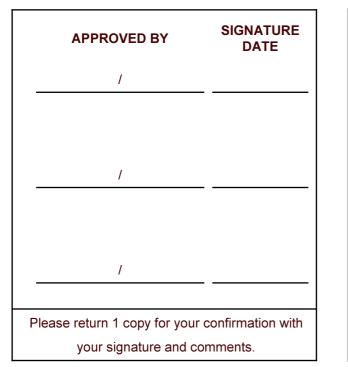


Product Specification

SPECIFICATION FOR APPROVAL

() Preliminary Specification


(Final Specification

Title	55.0" WUXGA TFT LCD

BUYER	
MODEL	

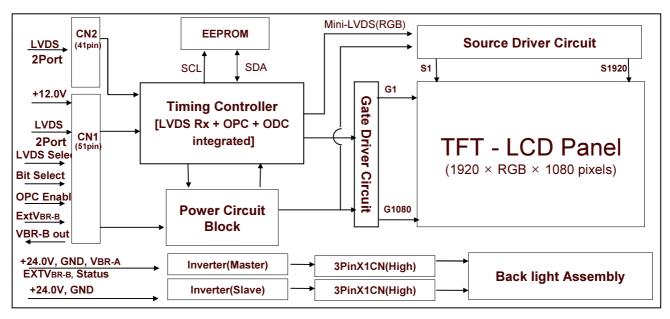
SUPPLIER	LG Display Co., Ltd.
*MODEL	LC550WUD
SUFFIX	SBA1

*When you obtain standard approval, please use the above model name without suffix

CONTENTS

Number	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	6
3-1	ELECTRICAL CHARACTERISTICS	6
3-2	INTERFACE CONNECTIONS	10
3-3	SIGNAL TIMING SPECIFICATIONS	12
3-4	SIGNAL TIMING WAVEFORMS	14
3-5	COLOR DATA REFERENCE	15
3-6	POWER SEQUENCE	16
4	OPTICAL SPECIFICATIONS	17
5	MECHANICAL CHARACTERISTICS	22
6	RELIABILITY	25
7	INTERNATIONAL STANDARDS	26
7-1	SAFETY	26
7-2	EMC	26
8	PACKING	27
8-1	DESIGNATION OF LOT MARK	27
8-2	PACKING FORM	27
9	PRECAUTIONS	28
9-1	MOUNTING PRECAUTIONS	28
9-2	OPERATING PRECAUTIONS	28
9-3	ELECTROSTATIC DISCHARGE CONTROL	29
9-4	PRECAUTIONS FOR STRONG LIGHT EXPOSURE	29
9-5	STORAGE	29
9-6	HANDLING PRECAUTIONS FOR PROTECTION FILM	29

RECORD OF REVISIONS


0.1 Jun. 04, 2008 - Preliminary Specification 0.2 July. 01, 2008 - Several specification is updated 0.3 Aug.01.2008 - Several specification is updated 0.4 Sep.17.2008 - Several specification 0.4 Sep.17.2008 - Several specification 1.0 Oct.13,2008 - Final Specification 1.0 Oct.13,2008 - Final Specification 1.0 Oct.13,2008 - Final Specification 1.0 Oct.13,2008 - Image: Several specification 1.0 Oct.13,2008 - Image: Several specification 1.0 Oct.13,2008 - Image: Several specification 1.0 Image: Several specification Image: Several specification 1.0 Image: Several specification Image: Several specification 1.0 <td< th=""><th>Description</th><th>Page</th><th>Revision Date</th><th>Revision No.</th></td<>	Description	Page	Revision Date	Revision No.
0.3Aug.01.2008-Several specification is updated0.4Sep.17.2008-Several specification is updated0.4Sep.17.2008-Several specification is updated	Preliminary Specification	-	Jun. 04, 2008	0.1
0.4 Sep.17.2008 - Several specification is updated 0.4 Sep.17.2008 - Several specification is updated	Several specification is updated	-	July. 01, 2008	0.2
0.4 Sep.17.2008 - Several specification is updated	Several specification is updated	-	Aug.01.2008	0.3
	Several specification is updated	-	Sep.17.2008	0.4
1.0 Oct.13,2008 - Final Specification Image: Specification Image: Specification Image: Specification	Several specification is updated	-	Sep.17.2008	0.4
Image: section of the section of th	Final Specification	-	Oct.13,2008	1.0
Image: section of the section of th				
Image: state of the state of				
Image: set of the				
Image: state of the state of				
Image: state of the state of				
Image: second				
Image: Constraint of the second sec				
Image: Constraint of the second sec				
Image: Constraint of the second sec				
Image: Constraint of the second sec				

1. General Description

LC550WUD is a Color Active Matrix Liquid Crystal Display with an Cold Cathode Fluorescent Lamp(CCFL) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally black mode. It has a 54.64 inch diagonally measured active display area with WUXGA resolution (1080 vertical by 1920 horizontal pixel array) Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the luminance of the sub-pixel color is determined with a 10-bit gray scale signal for each dot, thus presenting a palette of more than 1.06Billion(FRC) of colors.

It has been designed to apply the 10-bit 4 port LVDS interface.

It is intended to support LCD TV, PCTV where high brightness, super wide viewing angle, high color gamut, high color depth and fast moving picture response time are important.

General Features

Active Screen Size	54.64 inch (1387.80mm) diagonal
Outline Dimension	1286.0(H) x 745.0(V) x 60(D)mm (Typ.)
Pixel Pitch	0.630mm x 0.630 mm x RGB
Pixel Format	1920 horiz. by 1080 vert. Pixels, RGB stripe arrangement
Color Depth	10Bit(D), 1.06 Billion colors
Luminance, White	500 cd/m ² (Center 1point ,Typ.)
Viewing Angle (CR>10)	Viewing angle free (R/L 178 (Min.), U/D 178 (Min.))
Power Consumption	Total 267.56W (Typ.) [Logic=7.56W, Backlight=260W (V _{BR-A} =1.65V)]
Weight	19.8Кg (Тур.)
Display Mode	Transmissive mode, Normally black
Surface Treatment	Hard coating(3H), Anti-glare treatment of the front polarizer (Haze 10%)
Ver. 1.0	4 / 43

2. Absolute Maximum Ratings

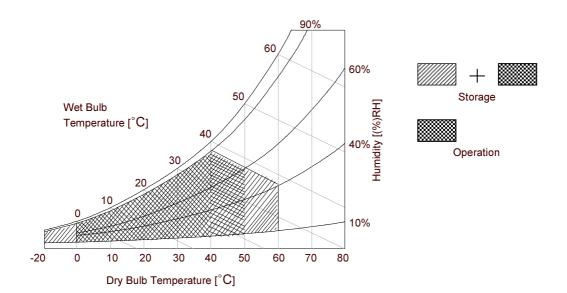

The following items are maximum values which, if exceeded, may cause faulty operation or damage to the LCD module.

Table 1. ABSOLUTE MAXIMUM RATINGS

Deremeter		Symbol	Symbol Value			Remark		
Γ¢	Parameter		Min	Max	Unit	Reifidik		
Power Input	LCM	VLCD	-0.3	+14.0	VDC	at 25 \pm 2 °C		
Voltage	Backlight inverter	VBL	-0.3	+27.0	VDC			
ON/OFF Con	ON/OFF Control Voltage		-0.3	+5. 5	VDC			
Brightness C	Brightness Control Voltage		0	+5.0	VDC			
Operating Te	mperature	Тор	0	+50	°C			
Storage Tem	Storage Temperature		torage Temperature		-20	+60	°C	Note 1.2
Operating Ambient Humidity		Нор	10	90	%RH	Note 1,2		
Storage Hum	idity	Нѕт	10	90	%RH			

Note : 1. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 °C Max. and no condensation of water.

2. Gravity mura can be guaranteed under 40°C condition.

3. Electrical Specifications

3-1. Electrical Characteristics

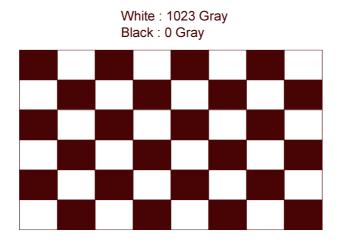

It requires two power inputs. One is employed to power for the LCD circuit. The other Is used for the CCFL backlight circuit.

