Input current	${ m I_{IN}}$	Input signal	-100	-	100	μA
Rush current for logic	$I_{ m RUSH}$	When LCD turn on.	3.0A (Peak) × 1ms			
Clock frequency	$ m f_{CP}$	-	-	-	10.00	MHz
Frame frequency *4	f_{FRM}	-	70	75	80	Hz
Current consumption for logic	${ m I}_{ m DD}$	*5	•	25	33	mA
Power consumption	P_{DISP}	9	-	83	109	mW

^{*1} Maximum contrast ratio is obtained by adjusting the LCD supply voltage ($V_{CONT}=V_{OP}$) for driving the LCD.

*5 Display pattern:

5-3. Touch panel

Item	Specification
Supply voltage for touch panel	5.0V
The control of the co	$xL\sim xR$: $200\Omega\sim 1,000\Omega$
Terminal resistance	yU~yL : 200Ω~1,000Ω
Linearity	less than ±1.5%
Insulation resistance	$100 \mathrm{M}\Omega$ or more at DC25V

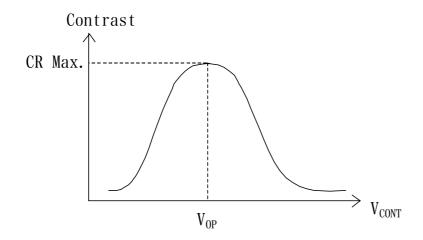
^{*2} Frame frequency : $f_{FRM} = 75Hz$

^{*3} The LCD module has a temperature compensation circuit.

^{*4} In consideration of display quality, it is recommended that frame frequency be set in the range of 70-80Hz. When you have to use higher frame and clock frequencies, confirm the LCD's performance and quality prior to finalizing the frequency value. Generally, as frame and clock frequencies become higher current consumption increases and display quality will degrade.

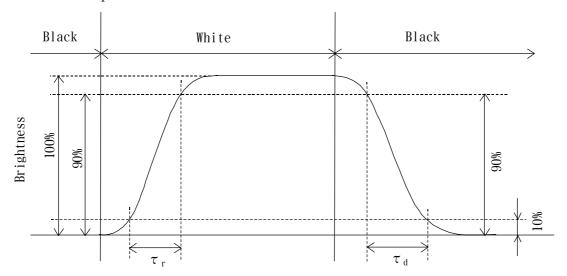
Spec N	0.	Part No.	Page
TQ3C	-8EAS0-E1DAM38-00	${\rm KG}057 {\rm QVLCE\text{-}G}050$	6

6. Optical characteristics

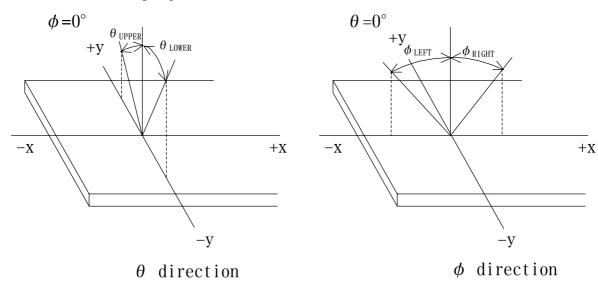

Measuring spot = ϕ 6.0mm, Temp. = 25°C

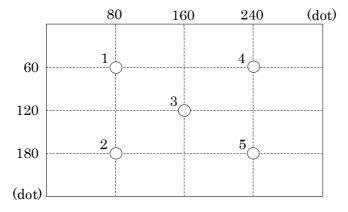
Item		Symbol	Condition	Min.	Typ.	Max.	Unit
D	Rise	τr	$\theta = \phi = 0^{\circ}$	-	380	480	ms
Response time	Down	τd	$\theta = \phi = 0^{\circ}$	-	120	220	ms
		heta upper		-	25	-	1
77 1		$ heta_{ m LOWER}$	CIP > 0	-	45	-	deg.
Viewing angle range		ϕ LEFT	$\mathrm{CR}\! \geq \! 2$	-	45	-	1
		φ right		-	45	-	deg.
Contrast ratio		CR	$\theta = \phi = 0^{\circ}$	20	40	-	-
Brightness		L	IF=25mA/LED line	140	240	-	cd/m²
	XX71- *4 -	X	$\theta = \phi = 0^{\circ}$	0.24	0.29	0.34	
Chromaticity	White	У	$\theta - \psi = 0$	0.28	0.33	0.38	
coordinates	D11.	X	$\theta = \phi = 0^{\circ}$	0.20	0.25	0.30	_
	Black	У	$0-\psi-0$	0.21	0.26	0.31	

Optimum contrast is obtained by adjusting the LCD driving voltage (V_{OP}) while at the viewing angle of $\theta = \phi = 0^{\circ}$.


