

SPECIFICATION FOR APPROVAL

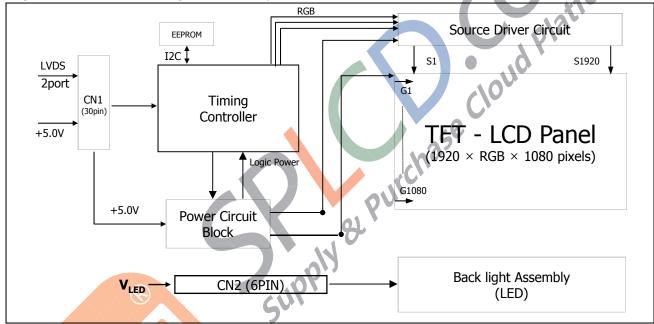
APPROVAL							
() Preliminary Sp (●) Final Specifica				Platform			
Title		2:	1.5" Full HD TFT	LCD			
BUYER	General		SUPPLIER *MODEL	LG Display Co., Ltd. LM215WF3			
MODEL			SUFFIX	SLN1			
APPROVED	BY SIGNAT	URE	*When you obtain stan please use the above r APPROVED B	nodel name without suffix			
		501	Y.T. Woo / G.Mar	ager			
			REVIEWED B				
			K.H. Choi / Mana	ager			
			PREPARED B	ΥY			
/			H.A. Lee / Engir	neer			
	for your confirmation	n with		igineering Dept. Day Co., Ltd			

May,. 28, 2015

Contents

No	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	. (4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	6
3-1	ELECTRICAL CHARACTREISTICS	6
3-2	INTERFACE CONNECTIONS	9
3-3	INTERFACE CONNECTIONS SIGNAL TIMING SPECIFICATIONS SIGNAL TIMING WAVEFORMS COLOR INPUT DATA REFERNECE POWER SEQUENCE	14
3-4	SIGNAL TIMING WAVEFORMS	15
3-5	COLOR INPUT DATA REFERNECE	16
3-6	POWER SEQUENCE	17
3-7	V _{LCD} Power Dip Condition	18
4	OPTICAL SPECIFICATIONS	19
5	MECHANICAL CHARACTERISTICS	25
6	RELIABLITY	28
7	INTERNATIONAL STANDARDS	29
7-1	SAFETY	29
7-2	EMC	29
7-3	ENVIRONMENT	29
8	PACKING	30
8-1	DESIGNATION OF LOT MARK	30
8-2	PACKING FORM	30
9	PRECAUTIONS	31

RECORD OF REVISIONS


Revision No	Revision Date	Page	Description
0.1	Jul., 29, 2014	-	First Draft, Preliminary Specifications
1.0	Mar., 23, 2015	-	Final Specification
1.1	May., 28, 2015	6page	Permissive Power Input Ripple voltage update
			Final Specification Permissive Power Input Ripple voltage update
			inchase Clou
			Purch
	R		
			Sur

1. General Description

LM215WF3 is a Color Active Matrix Liquid Crystal Display with a Light Emitting Diode (White LED) backlight system without LED driver. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally black mode. It has a 21.5 inch diagonally measured active display area with FHD resolution (1080 vertical by 1920horizontal pixel array) Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for each dot, thus, presenting a palette of more than 16,7M colors with A-FRC (Advanced Frame Rate Control). It has been designed to apply the 8Bit 2 port LVDS interface.

It is intended to support displays where high brightness, super wide viewing angle, high color saturation, and high color are important.

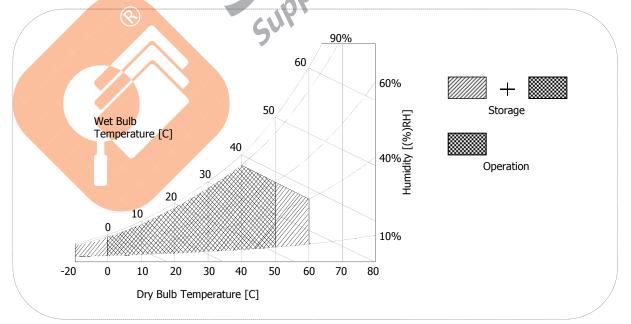
General Features	[Figure 1] Block diagram				
Active Screen Size	21.5 inches(54.61cm) diagonal				
Outline Dimension	497.6(H) x 292.2(V) x 10.5(D) mm				
Pixel Pitch	0.08265*RGB(H)mm x 0.24795(V)mm				
Pixel Format	1920 horiz. By 1080 vert. Pixels RGB stripes arrangement				
Color Depth	16,7M colors (6bit + A-FRC)				
Luminance, White	250 cd/m ² (Center 1 Point, Typ.)				
Viewing Angle(CR>10)	View Angle Free (R/L 178(Typ.), U/D 178(Typ.))				
Power Consumption	Total 14.25W (Typ.) (3.75W @VLCD, 10.5W @Is=100mA)				
Weight	1680g(Typ.)				
Display Operating Mode	Transmissive mode, normally black				
Panel Type	Reverse Type				
Surface Treatment	Hard coating(3H), Anti-glare treatment of the front polarizer				
	Nov. 20, 2015				

Ver. 1.1

Product Specification

2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.


Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Valu	les	Units	Notes	
raiailletei	Symbol	Min	Мах	Units		
Power Input Voltage	VLCD	-0.3	6.0	Vdc	at 25 ± 2°C	
Operating Temperature	Тор	0	50	°C	60	
Storage Temperature	Тѕт	-20	60	°C		
Operating Ambient Humidity	Нор	10	90	%RH	01, 2, 3	
Storage Humidity	Hst	10	90	%RH		
LCM Surface Temperature (Operation)	T _{Surface}	0	65	ĉ	1, 4	

Note : 1. Temperature and relative humidity range are shown in the figure below.

- Wet bulb temperature should be 39 °C Max, and no condensation of water.
- 2. Maximum Storage Humidity is up to 40°C, 70% RH only for 4 corner light leakage Mura.
- 3. Storage condition is guaranteed under packing condition
- 4. LCM Surface Temperature should be Min. 0° and Max. 65 $^{\circ}$ under the VLCD=5.0V,
- fV=60Hz, 25 $^\circ C$ ambient Temp. no humidity control and LED string current is typical value.