Table 2. ELECTRICAL CHARACTERISTICS

Parameter	Symbol		Value	Unit	Note	
	Cymbol	Min	Тур	Max	Onic	Note
Circuit :						
Power Input Voltage	V _{LCD}	10.8	12.0	13.2	V _{DC}	
Dower Input Current	I _{LCD}	440	630	820	mA	1
Power Input Current		610	875	1140	mA	2
Power Consumption	P _{LCD}	-	7.56	10.8	Watt	1
Rush current	I _{RUSH}	-	-	5	А	3

Note : 1. The specified current and power consumption are under the V_{LCD} =12.0V, 25 ± 2°C, f_V=120Hz condition whereas mosaic pattern(8 x 6) is displayed and f_V is the frame frequency.

- 2. The current is specified at maximum current pattern.
- 3. The duration of rush current is about 2ms and rising time of power input is 0.5ms (min.).

Mosaic Pattern(8 x 6)

Parameter			Currents of		Values			N 1 (
			Symbol	Min	Тур	Max	Unit	Notes
Inverter :								
Power Supply Inpu	it Voltage		VBL	22.8	24.0	25.2	Vdc	1
Power Supply Inpu	it Voltage Rip	ple		-	-	0.5	Vp-p	1
				-	10.8	11.8	Α	VBR-A = 1.65V 1
Power Supply	After Aging		IBL_A	-	11.6	12.6	Α	VBR-A = 3.3V 1
Input Current	Defens Asia	-		-	12.3	13.3	Α	VBR-A = 1.65V 2
	Before Agin	g	IBL_B	-	13.3	14.3	Α	VBR-A = 3.3V 2
Power Supply Input Current (In-Rush)		Irush	-	-	15	A	VBL = 22.8V Ext VBR-B = 100% VBR-A = 1.65V	
Power Consumption		PBL	-	260	283	W	V _{BR-A} = 1.65V 1	
	Brightness Adjust		VBR-A	0	1.65	3.3	Vdc	
	0	On	V on	2.5	-	5.0	Vdc	
	On/Off Of		V off	-0.5	-	0.8	Vdc	
Input Voltage for Control System	Brightness	Adjust	ExtVBR-B	30	-	100	%	On Duty
Signals	PWM Frequ	ency for	PAL		100		Hz	5
	NTSC & PAL		NTSC		120			5
	Pulse Duty		High Level	2.4	-	5.0	Vdc	HIGH: Lamp on
Level(PWÍM) (Burst mode)		Low Level	0.0	-	0.8	Vdc	LOW:Lamp off	
Lamp:								
Discharge Stabiliz	ation Time		Ts			3	min	3
Life Time				50,000			Hrs	6

Table 3. ELECTRICAL CHARACTERISTICS (Continue)

Notes :

Electrical characteristics are determined after the unit has been 'ON' and stable for approximately 120 minutes at 25±2°C. The specified current and power consumption are under the typical supply Input voltage 24Vand VBR (VBR-A : 1.65V & ExtVBR-B : 100%), it is total power consumption. The ripple voltage of the power supply input voltage is under 0.5 Vp-p. LGD recommend Input Voltage is

The ripple voltage of the power supply input voltage is under 0.5 Vp-p. LGD recommend Input Voltage is $24.0V \pm 5\%$.

- 2. Electrical characteristics are determined within 30 minutes at 25±2°C. The specified currents are under the typical supply Input voltage 24V.
- 3. The brightness of the lamp after lighted for 5minutes is defined as 100%.

TS is the time required for the brightness of the center of the lamp to be not less than 95% at typical current.The screen of LCD module may be partially dark by the time the brightness of lamp is stable after turn on.4. Specified Values are for a single lamp which is aligned horizontally.

The life time is determined as the time which luminance of the lamp is 50% compared to that of initial value at the typical lamp current (VBR-A : 1.65V & ExtVBR-B :100%), on condition of continuous operating at 25± 2°C

5. LGD recommend that the PWM freq. is synchronized with One times harmonic of Vsync signal of system.

6. The duration of rush current is about 10ms.

3-2. Interface Connections

This LCD module employs two kinds of interface connection, 51pin and 41pin connector are used for the module electronics and Master 14-pin and Slave 12-pin connectors are used for the integral backlight system.

3-2-1. LCD Module

-LCD Connector(CN1): FI-R51S-HF(manufactured by JAE) or compatible

- Refer to below and next Page table
- Mating Connector : FI-R51HL(JAE) or compatible

Table 4-1. MODULE CONNECTOR(CN1) PIN CONFIGURATION

No	Symbol	Description	No	Symbol	Description
1	GND	Ground	27	Bit Select	'H' or NC= 10bit(D) , 'L' = 8bit
2	NC	No Connection	28	R2AN	SECOND LVDS Receiver Signal (A-)
3	NC	No Connection	29	R2AP	SECOND LVDS Receiver Signal (A+)
4	NC	No Connection	30	R2BN	SECOND LVDS Receiver Signal (B-)
5	NC	No Connection	31	R2BP	SECOND LVDS Receiver Signal (B+)
6	NC	No Connection	32	R2CN	SECOND LVDS Receiver Signal (C-)
7	LVDS Select	'H' =JEIDA , 'L' or NC = VESA	33	R2CP	SECOND LVDS Receiver Signal (C+)
8	VBR EXT	External VBR (From System)	34	GND	Ground
9	OPC OUT	OPC output (From LCM)	35	R2CLKN	SECOND LVDS Receiver Clock Signal(-)
10	OPC Enable	'H' = Enable , 'L' or NC = Disable	36	R2CLKP	SECOND LVDS Receiver Clock Signal(+)
11	GND	Ground	37	GND	Ground
12	R1AN	FIRST LVDS Receiver Signal (A-)	38	R2DN	SECOND LVDS Receiver Signal (D-)
13	R1AP	FIRST LVDS Receiver Signal (A+)	39	R2DP	SECOND LVDS Receiver Signal (D+)
14	R1BN	FIRST LVDS Receiver Signal (B-)	40	R2EN	SECOND LVDS Receiver Signal (E-)
15	R1BP	FIRST LVDS Receiver Signal (B+)	41	R2EP	SECOND LVDS Receiver Signal (E+)
16	R1CN	FIRST LVDS Receiver Signal (C-)	42	Reserved	No connection or GND
17	R1CP	FIRST LVDS Receiver Signal (C+)	43	Reserved	No connection or GND
18	GND	Ground	44	GND	Ground
19	R1CLKN	FIRST LVDS Receiver Clock Signal(-)	45	GND	Ground
20	R1CLKP	FIRST LVDS Receiver Clock Signal(+)	46	GND	Ground
21	GND	Ground	47	NC	No connection
22	R1DN	FIRST LVDS Receiver Signal (D-)	48	VLCD	Power Supply +12.0V
23	R1DP	FIRST LVDS Receiver Signal (D+)	49	VLCD	Power Supply +12.0V
24	R1EN	FIRST LVDS Receiver Signal (E-)	50	VLCD	Power Supply +12.0V
25	R1EP	FIRST LVDS Receiver Signal (E+)	51	VLCD	Power Supply +12.0V
26	Reserved	No connection or GND	-	-	-

Notes : 1. All GND(ground) pins should be connected together to the LCD module's metal frame.

2. All VLCD (power input) pins should be connected together.

3. All Input levels of LVDS signals are based on the EIA 664 Standard.

4. Specific pins(pin No. #2~#6) are used for internal data process of the LCD module. If not used, these pins are no connection.

5. Specific pins(pin No. #8~#10) are used for OPC function of the LCD module. If not used, these pins are no connection. (Please see the Appendix Vfor more information.)

6. LVDS pin (pin No. #24,25,40,41) are used for 10Bit(D) of the LCD module.

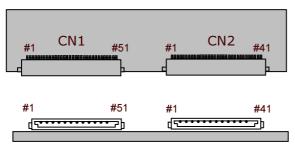
If used for 8Bit(R), these pins are no connection.

 Specific pin No. #44 is used for "No signal detection" of system signal interface. It should be GND for NSB(No Signal Black) during the system interface signal is not. If this pin is "H", LCD Module displays AGP(Auto Generation Pattern).