6-1. Definition of contrast ratio

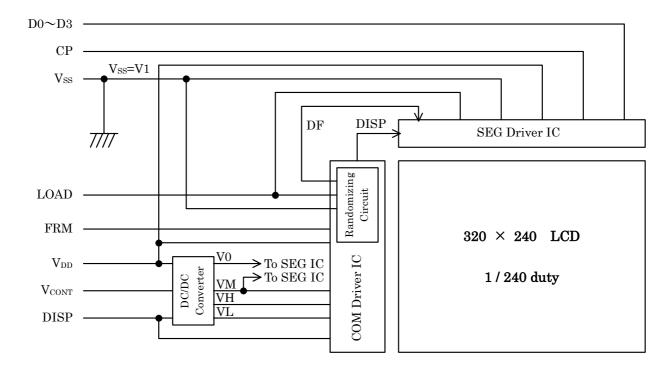
6-2. Definition of Vop



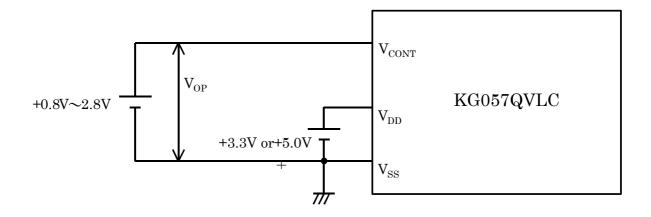

6-3. Definition of response time

6-4. Definition of viewing angle

6-5. Brightness measuring points



- 1) Rating is defined on the average in the viewing area.
- 2) Measured 30 minutes after the LED is powered on. (Ambient temp. = 25°C)
- 3) Backlight: IF=25mA/1 LED line



Spec No.	Part No.	Page
TQ3C-8EAS0-E1DAM38-00	KG057QVLCE-G050	8

7. Circuit block diagram

7-1. Power supply

Spec No.	Part No.	Page
TQ3C-8EAS0-E1DAM38-00	KG057QVLCE-G050	9

8. Interface signals

8-1. Pin assignment of LCD panel

No.	Symbol	Description	Level
1	FRM	Synchronous signal for driving scanning line	Н
2	LOAD	Data signal latch clock	$\mathrm{H} ightarrow \mathrm{L}$
3	CP	Data signal shift clock	$\mathrm{H} ightarrow \mathrm{L}$
4	DISP	Display control signal	H(ON),L(OFF)
5	$V_{ m DD}$	Power supply for logic	-
6	V_{SS}	GND	-
7	$V_{\rm CONT}$	LCD adjust voltage	-
8	NC		
9	NC	No compact	_
10	NC	No connect	-
11	NC		
12	D3		
13	D2	Display data	H(ON),L(OFF)
14	D1	Display data	II(ON),L(OFF)
15	D0		
16	$V_{ m DD}$	Power supply for logic	
17	$V_{ m DD}$	rower supply for logic	
18	$V_{\rm SS}$		
19	$V_{\rm SS}$	GND	-
20	$V_{\rm SS}$		

LCD connector : 08-6210-020-340-800+ (ELCO)

Recommended matching FFC or FPC $\qquad : 0.5 mm \ pitch$

8-2. Pin assignment of LED

No.	Symbol	Description
1	AN1	Anode 1
2	AN2	Anode 2
3	AN3	Anode 3
4	CA1	Cathode 1
5	CA2	Cathode 2
6	CA3	Cathode 3

LCD side connector : SHLP-06V-S-B (JST)

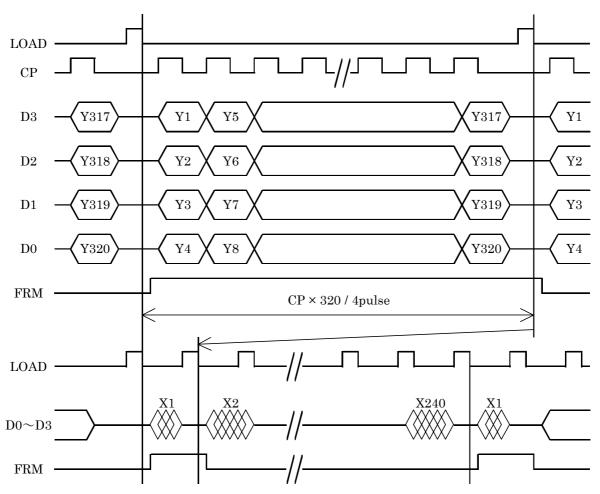
Recommended matching connector

: SM06B-SHLS-TF (JST)