FIG.2 Temperature and relative humidity

3. Electrical Specifications

3-1. Electrical Characteristics

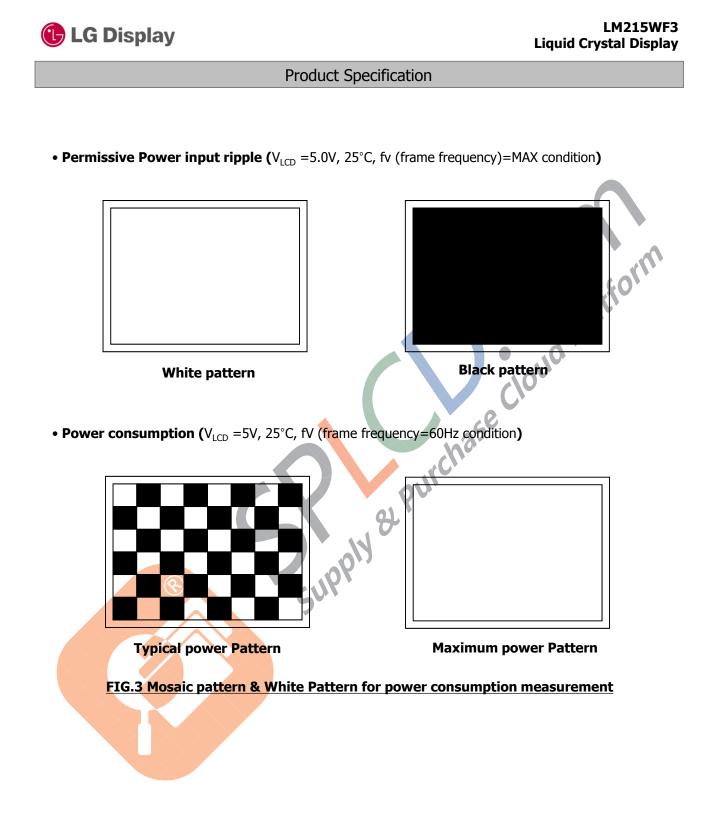

It requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input power for the LED/Backlight, is typically generated by a LED Driver. The LED Driver is an external unit to the LCDs.

Table 2-1. ELECTRICAL CHARACTERISTICS

Symbol		Values	Unit	Notes	
Symbol	Min	Тур	Max	Unit	Notes
				12	
VLCD	4.5	5	5.5	Vdc	5
VdRF			400	mVp-p	1
ILCD_Mosaic	-	750	940	mA	2
ILCD_White	-	920	1150	mA	3
Pc_Mosaic	-	3.75	4.7	Watt	2
Pc_White	-	4.6	5.75	Watt	3
Irush			3.0	А	4
	VdRF ILCD_Mosaic ILCD_White Pc_Mosaic Pc_White	VICD 4.5 VdRF - ILCD_Mosaic - ILCD_White - Pc_Mosaic - Pc_White -	Symbol Min Typ VLCD 4.5 5 VdRF - 750 ILCD_Mosaic - 750 ILCD_White - 920 Pc_Mosaic - 3.75 Pc_White - 4.6	Symbol Min Typ Max VLCD 4.5 5 5.5 VdRF 400 ILCD_Mosaic - 750 940 ILCD_White - 920 1150 Pc_Mosaic - 3.75 4.7 Pc_White - 4.6 5.75	Symbol Min Typ Max Unit VLCD 4.5 5 5.5 Vdc VLCD 4.5 5 5.5 Vdc VLCD 4.5 5 940 mVp-p ILCD_Mosaic - 750 940 mA ILCD_White - 920 1150 mA Pc_Mosaic - 3.75 4.7 Watt Pc_White - 4.6 5.75 Watt

Note :

- 1. Permissive power ripple should be measured under V_{LCD} =5.0V, 25°C, fV(frame frequency)=MAX condition and At that time, we recommend the bandwidth configuration of oscilloscope is to be under 20Mhz. See the next page.
- 2. The specified current and power consumption are under the VLCD=5.0V, 25± 2°C,fV=60Hz condition whereas Typical Power Pattern [Mosaic] shown in the [Figure 3] is displayed.
- 3. The current is specified at the maximum current pattern.
- 4. Maximum Condition of Inrush current : The duration of rush current is about 5ms and rising time of power Input is 500us \pm 20%.(min.).
- 5. V_{LCD} level must be measured at two points on LCM PCB between V_{LCD} (test point) and LCM Ground. The measured results need to meet the Power supply input voltage spec. (Test condition : maximum power pattern , 25± 2°C, fV=60Hz)

Table 2-2. LED Bar ELECTRICAL CHARACTERISTICS

Parameter	Symbol		Unit	Notos		
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
LED String Current	Is	-	(100)	(105)	mA	1, 2, 5
LED String Voltage	Vs	(49.3)	(52.7)	(56.1)	v	1, 5
Power Consumption	PBar	-	(10.5)	(11.2)	Watt	1, 2, 4
LED Life Time	LED_LT	30,000		-	Hrs	3

Notes) The LED Bar consists of 34 LED packages, 2 strings (parallel) x 17 packages (serial)

LED driver design guide

- : The design of the LED driver must have specifications for the LED in LCD Assembly.
- The performance of the LED in LCM, for example life time or brightness, is extremely influenced by the characteristics of the LED driver.

So all the parameters of an LED driver should be carefully designed and output current should be Constant current control.

Please control feedback current of each string individually to compensate the current variation among the strings of LEDs.

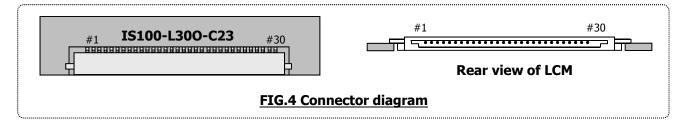
When you design or order the LED driver, please make sure unwanted lighting caused by the mismatch of the LED and the LED driver (no lighting, flicker, etc) never occurs. When you confirm it, the LCD module should be operated in the same condition as installed in

your instrument.