- LCD Connector(CN2): FI-RE41S-HF, Refer to below table

- Mating Connector : FI-RE41HL

No	Symbol	Description	No	Symbol	Description
1	NC	No connection(Reserved)	22	RE3N	THIRD LVDS Receiver Signal (E-)
2	NC	No connection	23	RE3P	THIRD LVDS Receiver Signal (E+)
3	NC	No connection	24	GND	Ground
4	NC	No connection	25	GND	Ground
5	NC	No connection	26	RA4N	FOURTH LVDS Receiver Signal (A-)
6	NC	No connection	27	RA4P	FOURTH LVDS Receiver Signal (A+)
7	NC	No connection	28	RB4N	FOURTH LVDS Receiver Signal (B-)
8	NC	No connection	29	RB4P	FOURTH LVDS Receiver Signal (B+)
9	GND	Ground	30	RC4N	FOURTH LVDS Receiver Signal (C-)
10	RA3N	THIRD LVDS Receiver Signal (A-)	31	RC4P	FOURTH LVDS Receiver Signal (C+)
11	RA3P	THIRD LVDS Receiver Signal (A+)	32	GND	Ground
12	RB3N	THIRD LVDS Receiver Signal (B-)	33	RCLK4N	FOURTH LVDS Receiver Clock Signal(-)
13	RB3P	THIRD LVDS Receiver Signal (B+)	34	RCLK4P	FOURTH LVDS Receiver Clock Signal(+)
14	RC3N	THIRD LVDS Receiver Signal (C-)	35	GND	Ground
15	RC3P	THIRD LVDS Receiver Signal (C+)	36	RD4N	FOURTH LVDS Receiver Signal (D-)
16	GND	Ground	37	RD4P	FOURTH LVDS Receiver Signal (D+)
17	RCLK3N	THIRD LVDS Receiver Clock Signal(-)	38	RE4N	FOURTH LVDS Receiver Signal (E-)
18	RCLK3P	THIRD LVDS Receiver Clock Signal(+)	39	RE4P	FOURTH LVDS Receiver Signal (E+)
19	GND	Ground	40	GND	Ground
20	RD3N	THIRD LVDS Receiver Signal (D-)	41	GND	Ground
21	RD3P	THIRD LVDS Receiver Signal (D+)	-		


Table 4-2. MODULE CONNECTOR(CN2) PIN CONFIGURATION

Note :

1. All GND(ground) pins should be connected together to the LCD module's metal frame.

2. LVDS pin (pin No. #22,23,38,39) are used for 10Bit(D) of the LCD module.

If used for 8Bit(R), these pins are no connection.

Rear view of LCM

[CN1]

-Part/No. : FI-RE51S-HF(JAE)

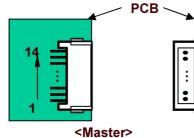
- KN25-51P-0.5SH(Hirose) Mating connector : FI-RE51HL
 - (Manufactured by JAE)

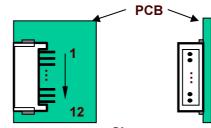
[CN2]

- Part/No. : FI-RE41S-HF(JAE)
- Mating connector : FI-RE41HL (Manufactured by JAE)

3-2-2. Backlight Inverter

Master
-Inverter Connector : 20022WR-14B1(Yeonho)
or Equivalent
- Mating Connector : 20022HS-14 or Equivalent


Table 5. INVERTER CONNECTOR PIN CONFIGURATION


Pin No	Symbol	Description	Master	Slave	Note
1	VBL	Power Supply +24.0V	VBL	VBL	
2	VBL	Power Supply +24.0V	VBL	VBL	
3	VBL	Power Supply +24.0V	VBL	VBL	
4	VBL	Power Supply +24.0V	VBL	VBL	
5	VBL	Power Supply +24.0V	VBL	VBL	
6	GND	Backlight Ground	GND	GND	
7	GND	Backlight Ground	GND	GND	
8	GND	Backlight Ground	GND	GND	1
9	GND	Backlight Ground	GND	GND	
10	GND	Backlight Ground	GND	GND	
11	VBR-A	Analog Dimming	VBR-A	Don't care	2
12	VON/OFF	Backlight ON/OFF control	VON/OFF	Don't care	3
13	EXTVBR-B	External PWM	EXTVBR-B	-	4
14	Status	Lamp Status	Status	-	5

Notes : 1. GND should be connected to the LCD module's metal frame.

2. Minimum Brightness : 0.0V / Maximum Brightness : 3.3V / "OPEN" : 1.65V

- 3. ON : 2.5 ~ 5.0V / OFF : 0.0 ~ 0.8V .
- 4. High : Lamp ON/ Low : Lamp OFF, Pin#13 can be opened. (if Pin #13 is open , EXTVBR-B is 100%) Please see Appendix VI for more information.
- 5. Normal : Low (under 0.7V) / Abnormal : High (upper 3.0V) Please see Appendix VI for more information.
- 6. Each impedance of pin #11, 12 and 13 is 190 [K Ω] , 44 [K Ω] and 68 [K Ω].
- Rear view of LCM

<Slave>

3-3. Signal Timing Specifications

Table 6 shows the signal timing required at the input of the LVDS transmitter. All of the interface signal timing should be satisfied with the following specification for normal operation.

ITE	М	Symbol	Min	Тур	Max	Unit	Note
	Display Period	tн∨	480	480	480	t clk	1920/4
Horizontal	Blank	t нв	40	70	200	t c∟ĸ	1
	Total	t HP	520	550	680	t c∟ĸ	
	Display Period	t∨v	1080	1080	1080	Lines	
Vertical	Blank	t∨в	10	45	86	Lines	1
	Total	t∨₽	1090	1125	1166	Lines	

Table 6. TIMING TABLE for NTSC/ATSC (DE Only Mode)

ITE	M	Symbol Min		Тур	Max	Unit	Note
	DCLK	f clк	66.97	74.25	75.00	MHz	
Frequency	Horizontal	fн	121.8	135	136.4	KHz	2
	Vertical	f∨	108.2	120	121.2	Hz	2

Notes : 1. The Input of HSYNC & VSYNC signal does not have an effect on normal operation(DE Only Mode). If you use spread spectrum for EMI, add some additional clock to minimum value for clock margin.

2. The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rate and the horizontal frequency.

Table 7 shows the signal timing required at the input of the LVDS transmitter. All of the interface signal timing should be satisfied with the following specification for normal operation.

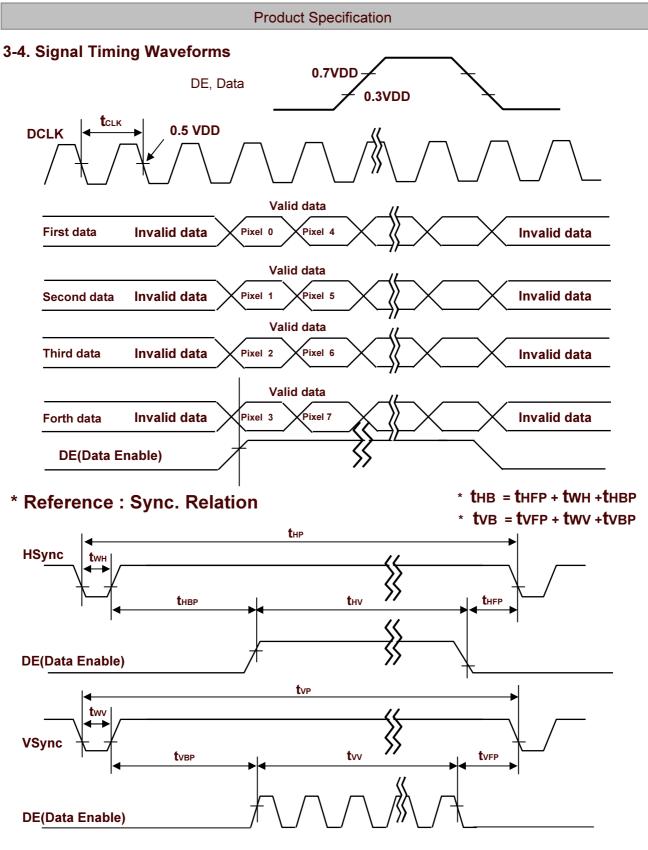

ITE	М	Symbol	Min	Тур	Max	Unit	Note
	Display Period	tн∨	480	480	480	t clk	1920/4
Horizontal	Blank	t нв	40	70	200	t c∟ĸ	1
	Total	t HP	520	550	680	t c∟ĸ	
	Display Period	t∨v	1080	1080	1080	Lines	
Vertical	Blank	t∨в	228	270	300	Lines	1
	Total	t∨₽	1308	1350	1380	Lines	

Table7. TIMING TABLE for DVB/PAL (DE Only Mode)

ITE	M	Symbol	Symbol Min		Max	Unit	Note
	DCLK	f clк	66.97	74.25	75.00	MHz	
Frequency	Horizontal	fн	121.8	135	136.4	KHz	2
	Vertical	f∨	95	100	103.7	Hz	2

Notes : 1. The Input of HSYNC & VSYNC signal does not have an effect on normal operation(DE Only Mode). If you use spread spectrum for EMI, add some additional clock to minimum value for clock margin.