: SM06B-SHLS-TF(LF)(SN) (JST)···(RoHS Compliant)

Spec No.	Part No.	Page
TQ3C-8EAS0-E1DAM38-00	KG057QVLCE-G050	10

8-3. Pin assignment of touch panel

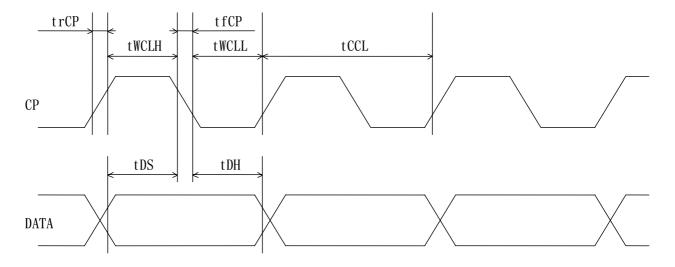

No.	Symbol	Description
1	уU	y-Upper terminal
2	хL	x-Left terminal
3	уL	y-Lower terminal
4	xR	x-Right terminal

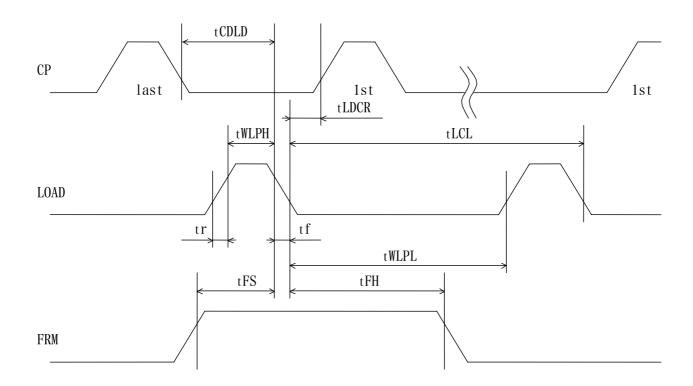
Touch panel side connector : 1.25mm pitch

Recommended matching connector : Series FE, FFS (JST)

: KCA-K4R (DMC)

9. Interface timing chart


^{*} The cycle of the LOAD signal should be stable and continuously applied without interruption.



^{*} The above-mentioned timing chart is a reference to set up a LCD module, not an electrical rating.

Spec No.	Part No.	Page
TQ3C-8EAS0-E1DAM38-00	KG057QVLCE-G050	11

10. Input timing characteristics

Spec No.	Part No.	Page
TQ3C-8EAS0-E1DAM38-00	KG057QVLCE-G050	12

10-1. Switching characteristics ($V_{DD} = 5.0V$)

Input characteristics : $V_{DD} = +5.0V \pm 5\%$, Temp. = -20 \sim 70°C

Item	Symbol	Min.	Max.	Unit
CP cycle *1	tCCL	100	-	Ns
CP "H" pulse width	tWCLH	30	-	Ns
CP "L" pulse width	tWCLL	30	-	Ns
CP rise up time	trCP	-	15	Ns
CP fall down time	tfCP	-	15	Ns
Data set up time	tDS	25	-	Ns
Data hold time	tDH	25	-	Ns
LOAD "H" pulse width	tWLPH	40	-	Ns
LOAD "L" pulse width	tWLPL	400	-	Ns
LOAD cycle *2	tLCL	500	-	ns
$CP \rightarrow LOAD$ delay time	tCDLD	60	-	ns
$LOAD \rightarrow CP$ delay time	tLDCR	60	-	ns
Input signal rise up time	tr	-	20	ns
Input signal fall down time	tf	-	20	ns
FRM data set up time	tFS	120	-	ns
FRM data hold time	tFH	30	-	ns

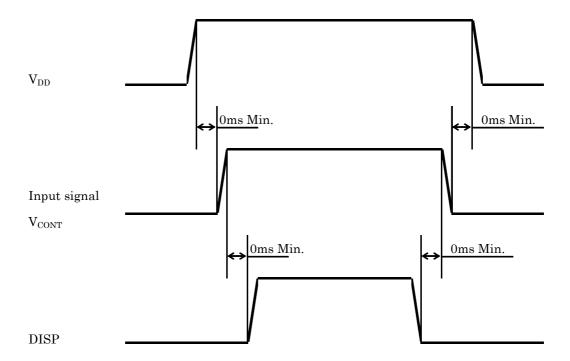
^{*1} CP cycle is adjusted so that FRM signal is 75Hz.