- 1. The specified values are for a single LED bar.
- 2. The specified current is defined as the input current for a single LED string with 100% duty cycle.
- 3. The LED life time is defined as the time when brightness of LED packages become 50% or less than the initial value under the conditions at Ta = $25 \pm 2^{\circ}$ C and LED string current is typical value.
- 4. The power consumption shown above does not include loss of external driver. The typical power consumption is calculated as P_{Bar} = Vs(Typ.) x Is(Typ.) x No. of strings. The maximum power consumption is calculated as P_{Bar} = Vs(Max.) x Is(Typ.) x No. of strings.
- 5. LED operating conditions are must not exceed Max. ratings.

3-2. Interface Connections

3-2-1. LCD Module


- LCD Connector(CN1) : IS100-L300-C23 (UJU) , GT103-30S-HF15 (LSM), GT103-30S-HF15-M (LSM)
- Mating Connector : FI-X30C2L (Manufactured by JAE) or Equivalent

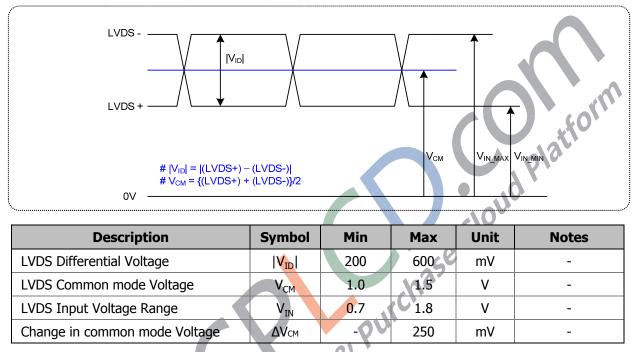
No	Symbol	Description	No	Symbol	Symbol
1	FR0M	Minus signal of odd channel 0 (LVDS)	16	SR1P	Plus signal of even channel 1 (LVDS)
2	FR0P	Plus signal of odd channel 0 (LVDS)	17	GND	Ground
3	FR1M	Minus signal of odd channel 1 (LVDS)	18	SR2M	Minus signal of even channel 2 (LVDS)
4	FR1P	Plus signal of odd channel 1 (LVDS)	19	SR2P	Plus signal of even channel 2 (LVDS)
5	FR2M	Minus signal of odd channel 2 (LVDS)	20	SCLKINM	Minus signal of even clock channel (LVDS)
6	FR2P	Plus signal of odd channel 2 (LVDS)	21	SCLKINP	Plus signal of even clock channel (LVDS)
7	GND	Ground	22	SR3M	Minus signal of even channel 3 (LVDS)
8	FCLKINM	Minus signal of odd clock channel (LVDS)	23	SR3P	Plus signal of even channel 3 (LVDS)
9	FCLKINP	Plus signal of odd clock channel (LVDS)	24	GND	Ground
10	FR3M	Minus signal of odd channel 3 (LVDS)	25	NC	No Connection (I2C Serial interface for LCM)
11	FR3P	Plus signal of odd channel 3 (LVDS)	26	NC	No Connection.(I2C Serial interface for LCM)
12	SR0M	Minus signal of even channel 0 (LVDS)	27	ITLC	Interlace mode selection
13	SR0P	Plus signal of even channel 0 (LVDS)	28	VLCD	Power Supply +5.0V
14	GND	Ground	29	VLCD	Power Supply +5.0V
15	SR1M	Minus signal of even channel 1 (LVDS)	30	VLCD	Power Supply +5.0V

Table 3. MODULE CONNECTOR(CN1) PIN CONFIGURATION

Note: 1. All GND(ground) pins should be connected together and to Vss which should also be connected to the LCD's metal frame.

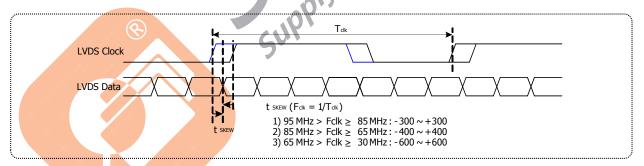
- 2. All VLCD (power input) pins should be connected together.
- 3. Input Level of LVDS signal is based on the EIA 664 Standard.
- 4. ITLC is Interlace mode selection pin. (Low : Normal Mode, High : Interlace mode) If you don't use this pin, it should be connected to GND. (Low level Input Voltage : GND ~ 0.4V, High level Input Voltage : 1.6 ~ 3.6V, Absolute maximum ratings : - 0.5 ~ 4V)