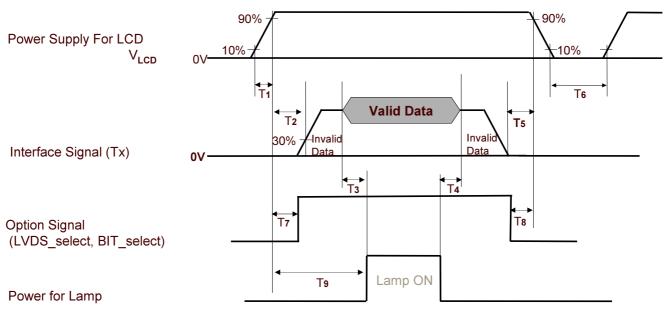
2. <u>The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rate and the horizontal frequency.</u>

Ver. 1.0

3-5. Color Data Reference

The brightness of each primary color(red,green,blue) is based on the 10-bit gray scale data input for the color. The higher binary input, the brighter the color. Table 8 provides a reference for color versus data input.

	COLOR DATA										Inp	but	Co	lor	Da	ta										
	Color	MSB			RED		L	SB	MS	SB			GRI	EN			LSB	MS	В			BL	UE			LSB
		R9 R8	3 R7	R6 F	85 R4	R3	R2	R1 RC) G9	G8	G7	G6	G5	G4	GЗ	G2	G1 G0	В9	B8	B7	B6	B5	B4	B3	B2	B1 B0
	Black	0 0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0
	Red (1023)	1 1	1	1	1 1	1	1	1 1	. 0	0	0	0	0	0	0	0	0 0	0	.0	.0	.0	0	.0	0	0	0 0
	Green (1023)	0 0	0	0	0 0	0	0	0 0	1	1	1	1	1	1	1	1	1 1	0	0	0	0	0	0	0	0	0 0
Basic	Blue (1023)	0 0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	0 0	1	1	1	1	1	1	1	1	1 1
Color	Cyan	0 0	0	0	0 0	0	0	0 0	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1 1
	Magenta	1 1	1	1	1 1	1	1	1 1	0	0	0	0	0	0	0	0	0 0	1	1	1	1	1	1	1	1	1 1
	Yellow	1 1	1	1	1 1	1	1	1 1	1	1	1	1	1	1	1	1	1 1	0	0	0	0	0	0	0	0	0 0
	White	1 1	1	1	11	1	1	1 1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1 1
	RED (000)	0 0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0
	RED (001)	0 0	0	0	0 0	0	0	0 1	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0
RED			••••		· · · ·		•••			•••	•••		••••	••••	• • • •	••••		1	•••	•••	•••		••••			
	RED (1022)	1 1	1	1	 1 1	1	1	1 0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0
	RED (1023)		1	1	 1 1	1	1	1 1	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0
	GREEN (000)	0 0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0
	GREEN (001)	0 0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	0 1	0	0	0	0	0	0	0	0	0 0
GREEN					•••• •••		•••			•••	•••		•••	••••				1	•••	•••	•••	•••	•••	•••		
	GREEN (1022)	0 0	0	0	0 0	0	0	0 0		1		1	 1		1	1	1 0	0	0	0	0	0	0	0	0	0 0
	GREEN (1023)	0 0	0	0	 0 0	0	 0	0 0		1		1	 1	 1		1	1 1	0	0		0	0	0	0	0	0 0
	BLUE (000)	0 0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0
	BLUE (001)	0 0	0	0	 0 0	 0	 0			0		0	 0	 0	0	0	00	0	 0	 0	 0	 0	 0	 0	0	0 1
BLUE					••••	• • • •	• • •		•	•••	•••		•••	•••	• • • •				•••	•••	•••	•••	•••	•••	• • • •	
	BLUE (1022)	0 0	0	0	 0 0	 0	 0	0 0	0	0			 0	 0	 0	0	0 0	 1	1 0							
	BLUE (1023)	0 0	0	 0	 0 0	 0	 0			0				 0		0	0 0	1	 1							
L																										

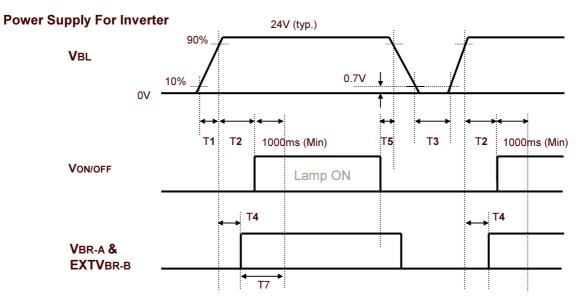

Table 8. COLOR DATA REFERENCE

Ver. 1.0

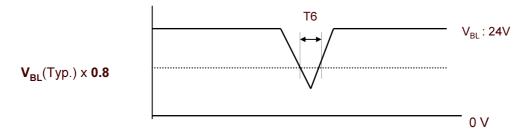
Product Specification

3-6. Power Sequence

3-6-1. LCD Driving circuit


Table 9. POWER SEQUENCE

Devenueter		Value	Unit	Natas		
Parameter	Min	Тур	Max	Unit	Notes	
T1	0.5	-	20	ms		
T2	0.5	-	-	ms	4,5	
Т3	200	-	-	ms	3	
T4	200	-	-	ms	3	
T5	0	-	-	ms		
Т6	2.0	-	-	s	5	
Τ7	0.5	-	T2	ms	4	
Т8	0	-	-	ms	4	
Т9	T2 + T3	-	5	s		


Note: 1. Please avoid floating state of interface signal at invalid period.

- 2. When the interface signal is invalid, be sure to pull down the power supply V_{LCD} to 0V.
- 3. The T3/T4 is recommended value, the case when failed to meet a minimum specification, abnormal display would be shown. There is no reliability problem.
- 4. If the on time of signals(Interface signal and Option signals) precedes the on time of Power(V_{LCD}), it will be happened abnormal display.
- 5. T6 should be measured after the Module has been fully discharged between power off and on period.

3-6-2. Sequence for Inverter

3-6-3. Deep condition for Inverter

Table 10. Power Sequence for Inverter

Parameter		Values		Units	Remarks
Falameter	Min	Тур	Max	Units	Remarks
T1	20	-	-	ms	1
T2	500	-	-	ms	
Т3	200	-	-	ms	
T4	0		-	ms	2
T5	10	-	-	ms	
Т6	-	-	10	ms	V_{BL} (Тур) х 0.8
T7	1000	-	-	ms	3

Notes : 1. T1 describes rising time of 0V to 24V and this parameter does not applied at restarting time. 2. T4(max) is less than T2.

3. In T7 section, EXTVBR-B is recommended 100%

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable in a dark environment at $25\pm2^{\circ}$ C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 °.

FIG. 1 shows additional information concerning the measurement equipment and method.

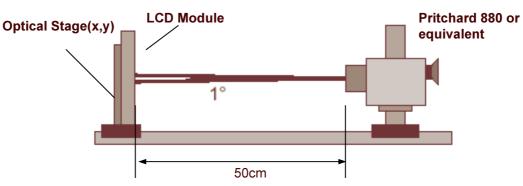
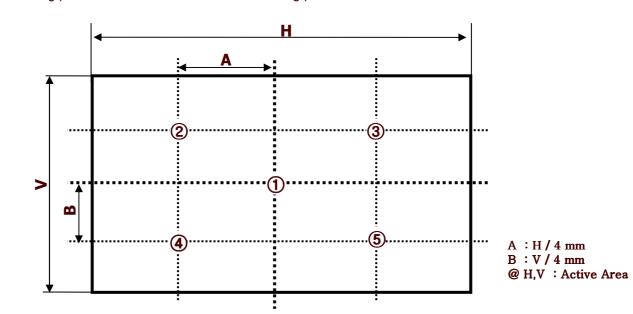


FIG. 1 Optical Characteristic Measurement Equipment and Method

Table 11. OPTICAL CHARACTERISTICS

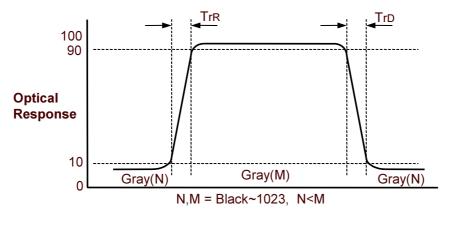
Ta= 25 \pm 2°C, V_{LCD}=12.0V, fv=120Hz, Dclk =74.25MHz Vbr_A=1.65V, EXTVbr-b=100%