10-2. Switching characteristics ($V_{DD} = 3.3V$)

Input characteristics : $V_{DD} = +3.3V \pm 0.3V$, Temp. = $-20 \sim 70^{\circ}$ C

Item		Symbol	Min.	Max.	Unit
CP cycle	*1	tCCL	100	-	ns
CP "H" pulse width		tWCLH	40	-	ns
CP "L" pulse width		tWCLL	40	-	ns
CP rise up time		trCP	-	20	ns
CP fall down time		tfCP	-	20	ns
Data set up time		tDS	35	-	ns
Data hold time		tDH	35	-	ns
LOAD "H" pulse width		tWLPH	50	-	ns
LOAD "L" pulse width		tWLPL	400	-	ns
LOAD cycle	*2	tLCL	500	-	ns
$CP \rightarrow LOAD$ delay time		tCDLD	60	-	ns
$LOAD \rightarrow CP$ delay time		tLDCR	80	-	ns
Input signal rise up time		tr	-	20	ns
Input signal fall down time		tf	-	20	ns
FRM data set up time		tFS	120	-	ns
FRM data hold time		tFH	30	-	ns

^{*1} CP cycle is adjusted so that FRM signal is 75Hz.


^{*2} LOAD cycle is constant.

^{*2} LOAD cycle is constant.

Spec No.	Part No.	Page
TQ3C-8EAS0-E1DAM38-00	KG057QVLCE-G050	13

11. Supply voltage sequence condition

In normal operation, logic within the LCD module reverses the polarity of the drive voltage every few lines to prevent DC damage to the liquid crystal material. But when a voltage is present on V_{CONT} outside of the time when the V_{DD} logic voltage is stable, a drive voltage is applied to the liquid crystal material without the polarity reversals. This sometimes result in a deterioration of display quality and a reduction in life time.

- * Input signal: FRM, LOAD, CP, D0~D3
- * The above sequence should be designed as to maintain each normal voltage when the liquid crystal module load is applied to your system.
- * Control the supply voltage sequence to not float any signal line when the LCD panel is being driven.

Spec No.	Part No.	Page
TQ3C-8EAS0-E1DAM38-00	KG057QVLCE-G050	14

12. Backlight characteristics

LED ratings

Item		Symbol	Min.	Тур.	Max.	Unit	Note	
Forward current	*1	IF	-	25	1	mA	Ta=0°C	
	*1			-	24.5	27.3	V	IF=25mA, Ta=-20°C
Forward voltage		VF	-	23.1	25.9	V	IF=25mA, Ta=25°C	
			-	22.1	24.9	V	IF=25mA, Ta=70°C	
Operating life time	*2, *3	Т	-	(50,000)	-	h	IF=25mA, Ta=25°C	

^{*1} For each "AN1-CA1", "AN2-CA2" and "AN3-CA3"

^{*2} When brightness decrease 50% of initial brightness.

^{*3} Life time is estimated data.

^{*} An input current below 8.0mA may reduce the brightness uniformity of the LED backlight. This is because the amount of light from each LED chip is different. Therefore, please evaluate carefully before finalizing the input current.

Spec No.	Part No.	Page
TQ3C-8EAS0-E1DAM38-00	KG057QVLCE-G050	15

13. Design guidance for analog touch panel (T/P)

- 13-1 Electrical (In customer's design, please remember the following considerations.)
 - 1 Do not use the current regulated circuit.
 - 2 Keep the current limit with top and bottom layer. (Please refer to "Electrical absolute maxim um ratings" for details.)
 - 3 Analog T/P can not sense two points touching separately.
 - 4 A contact resistance is appeared at the touch point between top and bottom layer. After this resistance has stable read of the T/P position data.
 - 5 Because noise of inverter or peripheral circuits may interfere signal of touch panel itself it is necessary to design carefully in advance to avoid these noise problem.

13-2 Software

- 1 Do the "User Calibration".
- 2 "User Caribration" may be needed with long term using. Include "User Caribration" menu in your software.
- 3 When drawing a line with a stylus, there may be a slight discontinuity when the stylus passes over a spacer-dot. If necessary, please provide a compensation feature within your software.

13-3 Mounting on display and housing bezel

- 1 Do not use an adhesive tape to bond it on the front of T/P and hang it to the housing bezel.
- 2 Never expand the T/P top layer (PET-film) like a balloon by internal air pressure. The life of the T/P will be extremely short.
- 3 If a dew will be on the heat-sealed area or exposed traces at the end of a flexible tail, the migration of silver can occur. This will cause sometimes a short circuit.