Table 4. REQUIRED SIGNAL ASSIGNMENT FOR Flat Link (TI:SN75LVDS83) Transmitter

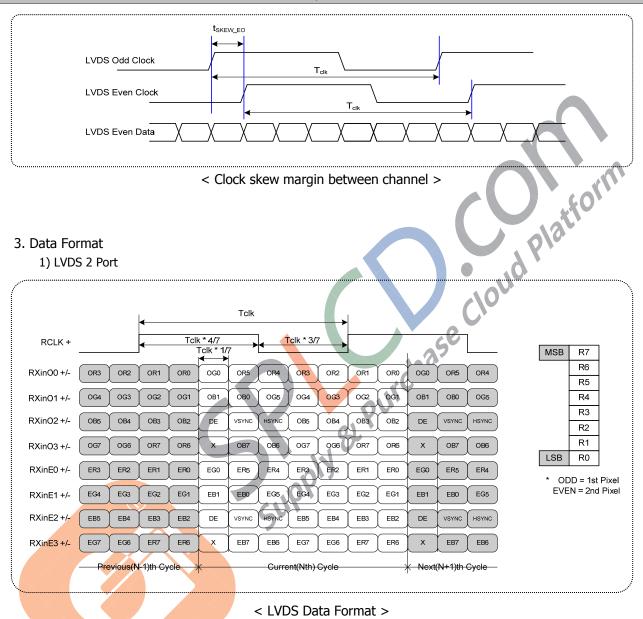

Pin #	Pin Name	Require Signal	Pin #	Pin Name	Require Signal
1	Vcc	Power Supply for TTL Input	29	GND	Ground pin for TTL
2	D5	TTL Input (R7)	30	D26	TTL Input (DE)
3	D6	TTL Input (R5)	31	T _X CLKIN	TTL Level clock Input
4	D7	TTL Input (G0)	32	PWR DWN	Power Down Input
5	GND	Ground pin for TTL	33	PLL GND	Ground pin for PLL
6	D8	TTL Input (G1)	34	PLL Vcc	Power Supply for PLL
7	D9	TTL Input (G2)	35	PLL GND	Ground pin for PLL
8	D10	TTL Input (G6)	36	LVDS GND	Ground pin for LVDS
9	Vcc	Power Supply for TTL Input	37	TxOUT3+	Positive LVDS differential data output 3
10	D11	TTL Input (G7)	38	TxOUT3 –	Negative LVDS differential data output 3
11	D12	TTL Input (G3)	39	T _X CLKOUT +	Positive LVDS differential clock output
12	D13	TTL Input (G4)	40	T _X CLKOUT -	Negative LVDS differential clock output
13	GND	Ground pin for TTL	41	Tx OUT2+	Positive LVDS differential data output 2
14	D14	TTL Input (G5)	42	T _X OUT2-	Negative LVDS differential data output 2
15	D15	TTL Input (B0)	43	LVDS GND	Ground pin for LVDS
16	D16	TTL Input (B6)	44	LVDS Vcc	Power Supply for LVDS
17	Vcc	Power Supply for TTL Input	45	T _X OUT1+	Positive LVDS differential data output 1
18	D17	TTL Input (B7)	46	T _X OUT1-	Negative LVDS differential data output 1
19	D18	TTL Input (B1)	47	T _X OUT0 +	Positive LVDS differential data output 0
20	D19	TTL Input (B2)	48	T _X OUT0 -	Negative LVDS differential data output 0
21	GND	Ground pin for TTL Input	49	LVDS GND	Ground pin for LVDS
22	D20	TTL Input (B3)	50	D27	TTL Input (R6)
23	D21	TTL Input (B4)	51	D0	TTL Input (R0)
24	D22	TTL Input (B5)	52	D1	TTL Input (R1)
25	D23	TTL Input (RSVD)	53	GND	Ground pin for TTL
26	Vcc	Power Supply for TTL Input	54	D2	TTL Input (R2)
27	D24	TTL Input (HSYNC)	55	D3	TTL Input (R3)
28	D25	TTL Input (VSYNC)	56	D4	TTL Input (R4)

Notes: 1. Refer to LVDS Transmitter Data Sheet for detail descriptions.

2. 7 means MSB and 0 means LSB at R,G,B pixel data


LVDS Input characteristics

1. DC Specification


Notes : Dose not have any Noise & Peaking in LVDS Signal

2. AC Specification

	-				
Description	Symbol	Min	Max	Unit	Notes
	t _{skew}	- 300	+ 300	ps	95MHz > Fclk \ge 85MHz
LVDS Clock to Data Skew Margin	t _{skew}	- 400	+ 400	ps	85MHz > Fclk ≥ 65MHz
	t _{skew}	- 600	+ 600	ps	65MHz > Fclk ≥ 30 MHz
LVDS Clock to Clock Skew Margin (Even to Odd)	t _{skew_eo}	- 1/7	+ 1/7	T _{clk}	-

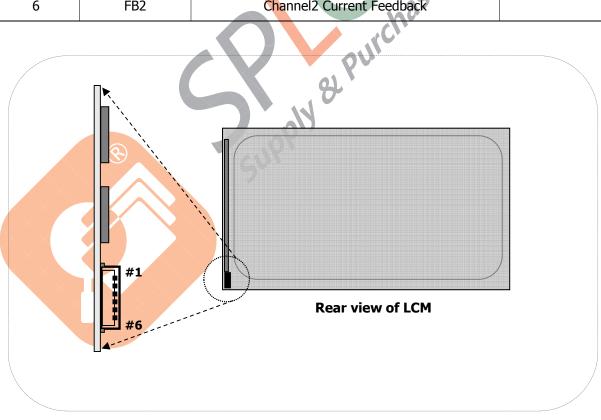


Table 5. BACKLIGHT CONNECTOR PIN CONFIGURATION(CN2)

The LED interface connector is a model SM06B-SHJH(HF)_manufactured by JST or equivalent. The mating connector is a SHJP-06V-S(HF) or SHJP-06V-A-K(HF) and Equivalent. The pin configuration for the connector is shown in the table below.

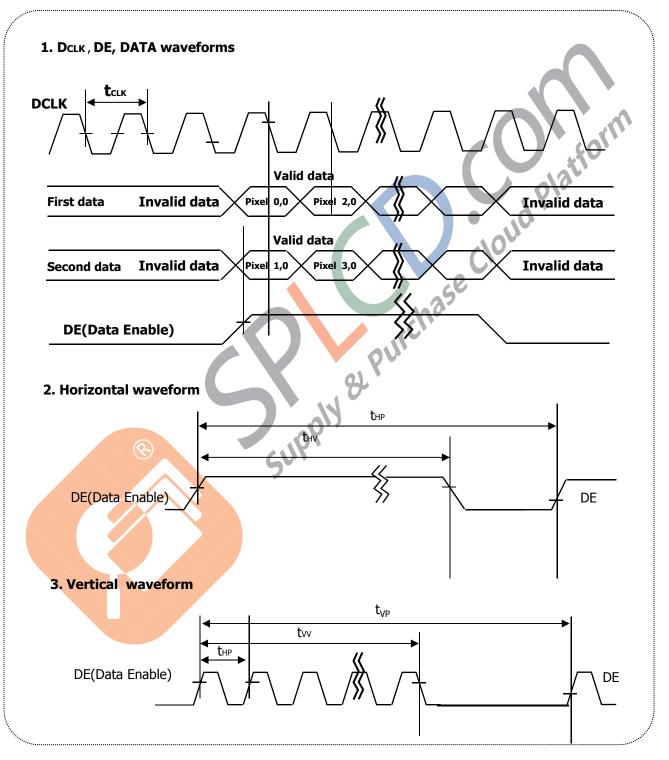
P			
Pin	Symbol	Description	Notes
1	FB1	Channel1 Current Feedback	505
2	NC	No Connection	
3	VLED	LED Power Supply	
4	VLED	LED Power Supply	
5	NC	No Connection	
6	FB2	Channel2 Current Feedback	

[Figure 5] Backlight connector view

3-3. Signal Timing Specifications

This is signal timing required at the input of the TMDS transmitter. All of the interface signal timing should be satisfied with the following specifications for it's proper operation.