Parameter				Value			
Pa	arameter	Symbol	Min	Тур	Max	Unit	Note
Contrast Ratio	Contrast Ratio		1000	1400	-		1
Surface Lumin	Surface Luminance, white		400	500		cd/m ²	2
Luminance Va	riation	δ _{WHITE} 5 P			1.3		3
	MPRT	G to G	-	5	8	ms	4
Response Time	Gray-to-Gray	MPRT	-	8	12	ms	5
Response min	Uniformity	δ _{MPRT}	-	-	1		6
	Uniformity	δ _{G TO G}	-	-	1		6
	RED	Rx		0.637			
	RED	Ry		0.333			
	ODEEN	Gx		0.287			
Color Coordina	GREEN	Gy	Тур	0.605	Тур +0.03		
[CIE1931]	BLUE	Bx	-0.03	0.145			
	BLUE	By		0.064			
		Wx		0.279			
	WHITE	Wy		0.292			
Viewing Angle	(CR>10)						
X	α axis, right(φ=0°)	θr	89	-	-		
Х	α axis, left (φ=180°)	θΙ	89	-	-		
У	/ axis, up (∳=90°)	θu	89	-	-	degree	6
У	ν axis, down (φ=270°)	θd	89	-	-		
Gray Scale				2.2			7
Ver. 1.0							17 / 43

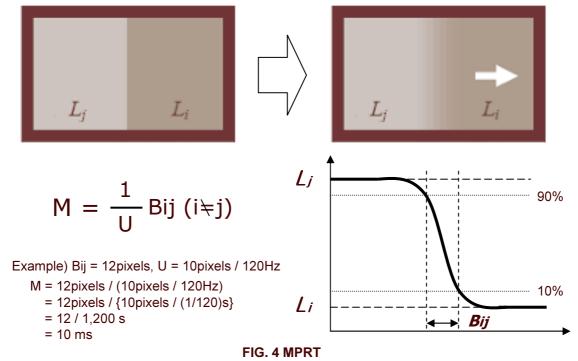
Notes :1. Contrast Ratio(CR) is defined mathematically as :

- CR(Contrast Ratio) = Maximum CRn (n=1, 2, 3, 4, 5)
 - Surface Luminance at position n with all white pixels
- CRn =
 - Surface Luminance at position n with all black pixels
 - n = the Position number(1, 2, 3, 4, 5). For more information, see FIG 2.
- Surface luminance are determined after the unit has been 'ON' and 60min after lighting the backlight in a dark environment at 25±2°C. Surface luminance is the luminance value at center 1-point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see the FIG. 2.
- 3. The variation in surface luminance , δ WHITE is defined as : δ WHITE(5P) = Maximum(L_{on1},L_{on2}, L_{on3}, L_{on4}, L_{on5}) / Minimum(L_{on1},L_{on2}, L_{on3}, L_{on4}, L_{on5}) Where L_{on1} to L_{on5} are the luminance with all pixels displaying white at 5 locations . For more information, see the FIG. 2.
- 5. MPRT is defined as the 10% to 90% blur-edge width Bij(pixels) and scroll speed U(pixels/frame)at the moving picture. For more information, see FIG 4
- 6. Gray to Gray Response time uniformity is Reference data. Please see Appendix XI.
- Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD module surface. For more information, see the FIG. 5.
 Gray scale specification
- Gamma Value is approximately 2.2. For more information, see the Table 12.

Gray Level	Luminance [%] (Typ.)
LO	0.07
L63	0.27
L127	1.04
L191	2.49
L255	4.68
L319	7.66
L383	11.5
L447	16.1
L511	21.6
L575	28.1
L639	35.4
L703	43.7
L767	53.0
L831	63.2
L895	74.5
L959	86.7
L1023	100


Table 12. GRAY SCALE SPECIFICATION

Measuring point for surface luminance & measuring point for luminance variation



Response time is defined as the following figure and shall be measured by switching the input signal for "Gray(N)" and "Gray(M)".

MPRT is defined as the 10% to 90% blur-edge with Bij(pixels) and scroll speed U(pixels/frame)at the moving picture.

Dimension of viewing angle range

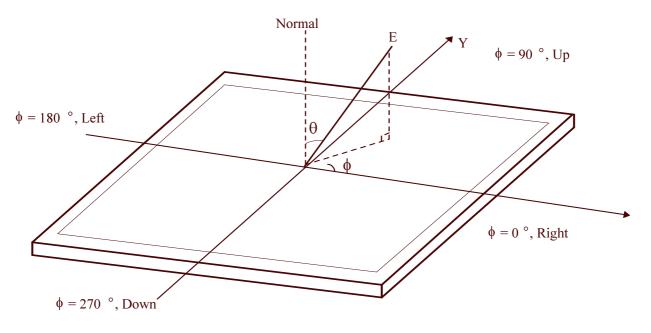


FIG. 5 Viewing angle

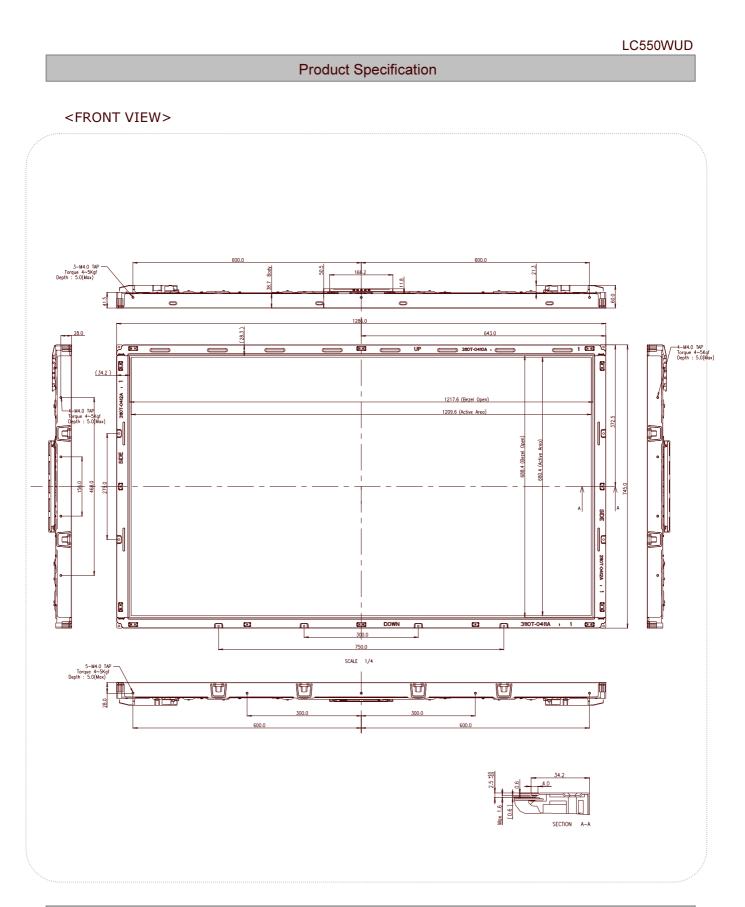
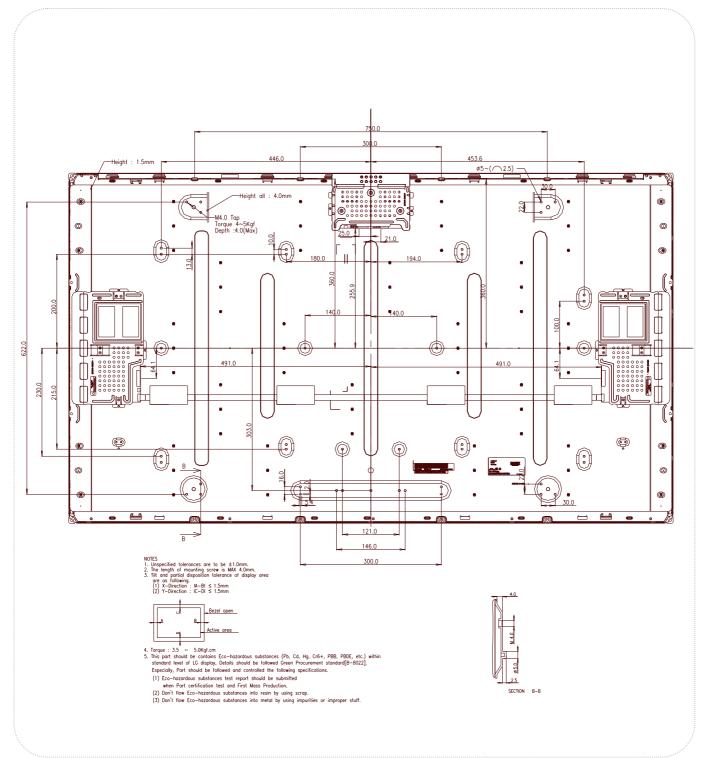

5. Mechanical Characteristics

Table 13 provides general mechanical characteristics.