Spec No.	Part No.	Page
TQ3C-8EAS0-E1DAM38-00	KG057QVLCE-G050	16

14. Lot number identification

The lot number shall be indicated on the back of the backlight case of each LCD.

No1. - No5. above indicate

- 1. Year code
- 2. Month code
- 3. Date
- 4. Version Number
- 5. Country of origin (Japan or China)

Year	2007	2008	2009	2010	2011	2012
Code	7	8	9	0	1	2
Month	Jan.	Feb.	Mar.	Apr.	May	Jun.

1	Month	Jan.	Feb.	Mar.	Apr.	May	Jun.
	Code	1	2	3	4	5	6

Montl	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Code	7	8	9	X	Y	Z

15. Warranty

15-1. Incoming inspection

Please inspect the LCD within one month after your receipt.

15-2. Production warranty

Kyocera warrants its LCD's for a period of 12 months from the ship date. Kyocera shall, by mutual agreement, replace or re-work defective LCD's that are shown to be Kyocera's responsibility.

Spec No.	Part No.	Page
TQ3C-8EAS0-E1DAM38-00	KG057QVLCE-G050	17

16. Precautions for use

16-1. Installation of the LCD

- 1) The LCD module has a grounding hole. Please ground the module to prevent noise and to stabilize its performance as circumstances demand.
- 2) The LCD shall be installed so that there is no pressure on the LSI chips.
- 3) The LCD shall be installed flat, without twisting or bending.
- 4) The display window size should be the same as the effective viewing area.
 - Must maintain a gap between inside of bezel and touch panel to avoid malfunction or electrode damage of touch panel
- 5) Please refer to the following our recommendable value of Clamp-down torque when installing.

Clamp-down torque: 0.32±0.03N·m

Please set up 'SPEED-LOW', 'SOFT START-SLOW' when using electric driver.

Recommendable screw JIS tapping screw two types nominal dia.3.0mm installing boss hole depth 4.4 ± 0.2 mm

Please be careful not to use high torque which may damage LCD module in installation.

16-2. Static electricity

- 1) Since CMOS ICs are mounted directly onto the LCD glass, protection from static electricity is required.
- 2) Workers should use body grounding. Operator should wear ground straps.

16-3. LCD operation

- 1) The LCD shall be operated within the limits specified. Operation at values outside of these limits may shorten life, and/or harm display images.
- 2) Adjust the "Supply voltage for LCD driving (VCONT)" to obtain optimum viewing angle and contrast ratio.

16-4. Storage

- 1) The LCD shall be stored within the temperature and humidity limits specified. Store in a dark area, and protect the LCD from direct sunlight or fluorescent light.
- 2) Always store the LCD so that it is free from external pressure onto it.