ITEM	Symbol		Min	Тур	Max	Unit	Note		
	Period	tCLK	11.43	13.89	16.7	ns			
DCLK	Frequency	-	60	72	87.5	MHz	5		
	Period	tHP	1024	1088	1120	tCLK	131		
	Horizontal Valid	tHV	960	960	960	tCLK			
	Horizontal Blank	tHB	64	128	160	out			
Hsync	Frequency	fH	64	66	83	KHz			
	Width	tWH	16	32	48	tCLK			
	Horizontal Back Porch	tHBP	32	48	64				
	Horizontal Front Porch	tHFP	16	48	48				
	Period	tVP	1090	1100	1160	tHP			
	Vertical Valid	tVV	1080	1080	1080	tHP			
	Vertical Blank	tVB	10	20	80	tHP			
Vsync	Frequency	fV	50	60	75	Hz			
	Width	tWV	2	4	16	tHP			
	Vertical Back Porch	tVBP	5	8	32				
	Vertical Front Porch	tVFP	3	8	32				


 Table 6. TIMING TABLE

Note: Hsync period and Hsync width-active should be even number times of tCLK. If the value is odd number times of tCLK, display control signal can be asynchronous. In order to operate this LCM a Hsync, Vsyn, and DE(data enable) signals should be used.

- 1. The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rates.
- 2. Vsync and Hsync should be keep the above specification.
- 3. Hsync Period, Hsync Width, and Horizontal Back Porch should be any times of of character number(4).
- 4. The polarity of Hsync, Vsync is not restricted.
- 5. The Max frequency of 1920X1080 resolution is 82.5Mhz

3-4. Signal Timing Waveforms

3-5. Color Input Data Reference

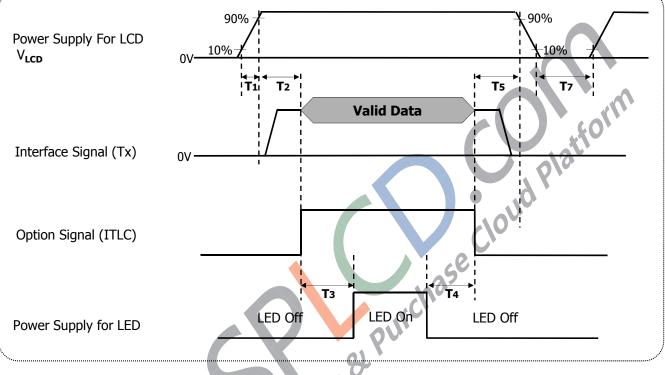

The Brightness of each primary color(red,green,blue) is based on the 8-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 7. COLOR DATA REFERENCE

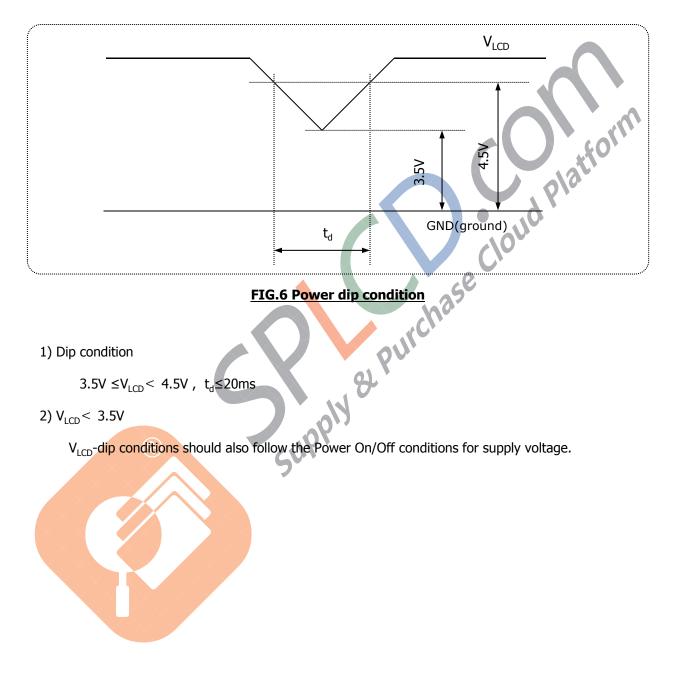
												I	npu	it Co	olor	Dat	ta							·		
	Color					RE	D							GRI	EEN	I						BL	UE			
			MS							5B								.SB								SB
	i								R1	_					_	G2	-	_	B7	-				B2		
	Black		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (255)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue (255)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan		0	0	0	0	0	0	0	0	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1
	Magenta		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow		1	1	1	1	1	1	1	1	1	1	1	1	4	1	1	1	0	0	0	0	0	0	0	0
	White		1	1	1	1	1	1	1	1	1	1	1	Y	1	1	1	1	1	1	1	1	1	1	1	1
	RED (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (001)		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED										Q	• •															
	RED (254)	(A)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (255)		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (001)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
GREEN						7.																				
	GREEN (254)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN (255)	X)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (001)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE																										
	BLUE (254)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	BLUE (255)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

3-6. Power Sequence

Table 8. POWER SEQUENCE

Parameter		Units		
Parameter	Min	Тур	Max	Units
T1	0.5	-	10	ms
T2	0.01	-	50	ms
ТЗ	500	-	-	ms
T4	200	-	-	ms
T5	0.01	-	50	ms
77	1000		-	ms

Notes : 1. Please avoid floating state of interface signal at invalid period.