Table 13. MECHANICAL CHARACTERISTICS


Item		Value		
	Horizontal	1286.0 mm		
Outline Dimension	Vertical	745.0 mm		
	Depth	60.0 mm		
Denal Aven	Horizontal	1217.6		
Bezel Area	Vertical	688.4mm		
Astive Display Area	Horizontal	1209.6 mm		
Active Display Area	Vertical	680.4 mm		
Weight	19.8Kg (Typ.), 21.0 kg (Max.)			

Note : Please refer to a mechanic drawing in terms of tolerance at the next page.

Product Specification

<REAR VIEW>

6. Reliability

Table 13. ENVIRONMENT TEST CONDITION

No.	Test Item	Condition					
1	High temperature storage test	Ta= 60°C 240h					
2	Low temperature storage test	Ta= -20°C 240h					
3	High temperature operation test	Ta= 50°C 50%RH 240h					
4	Low temperature operation test	Ta= 0°C 240h					
5	Vibration test (non-operating)	Wave form : random Vibration level : 1.0G RMS Bandwidth : 10-300Hz Duration : 10 min for X,Y,Z axis One time each direction					
6	Shock test (non-operating)	Shock level :50G(X,Y axis) , 35G(Z axis) Waveform : half sine wave, 11ms Direction : ±X, ±Y, ±Z One time each direction					
7	Humidity condition Operation	Ta= 40 °C ,90%RH					
8	Altitude operating storage / shipment	0 - 15,000 ft 0 - 40,000 ft					

Note : Before and after Reliability test, LCM should be operated with normal function.

7. International Standards

7-1. Safety

a) UL 60065, 7th Edition, dated June 30, 2003, Underwriters Laboratories, Inc., Standard for Audio, Video and Similar Electronic Apparatus.
b) CAN/CSA C22.2, No. 60065:03, Canadian Standards Association, Standard for Audio, Video and Similar Electronic Apparatus.
c) IEC60065:2001, 7th Edition CB-scheme and EN 60065:2002, Safety requirements for Audio, Video and Similar Electronic Apparatus..

7-2. EMC

- a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992
- b) CISPR13 "Limits and Methods of Measurement of Radio interference characteristics of Sound and Television broadcast receivers and associated equipment" CISPR22 "Limits and Methods of Measurement of Radio interference characteristics of Information Technology Equipment" International Special Committee on Radio Interference.
- c) EN55013 "Limits and Methods of Measurement of Radio interference characteristics of Sound and Television broadcast receivers and associated equipment"
 EN55022 "Limits and Methods of Measurement of Radio interference characteristics of Information Technology Equipment" European Committee for Electro Technical Standardization. (CENELEC), 1988(Including A1:2000)

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

A,B,C : SIZE(INCH)

D : YEAR

F : PANEL CODE H : ASSEMBLY CODE E : MONTH G : FACTORY CODE I,J,K,L,M : SERIAL NO.

Note

1. YEAR										
Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Mark	1	2	3	4	5	6	7	8	9	0

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	4	4	5	6	7	8	9	А	В	С

b) Location of Lot Mark

Serial NO. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

- a) Package quantity in one pallet : 10 pcs
- b) Pallet Size : 1440mm X 1140mm X 970mm

9. Precautions

Please pay attention to the followings when you use this TFT LCD module.

9-1. Mounting Precautions

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzine. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer. * There is no problem of Panel crack under 5kgf / \u03c610mm
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. Operating Precautions

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm 200 \text{mV}(\text{Over and under shoot voltage})$
- (2) Response time depends on the temperature .(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.)
- And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer
- (4) Be careful for condensation at sudden temperature change .Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (7) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can't be operated its full characteristics perfectly.
- (8) A screw which is fastened up the steels should be a machine screw. (if not, it can causes conductive particles and deal LCM a fatal blow)
- (9) Please do not set LCD on its edge.
- (10) It is recommended to avoid the signal cable and conductive material over the inverter transformer for it can cause the abnormal display and temperature rising.
- (11) Partial darkness may happen during 3~5 minutes when LCM is operated initially in condition that luminance is under 40% at low temperature (under 5°C). This phenomenon which disappears naturally after 3~5 minutes is not a problem about reliability but LCD characteristic

9-3. Electrostatic Discharge Control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. Precautions for Strong Light Exposure

Strong light exposure causes degradation of polarizer and color filter.

9-5. Storage

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6. Handling Precautions for Protection Film

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ionblown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

APPENDIX-I-1

■ REQUIRED SIGNAL ASSIGNMENT FOR LVDS TRANSMITTER (Pin7="L or NC")

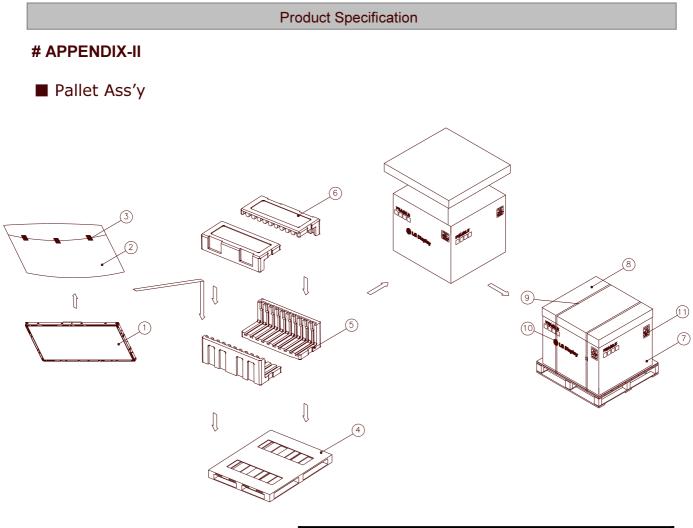
Host System	THC63LVD	103				
30 Bit	or Compat	ible				Timing
RED0	33			I		Controller
RED1	 34		FI-	RE51S-	HF	
RED2	35					
RED3	36		31			
RED4	37	TA-		12	<u>100</u> Ω >	RO0N
RED5	38	TA+	30	13	10025	RO0P
RED6	59					
RED7	61	TB-	29	14		RO1N
RED8	4		28		1 00 Ω ≷	
RED9	5	TB+	-	15	`	RO1P
GREEN0	40		05			
GREEN1	41	TC-	25	16	>	RO2N
GREEN2	42	TC+	24	17	1 00 Ω 🗧	RO2P
GREEN3	44	_				
GREEN4	45	TCLK-	23	10		
GREEN5	46		22	19	100 Ω ≷	ROCLKN
GREEN6	62 ^T	CLK+		20		ROCLKP
GREEN7	63		0.1			
GREEN8	6	TD-	21	22	>	RO3N
GREEN9	8	TD+	20	23	1 00 Ω 🗧	RO3P
BLUE0	48					
BLUE1	49	TE	19	0.4		
BLUE2	50	TE-	18	24	1 00 Ω ≷	RO4N
BLUE3	52	TE+	10	25	10032	RO4P
BLUE4	53					
BLUE5	54			7		VESA/ JEIDA
BLUE6	64					
BLUE7	1					
BLUE8	9			1		
BLUE9	11					J
Hsync	55		Ó		LCM Module	
Vsync	57		GND			
Data Enable	58					
CLOCK	12					

Notes :1. The LCD module uses a 100 Ohm[Ω] resistor between positive and negative lines of each receiver input.

2. Refer to LVDS Transmitter Data Sheet for detail descriptions. (THC63LVD103 or Compatible)

3. '9' means MSB and '0' means LSB at R,G,B pixel data.

APPENDIX-I-2


REQUIRED SIGNAL ASSIGNMENT FOR LVDS TRANSMITTER (Pin7="H")

Host System	Γ	THC63LVD103				
30 Bit		or Compatible				Timing
RED0		4		·		Controller
RED1		5	FI-	RE51S-	HF	
RED2		59				
RED3		61	31			
RED4		33 TA-		12	<u>100</u> Ω >	RO0N
RED5		34 TA+	30	13	10025	ROOP
RED6		35				
RED7		36 TB-	29	14		RO1N
RED8		37	28		100Ω Š	RO1R RO1P
RED9		38 TB+		15		ROIP
GREEN0		6	25			
GREEN1		8 TC-		16	1000	RO2N
GREEN2		62 TC+	24	17	<u>100</u> Ω	RO2P
GREEN3		63				
GREEN4		40 TCLK-	23	19		ROCLKN
GREEN5		41	22		<u>100</u> Ω 🗧	
GREEN6		42 TCLK+		20	、	ROCLKP
GREEN7		44	21			
GREEN8		45 TD-		22	1000	RO3N
GREEN9		46 TD+	20	23	<u>100</u> Ω	RO3P
BLUE0		9				
BLUE1		11 TE-	19	24		RO4N
BLUE2		64	18		100Ω (
BLUE3		1 TE+		25	`	RO4P
BLUE4		48				
BLUE5		49		7		VESA / JEIDA
BLUE6		50				
BLUE7		52			1	
BLUE8		53		ļ		
BLUE9		54				
Hsync		55	<		LCM Module	
Vsync		57	Vcc			
Data Enable		58				
CLOCK		12				

Notes :1. The LCD module uses a 100 Ohm[Ω] resistor between positive and negative lines of each receiver input.