16-5. Usage

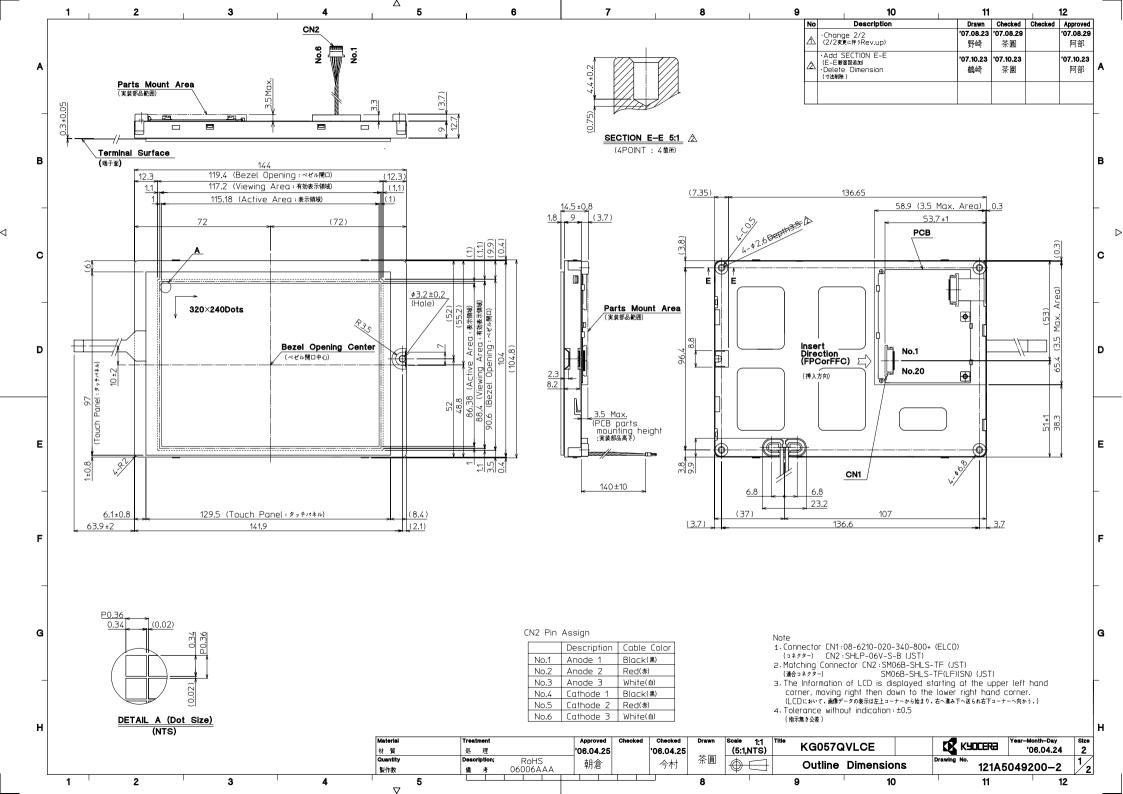
- 1) <u>DO NOT</u> store in a high humidity environment for extended periods. Polarizer degradation bubbles, and/or peeling off of the polarizer may result.
- 2) Do not push or rub the touch panel's surface with hard to sharp objects such as knives, or the touch panel may be scratched.
- 3) When the touch panel is dirty, gently wipe the surface with a soft cloth, sometimes moistened by a little Ethanol. If a hazardous chemical is dropped on the touch panel by mistake, wipe it off right away to prevent human contact.
- 4) Touch panel edges are sharp. Handle the touch panel with enough care to prevent cuts.
- 5) Always keep the LCD free from condensation during testing. Condensation may permanently spot or stain the polarizer.
- 6) Do not pull the LED lead wires and do not bend the root of the wires. Housing should be designed to protect LED lead wires from external stress.
- 7) Do not disassemble LCD module because it will result in damage.
- 8) This Kyocera LCD module has been specifically designed for use in general electronic devices, but not for use in a special environment such as usage in an active gas. Hence, when the LCD is supposed to be used in a special environment, evaluate the LCD thoroughly beforehand and do not expose the LCD to chemicals such as an active gas.
- 9) Please do not use solid-base image pattern for long hours because a temporary afterimage may appear. We recommend using screen saver etc. in cases where a solid-base image pattern must be used.
- 10) Liquid crystal may leak when the module is broken. Be careful not to let the fluid go into your eyes and mouth. In the case the fluid touches your body; rinse it off right away with water and soap.

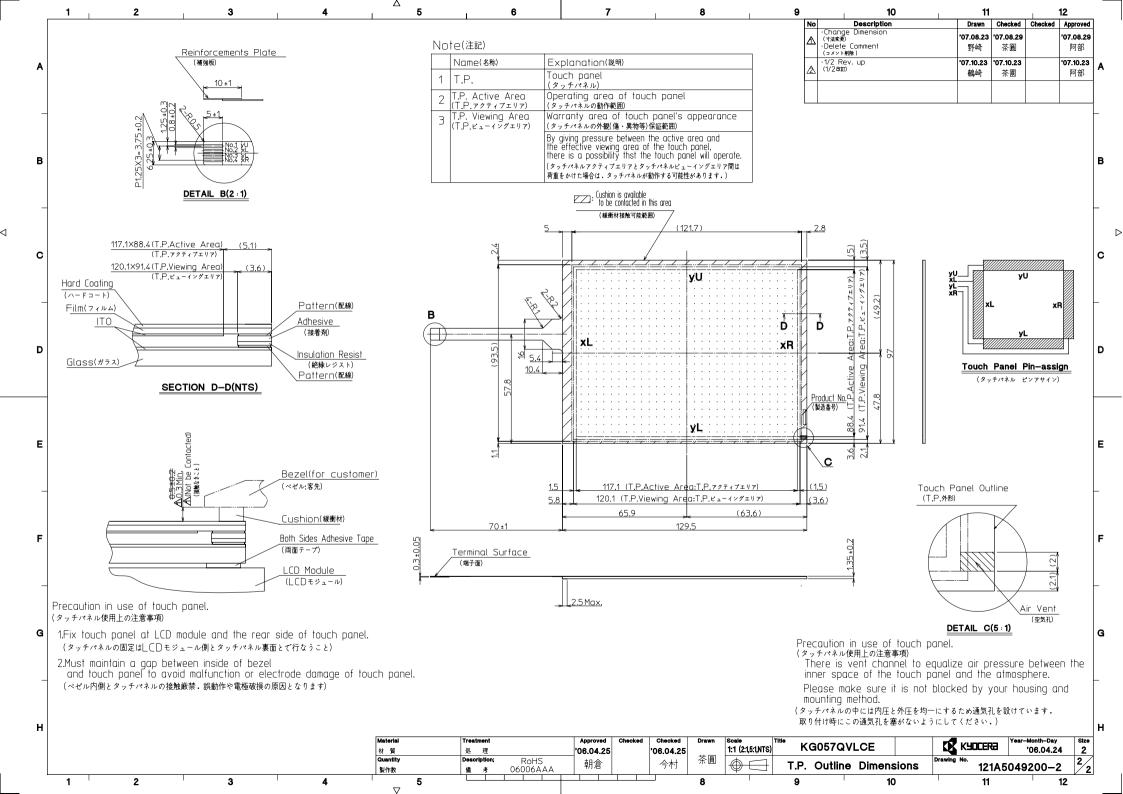
Spec No.	Part No.	Page
TQ3C-8EAS0-E1DAM38-00	${\rm KG}057 {\rm QVLCE\text{-}G}050$	18