2. When the interface signal is invalid, be sure to pull down the power supply for LCD V_{LCD} to 0V.

- 3. The invalid signal means out of the signal timing specification which define as page 14.
- 4. The above power sequence should be satisfied the basic power on/off and resolution, timing transition.
- 5. LED power must be turn on after power supply for LCD and interface signal are valid.
- 6. Recommend to follow Power sequence at these case
 - -.AC/DC Power On/Off

-.Mode change (Resolution, frequency, timing, sleep mode, Color depth change, etc.) If not to follow power sequence, there is a risk of abnormal display.

3-7. V_{LCD} Power Dip Condition

4. Optical Specifications

Optical characteristics are determined after the unit has been 'ON' for approximately 30 minutes in a dark environment at $25\pm2^{\circ}$ C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 ° and aperture 1 degree.

FIG. 1 presents additional information concerning the measurement equipment and method.

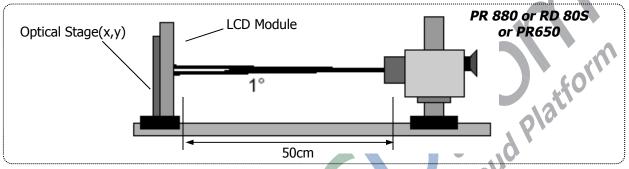


FIG.7 Optical Characteristic Measurement Equipment and Method

 Table 9. OPTICAL CHARACTERISTICS

(Ta=25 °C, V_{LCD}=5V, f_v=60Hz Dclk=144MHz, I_{BI}=100mA)

Davama	.	Gumbal		Values		Units	
Parame	ter	Symbol	Min	Тур	Max	Units	Notes
Contrast Ratio		CR	700	1000	-		1
Surface Luminance, v	vhite	L _{WH}	200	250	-	cd/m ²	2
Luminance Variation		δ _{WHITE}	75 🚺	-	-	%	3
	Gray To Gray	T _{GTG_AVR}		14	25	ms	4
Response Time	Gray to Gray (σ)	G to G _σ		(5)	-	ms	Reference 10,11
RED		Rx	K,	0.651			
		Ry S		0.338			
	GREEN	Gx		0.318	Тур		
Color Coordinates [CIE1931]		Gy	Тур	0.612			
(By PR650)	BLUE	Bx	-0.03	0.151	+0.03		
		Ву		0.065			
	WHITE	Wx		0.313			
		Wy		0.329			
Color Shift	Horizontal	$\theta_{\text{CST}_{\text{H}}}$	-	140	-	Degree	-
(Avg. ∆u′v′ < 0.02)	Vertical	θ_{CST_V}	-	100	-	Degree	5
Viewing Angle (CR>1	0)						
Conorol	Horizontal	θ_{H}	170	178	-	Degree	C
General	Vertical	θγ	170	178	-	Degree	6
GSR @ 60dgree Horizontal (Gamma shift rate) Vertical		δ _{Gamma_H}	-	-	20	0/	7
		δ_{Gamma_V}	-	-	20	%	7
WPT (White Point Tra	acking)	-	-300	G255 CCT	+700	К	8
Gray Scale		-	-	2.2	-		9

Ver. 1.1

platfor

Product Specification

Notes 1. Contrast Ratio(CR) is defined mathematically as : (By PR880)

 $Contrast Ratio = \frac{Surface Luminance with all white pixels}{Surface Luminance with all black pixels}$

It is measured at center point(Location P1)

- 2. Surface luminance(LWH) is luminance value at Center 1 point(P1) across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG.8 (By PR880)
- 3. The variation in surface luminance , δ WHITE is defined as : (**By PR880**)

$$\delta_{\text{WHITE}} = \frac{\text{Minimum}(L_{P_1}, L_{P_2}, \dots, L_{P_9})}{\text{Maximum}(L_{P_1}, L_{P_2}, \dots, L_{P_9})} \times 100$$

Where L1 to L9 are the luminance with all pixels displaying white at 9 locations. For more information see FIG.8

- 4. Gray to gray response time is the time required for the display to transition from gray to gray. For additional information see Table 10. (By RD80S)
- 5. Color shift is the angle at which the average color difference for all Macbeth is lower than 0.02. For more information see FIG.9 (By EZ Contrast)
 - Color difference ($\Delta u'v'$)

$$u' = \frac{4x}{-2x + 12y + 3} \qquad v' = \frac{9y}{-2x + 12y}$$

$$\Delta u'v' = \sqrt{(u'_1 - u'_2)^2 + (v'_1 - v'_2)^2}$$

u'1, v'1 : u'v' value at viewing angle direction u'2, v'2 : u'v' value at front (θ =0) i : Macbeth chart number (Define 23 page)

- Pattern size : 25% Box size

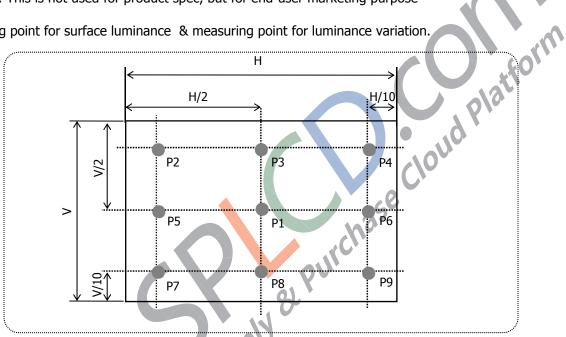
 $\frac{\diamondsuit}{Avg(\Delta u'v')}$

- Viewing angle direction of color shift : Horizontal, Vertical

- 6. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG.10 (By PR880)
- 7. GSR is the rate of gamma shift at up, down, left and right 60 degree viewing angle compare with center gamma. For more information see FIG.11 and FIG.12 (By EZ Contrast) - GSR (δ_{Gamma}) is defined as :

$$GSR = \left(1 - \frac{\text{View angle Gamma Value (Up, Down, Reft, Light 60 Degree)}}{\text{Center Gamma Value (0 Degree)}}\right) \times 100$$

8. WPT (White Point Tracking) is the variation of color temperature between G255 and G63. (By PR650)


Notes 9. Gamma Value is approximately 2.2. For more information see Table 11.

Notes 10. It is the standard deviation of G to G (σ) data.