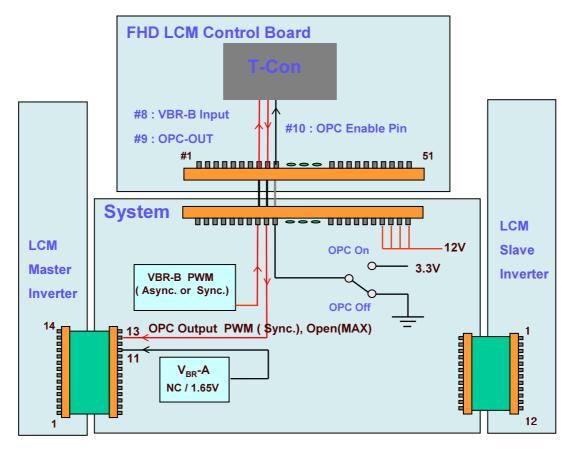
2. Refer to LVDS Transmitter Data Sheet for detail descriptions. (THC63LVD103 or Compatible)

3. '9' means MSB and '0' means LSB at R,G,B pixel data.

NO.	DESCRIPTION	MATERIAL
1	LCD Module	
2	BAG	55INCH
3	ТАРЕ	MASKING 20MMX50M
4	PALLET	PLYWOOD
5	PACKING,BOTTOM	EPS
6	PACKING,TOP	EPS
7	ANGLE, PACKING	PAPER
8	ANGLE, COVER	PAPER
9	BAND	PP
10	BAND, CLIP	STEEL
11	LABEL	YUPO 80G 100X100

Product Specification

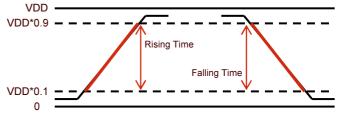
APPENDIX- IV


Pallet Label

LC	550V	VUD						
10 PCS								
MADE I	N KOREA	RoHS Verified						
	100.0							

APPENDIX-V

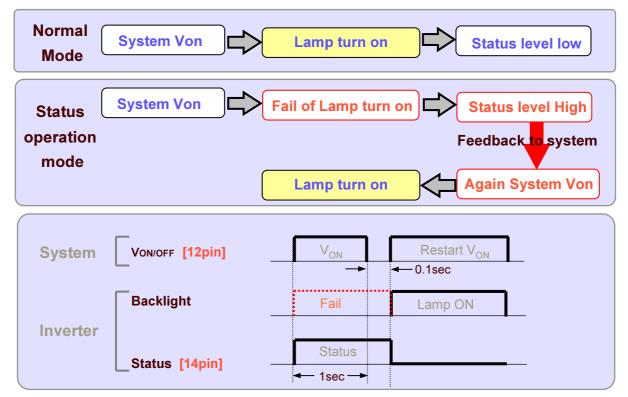
Inverter 13th Pin (EXTVBR-B) Design Guide


- ♦ When OPC Enable is "L", OPC Output = System Dimming.
- OPC Output(PWM Signal) is synchronized with V-Sync Freq. of System in T-Con Board.
- ♦ Regardless of OPC, System should always give dimming Signal (EXTVBR-B) to T-con.

 \diamond PWM Specification (VDD = 3.3V) @ OPC

- 1. PWM High Voltage Range : 2.5V~3.6V
- 2. PWM Low Voltage Range : 0.0V~0.8V

Input Frequency	MAX 1Khz (Recommendation:50~200Hz)
Rising Time	MAX 10.0 µs
Falling Time	MAX 10.0 µs

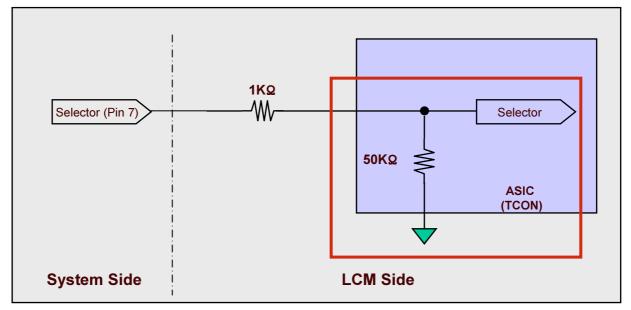


APPENDIX- VI

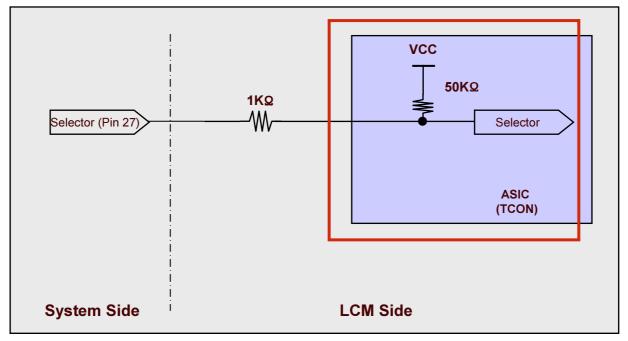
Inverter 14th Pin (Status) Design Guide

- Function of Status pin
- Purpose : Preventing of backlight off by restarting the inverter technically
- How to : When inverter is abnormal operation, TV system inputs the Von signal in the inverter once more to turn on the lamp safely
- Attention : Restart system's Von signal when status pin continue over 1sec high
 - (The turn on time of lamp can be late such as the low temperature or the storage time)

Status operation modes in TV set

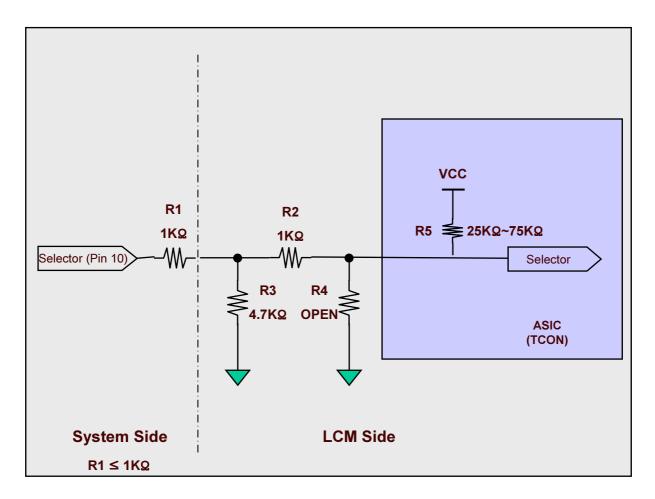

□ Inverter pin map

Pin No	Symbol	Description	Inv.		
11	VBR-A	VBR-A Analog dimming voltage DC 0.0V ~ 3.3V (Typ : 1.65V)			
12	VON/OFF	0.0V ~ 5.0V	On/Off		
13	ExtVBR-B	Burst Dimming Control PWM signal input	External PWM		
14	Status	Normal : Under 0.7V Abnormal : Upper 3.0V	status		