17. Reliability test data

Test item	Test condition	Test time	Judgement	
High temp. atmosphere	80°C	240h	Display function Display quality Current consumption	: No defect : No defect : No defect
Low temp. atmosphere	-30°C	240h	Display function Display quality Current consumption	: No defect: No defect: No defect
High temp. humidity atmosphere	40°C 90% RH	240h	Display function Display quality Current consumption	: No defect: No defect: No defect
Temp. cycle	-30°C 0.5h R.T. 0.5h 80°C 0.5h	10cycles	Display function Display quality Current consumption	: No defect: No defect: No defect
High temp. operation	70°C	500h	Display function Display quality Current consumption	: No defect: No defect: No defect
Point Activation life	Polyacetal stylus (R0.8) Hitting force 3N Hitting speed 2 time/s	one million times	Terminal resistance Insulation resistance Linearity Actuation Force	: No defect: No defect: No defect: No defect

^{*} Each test item uses a test LCD only once. The tested LCD is not used in any other tests.




^{*} The LCD is tested in circumstances in which there is no condensation.

^{*} The reliability test is not an out-going inspection.

^{*} The result of the reliability test is for your reference purpose only.

The reliability test is conducted only to examine the LCD's capability.

I	Spec No.	TQ3C-8EAS0-E2DAM35-00
	Date	October 25, 2007

KYOCERA INSPECTION STANDARD

TYPE: KG057QVLCE-G050

KYOCERA CORPORATION KAGOSHIMA HAYATO PLANT LCD DIVISION

Original	Designed by : Engineering dept.			Confirmed by : QA dept.	
Issue Date	Prepared	Checked	Approved	Checked	Approved
October 25, 2007	SORtaka	W. Yano	G Matsumoto	J. Sakaguchi	To Int

Spec No.	Part No.	Page
TQ3C-8EAS0-E2DAM35-00	KG057QVLCE-G050	-

Revision record

	Data	Designe	Designed by Engineering dept.		Confirmed by	: QA dept.	
Date		Prepa	red	Checked	Approved	Checked	Approved
Rev.No.	Date	Page			Descripti	ons	

Spec No.	Part No.	Page
TQ3C-8EAS0-E2DAM35-00	KG057QVLCE-G050	1

Visuals specification 1) Note

Item		Note			
General	inspected, operating volt	1.When defects specified in this Inspection Standards are inspected, operating voltage (V _{OP}) shall be set at the level where optimized contrast is available. Display quality is applied up to effective viewing area. (Bi-level INSPECTION)			
	_	l about the image quality shall be thin the effective viewing area and outside of the area.			
	 3.Should any defects which are not specified in this st happen, additional standard shall be determined by agreement between customer and Kyocera. 4.Inspection conditions Luminance : 500 Lux minimum. Inspection distance : 300 mm(from the sample) Temperature : 25±5°C Direction : right above 				
D. C	Did to Did to	- m 1 e 11 ·			
Definition of inspection item	Pinhole, Bright spot Black spot, Scratch Foreign particle	The color of a small area is different from the remainder. The phenomenon does not change with voltage.			
	Contrast variation	The color of a small area is different from the remainder. The phenomenon change with voltage.			
	Polarizer (Scratch, Bubble, Dent)	Scratch, Bubble and Dent in the polarizer which can be observed in on / off state.			