Xi = Individual Data Σ(Xi- u)² G to G (σ) = u = Data average N : The number of Data N

Notes 11. This is not used for product spec, but for end-user marketing purpose

Measuring point for surface luminance & measuring point for luminance variation

FIG.8 Measure Point for Luminance

The Gray to Gray response time is defined as the following figure and shall be measured by switching the input signal for "Gray To Gray".

- Gray step : 5 Step
- TGTG AVR is the total average time at rising time and falling time for "Gray To Gray".
- if system use ODC (Over Driving Circuit) function, Gray to Gary response time may be 5ms~8ms GtG * it depends on Overshoot rate.

>	Crowbo C	Rising Time									
	Gray to G	ray	G255	G191	G127	G63	G0				
	Falling Time	G255									
		G191									
		G127									
		G63									
		G0									

Table, 10 GTG Grav Table

G to G(BW) Response time is defined as the following figure and shall be measured by switching the input signal for "Gray(N)" and "Black or White".

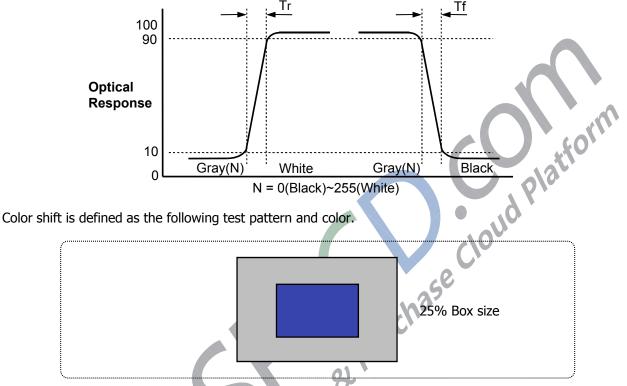
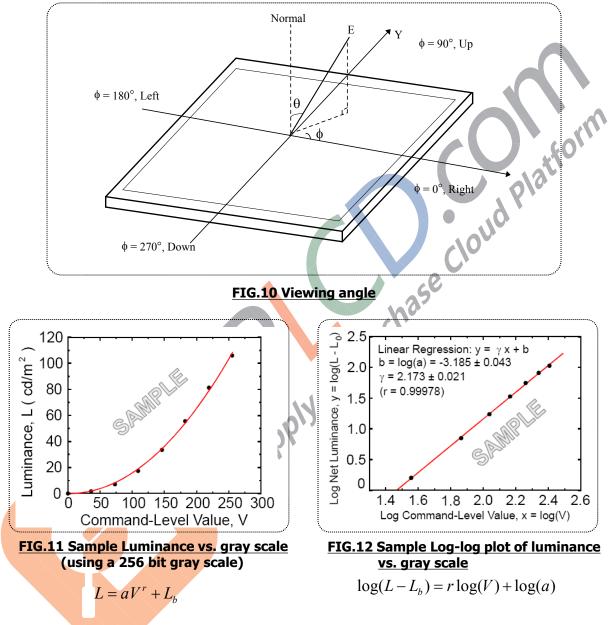


FIG.9 Color Shift Test Pattern


Average RGB values in Bruce RGB for Macbeth Chart

		Light skin	Blue sky		Blue flower	Bluish green
R	98	206	85	77	129	114
G	56	142	112	102	118	199
В	45	123	161	46	185	178
	Orange		Moderate red		Yellow green	Orange yellow
R	219	56	211	76	160	230
G	104	69	67	39	193	162
В	24	174	87	86	58	29
		Green	Red	Yellow	Magenta	Cyan
R	26	72	197	241	207	35
G	32	148	27	212	62	126
В	145	65	37	36	151	172
	White	Neutral 8	Neutral 6.5	Neutral 5		
R	240	206	155	110	63	22
G	240	206	155	110	63	22
U	-					

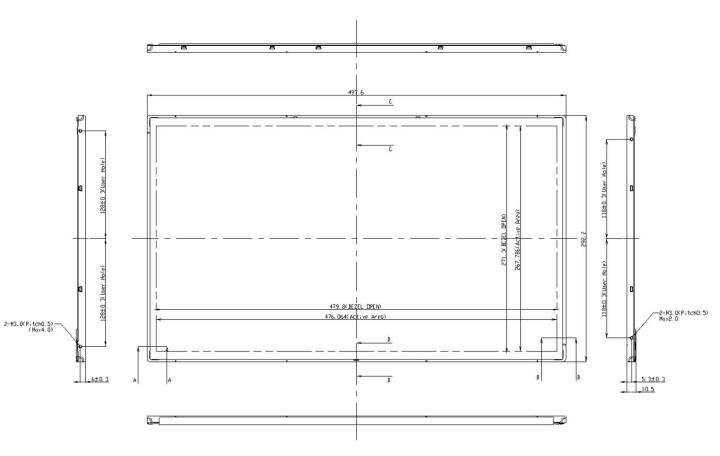
Ver. 1.1

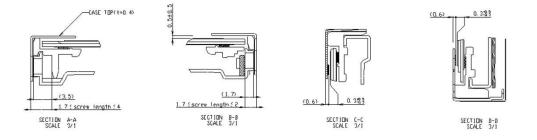
Dimension of viewing angle range.