APPENDIX- VII-1

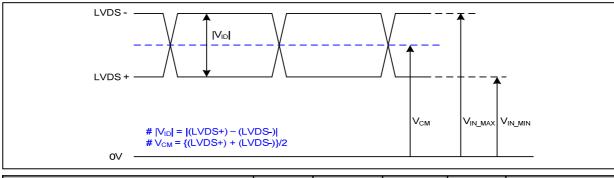
Option Pin Circuit Block Diagram

Circuit Block Diagram of LVDS Format Selection pin

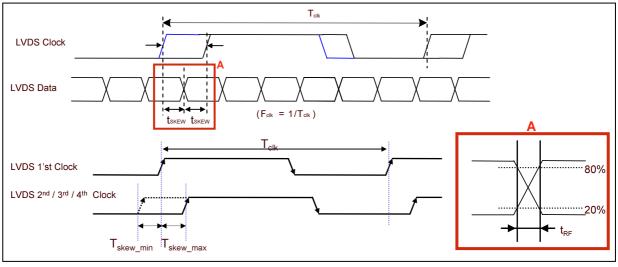

Circuit Block Diagram of Bit Selection pin

APPENDIX- VII-2

Option Pin Circuit Block Diagram


Circuit Block Diagram of OPC Enable Selection pin

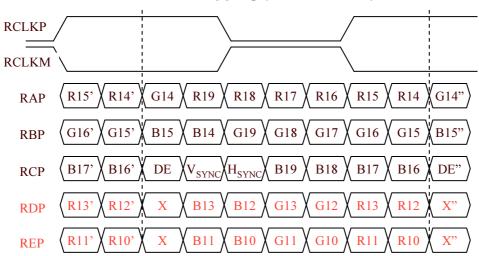
APPENDIX- VIII


LVDS Input characteristics

1. DC Specification

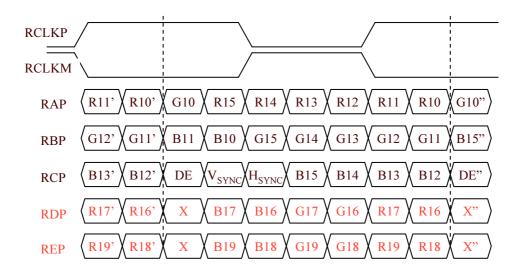
Description	Symbol	Min	Max	Unit	Notes
LVDS Single end Voltage	V _{ID}	200	600	mV	-
LVDS Common mode Voltage	V _{CM}	1.1	1.5	V	-
LVDS Input Voltage Range	V _{IN}	0.7	1.8	V	-
Change in common mode Voltage	ΔV_{CM}		150	mV	-

2. AC Specification

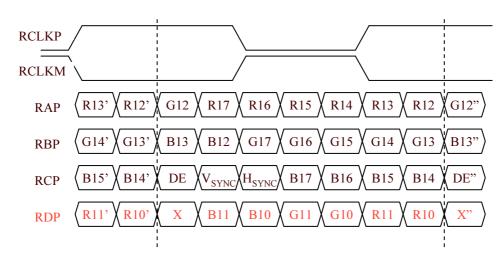


Description	Symbol	Min	Max	Unit	Notes
LVDS Clock to Data Skew Margin	t _{skew}		480	ps	78 MHz > Fclk ≥ 70 MHz
LVDS Clock/DATA Rising/Falling time	t _{RF}	260	(0.3*T _{clk})/7	ps	-
LVDS Clock to Clock Skew Margin (Even to Odd)	t _{SKEW_EO}		1/7* T _{clk}	T _{clk}	-

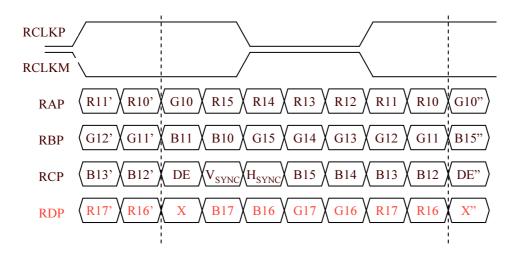
Note. All Input levels of LVDS signals are based on the EIA 644 Standard.


APPENDIX- IX-1

LVDS Data-Mapping info. (10bit)


LVDS Select : "H" Data-Mapping (JEIDA format)

LVDS Select : "L" Data-Mapping (VESA format)

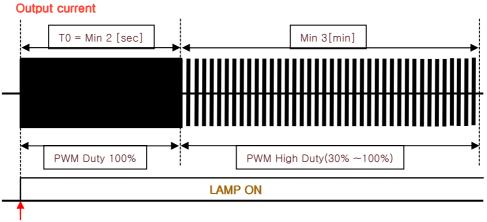

APPENDIX- IX-2

LVDS Data-Mapping info. (8bit)

LVDS Select : "H" Data-Mapping (JEIDA format)

LVDS Select : "L" Data-Mapping (VESA format)

APPENDIX- X-1

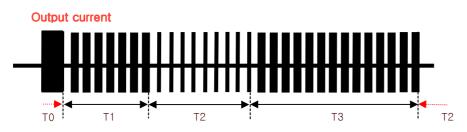

Mega DCR using condition(1)

After Inverter ON signal, PWM Duty 100% should be sustained during 2sec.

It is recommended not to sustain more than 10 min for Deep Dimming (PWM Low Duty 0%~30%).

The deep dimming must be used very carefully due to limitation of lamp characteristics and specification.

1) For stable lamp on, its duty condition should follow below the condition. After Inverter ON signal, T0 duration should be sustained.



Inverter ON signal

- 2) Low duty(0%~30%) of the inverter output current, B/L may not satisfy some of LCM specification.
- Duration : the low duty operation (0 ~ 30%) must be limited within 10 minutes for one time operation.
- Ratio : the period of the low duty operation must be less than 1/5 compare to that of the high duty operation(30~100%) in a certain period to prevent unwanted operation.
- FOS : partial darkness or darkness of center area during the low duty might be happened due to insufficient lamp current.
- Warm up : the low duty must be used 3 min after the lamps "ON". In case of low temperature, more warm up time may be needed.

APPENDIX- X-2

Mega DCR using condition(2)

Deveneter		Value		1.1	Nete
Parameter	Min	Тур	Max	Unit	Note
T1	3	-	-	min	PWM High Duty[30~100%]
T2	-	-	10	min	PWM Low Duty[0~30%]
Т3	T2 x 5	-	-	min	PWM High Duty[30~100%]

3) The output current duty may not be same as input PWM duty due to rise/fall time of output.

- 4) Following the recommended conditions as aforementioned, there is no difference of lamp lifetime between conventional method and new one.
- Note : 1. To make Mega DCR > 50000:1, V_{BR}-A and PWM duty must be given by system.
 - 2. DCR >50000:1 is defined mathematically as :
 - DCR = Maximum DCRn (n=1, 2, 3, 4, 5)
 - DCRn = Surface Luminance at position n with all white pixels (PWM duty =0~20%, VBR-A=1.65V) Surface Luminance at position n with all black pixels (PWM duty =0~20%, VBR-A=1.65V)
 - n =the Position number(1, 2, 3, 4, 5).
 - 3. Measurement Sequence (aging time 10 min each pattern) :
 - 1 Turn On LCM
 - ② Measure Black Luminance (VBR-B=0~30%, VBR-A=1.65V)
 - ③ Measure White Luminance (VBR-B=100%, VBR-A=1.65V)

Remark : It's possible to reach over 50,000 : 1 on DCR value with TV System side support.

APPENDIX- XI

Gray to Gray Response Time Uniformity

This is only the reference data of G to G and uniformity for LC550WUD-SBA1 model.

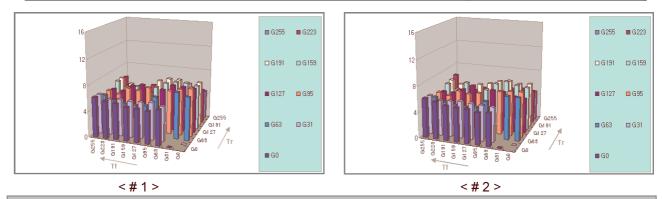
1. G to G Response Time :

Response time is defined as Figure3 and shall be measured by switching the input signal for "Gray (N)" and "Gray(M)".(128 Gray Step at 10bit (D))

2. G to G Uniformity

The variation of G to G Uniformity , δ ${\tt G}$ to G is defined as :

G to G Uniformity = $\frac{Maximum(GtoG) - Typical(GtoG)}{Typical(GtoG)} \le 1$


*Maximum (GtoG) means maximum value of measured time (N, M = 0 (Black) ~ 1023(White), 128 gray step).

	0Gray	127ray	255Gray		895Gray	1023Gray
0Gray		TrR:0G→127G	TrR:0G→255G		TrR:0G→895G	TrR:0G→1023G
127Gray	TrD:127G→0G		TrR:127G→255G		TrR:127G→895G	TrR:127G→1023G
255Gray	TrD:255G→0G	TrD:255G→127G			TrR:255G→895G	TrR:255G→1023G
				/		
895Gray	TrD:895G→0G	TrD:895G→127G	TrD:895G→255G			TrR:895G→1023G
1023Gray	TrD:1023G→0G	TrD:1023G→127G	TrD:1023G→255G		TrD:1023G→895G	

- 3. Sampling Size : 2 pcs
- 4. Measurement Method : Follow the same rule as optical characteristics measurement.
- 5. Current Status

Below table is actual data of production on Sep.20,2008 (LGD RV Event Sample)

	G to G Respo	Uniformity		
	Min.	Max.	Omornity	
# 1	3.03	7.17	0.35	
# 2	2.97	7.30	0.38	