Spec No.	Part No.	Page
TQ3C-8EAS0-E2DAM35-00	KG057QVLCE-G050	2

2)Standard

2)Standard			T 1		1 1	
Inspection item			Judg	ement stan	aard	
Pinhole, Bright spot, Black spot, Foreign particle	d = (a + b)/2					
	Category Size(mm) Acceptable number					
	A			≤ 0.2		Neglected
	E		0.2 < d			5
	С		0.2 < d = 0.5 $0.3 < d \le 0.5$		3	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0		
						, and the second
Scratch, Foreign particle	L					
		V	Vidth (mm)	Length	(mm)	Acceptable number
	A		W ≤0.03	-		Neglected
	В			L	≦ 2.0	Neglected
	\mathbf{C}	0.03<	< W ≦0.10	2.0< L		3
	D			4.0< L		0
	Е	0.10<	< W	-		According to
						'Circular'
Contrast variation					-b)/2	
	Cate	gory	Size (mm)	Acce	ptable number
	A			≤ 0.5	Neglected	
	E		$0.5 < d \le 0.7$		3	
		C 0.7 < d		0		
			J., \ u	•		<u> </u>

Spec No.	Part No.	Page
TQ3C-8EAS0-E2DAM35-00	KG057QVLCE-G050	3

Inspection item		Judgement standard			
Polarizer	(1) Scratch	(1) Scratch			
(Scratch, Bubble, Dent)					
	W				
	L				
		¥			
		Width (mm)	Length (mm)	Acceptable No.	
	A	W ≤0.1	-	Neglected	
	В		L ≦5.0	Neglected	
	C 0.1	l< W ≦0.3	5.0< L	0	
	D 0.3	3< W	-	0	
		d = (a	.1)/0		
				(1 + b) / 2	
	Category	Size (mm) Acc	eptable number	
	Category	d	mm) Acc		
		0.2 < d	$\begin{array}{c} \text{mm}) & \text{Acc} \\ \leq 0.2 \\ \leq 0.3 \end{array}$	eptable number	
	A	d	$\begin{array}{c} \text{mm}) & \text{Acc} \\ \leq 0.2 \\ \leq 0.3 \end{array}$	eptable number Neglected	

Spec No.	Part No.	Page
TQ3C-8EAS0-E2DAM35-00	KG057QVLCE-G050	4

Inspection item	Judgement standard					
Scratch,	(W = Width, L = Length, D = Diameter = (major axis+minor axis)/ 2)					
Foreign particle	Item	Width(mm) Length(mm) A		Acc	Acceptable number	
(Touch screen		$0.08 < d \le 0.1$ $L \le 4$ 1pc		1pce	oces within ϕ 30mm	
portion)	n) Scratch	$0.05 < d \le 0.08$	$L \le 6$	2pce	s within $\phi 20$ mm	
		$0.03 < d \le 0.05$	$L \le 10$	2pce	s within $\phi 20$ mm	
		$d \le 0.03$	$L \le 20$		Neglected	
	Foreign	$0.05 < W \le 0.1$	$L \le 5$	2pces	s within ϕ 30mm	
	(line like)	$W \le 0.05$	Neglected		Neglected	
	Foreign	0.2 < D ≤	0.3	2pce	2pces within ϕ 30mm	
	(circle like)	D ≦	0.2		Neglected	
		lied to the visible area.				
		are foreign particle a				
	electrical perfo	ormance out of the visib	le area, we app	orove o	of this product.	
Glass crack						
(Touch screen	Item	Size (n	nm)		Acceptable	
portion)	Item	Size (II	1111/		number	
	Conner		X	≤ 3		
		,	2 /			
			Y	< n	2 pcs	
	crack	$\sim\sim\sim$	1	≦3	/panel	
			↑ 			
				<t< td=""><td></td></t<>		
			77	_ •		
		**	Y, X	≤ 5		
	Crack in	× ×	* > 			
	other area		/ _Y	≤ 1.5	2 pcs	
	than in			_1.0	/side	
	corner	7				
		9	Z	<t		
		· ·				
			/			
			//			
	Progressive				0 pcs	
	crack	. ~			(NG even 1pcs)	
		→				
	Above are appl	lied to the visible area.			1	
	Unless there are foreign particle and damage affected seriously to the					
electrical performance out of the visible area, we approve of this product.						
1 and the state of						