Here the Parameter α and γ relate the signal level V to the luminance L. The GAMMA we calculate from the log-log representation (FIG.11)

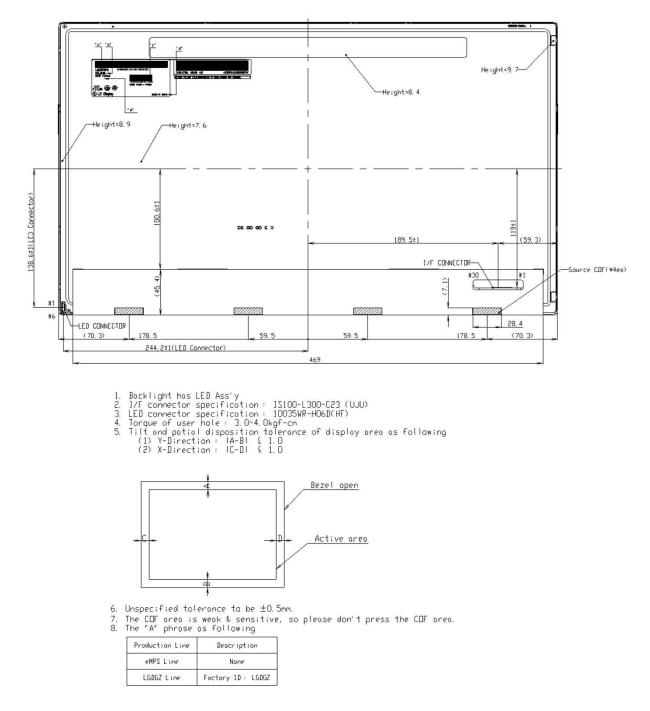
Gray Level	Relative Luminance [%] (Typ.)
0	0.11
31	1.08
63	4.72
95	11.49
127	21.66
159	35.45
191	53.00
223	74.48
255	100
8	100 e

5. Mechanical Characteristics


The contents provide general mechanical characteristics. In addition the figures in the next page are detailed mechanical drawing of the LCD.


	Horizontal	497.6mm
Outline Dimension	Vertical	292.2mm
	Depth	10.5 mm
Bezel Area	Horizontal	479.8mm
	Vertical	271,3mm
Active Display Area	Horizontal	476.064 mm
Active Display Area	Vertical	267.786 mm
Weight	1680g(Typ.), 1765g(Max.)	
Surface Treatment	Hard coating(3H) Anti-glare treatment of the front polarize	er

Notes : Please refer to a mechanic drawing in terms of tolerance at the next page.


<FRONT VIEW>

<REAR VIEW>

LGD Highly recommendation :

As The IPS panel is sensitive & slim, please recommend the metal frame of the system supports the panel by the double side-mount.

6. Reliability

Environment test condition

No	Test Item	Condition	Notes
1	High temperature storage test	Ta= 60°C 240h	1
2	Low temperature storage test	Ta= -20°C 240h	1
3	High temperature operation test	Ta= 50°C 50%RH 240h	01
4	Low temperature operation test	Ta= 0°C 240h	1
5	Vibration test (non-operating)	Wave form : random Vibration level : 1.00G RMS Bandwidth : 10-300Hz Duration : X, Y, Z, 10 min One time each direction	
6	Shock test (non-operating)	Shock level : 100G Waveform : half sine wave, 2ms Direction : $\pm X$, $\pm Y$, $\pm Z$ One time each direction	
7	Humidity condition Operation	Ta= 40 °C ,90%RH	
8	Altitude operating storage / shipment	0 - 10,000 feet(3,048m) 0 - 40,000 feet(12,192m)	
9	Maximum Storage Humidity for 4 corner light leakage Mura.	Max 70%RH , Ta=40℃	

Note 1. Result Evaluation Criteria:

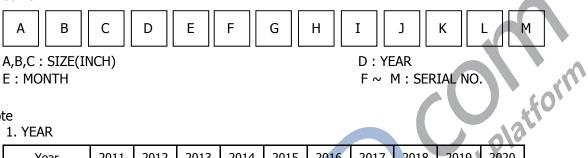
TFT-LCD panels test should take place after cooling enough at room temperature. In the standard condition, there should be no particular problems that may affect the display function.

*. T_a = Ambient Temperature

7. International Standards

7-1. Safety

- a) UL 60950-1, Underwriters Laboratories Inc. Information Technology Equipment - Safety - Part 1 : General Requirements.
- b) CAN/CSA-C22.2 No. 60950-1-07, Canadian Standards Association. Information Technology Equipment - Safety - Part 1 : General Requirements.
- a) RoHS, Directive 2011/65/EU of the European Parliament and of the council of 8 June 2011 c) EN 60950-1, European Committee for Electrotechnical Standardization (CENELEC).


7-2. Environment

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

Note

1. YEAR

Year	2011	2012	2013	2014	2015	2016	2017	2018	2019 2	020
Mark	Α	В	С	D	E	F	G	Н	3	K

2. MONTH

Month	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	А	В	С

.0

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

Suf

8-2. Packing Form

- a) Package quantity in one box : 12pcs (2 Module is packed in 1 Al Bag)
- b) Box Size : 365 X 315 X 570mm

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.
- (10) As The IPS panel is sensitive & slim, please recommend the metal frame of the system supports the panel by the double side-mount.

Ver. 1.1

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm 200$ mV(Over and under shoot voltage)
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes higher.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (7) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can't be operated its full characteristics perfectly.
- (8) A screw which is fastened up the steels should be a machine screw. (if not, it causes metallic foreign material and deal LCM a fatal blow)
- (9) Please do not set LCD on its edge.
- (10) When LCMs are used for public display defects such as Yogore, image sticking can not guarantee.
- (11) When this reverse model is used as a forward-type model (PCB on top side), LGD can not guarantee any defects of LCM.
- (12) LCMs cannot support "Interlaced Scan Method"
- (13) Please conduct image sticking test after 2-hour aging with Rolling PTN and normal temperature (25~40℃)

Ver. 1.1

tform

Product Specification

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ionblown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

V Please (return / keep) this standard with your signature for approval

Rev.1.0 30/Mar/2015				
Copyright LG Display Co., LTD. 2015	1/11		LGC	Display

Contents

Revision Status	3
 1.0. Introduction 1.1. Scope 1.2. Incoming Inspection Right 1.3. Handling Precautions 	4 4 4
2.0. Generals 2.1. Sampling Method 2.2. Acceptable Quality Level(AQL)	5 5
2.3. Classification of defects2.4. Determination of acceptability and subsequent disposal2.5. Inspection Method	5 5 6
3.0. Inspection Criteria 3.1. Dot Defect 3.2. Polarizer Defect 3.3. Foreign Material 3.4. Line Defect 3.5 Bezel Appearance 3.6. Others	7 7 8 8 8 8
4.0. RMAs 4.1. Verification 4.2. Supplier Induced Defects 4.3. Customer Induced Defects	9 9 9
5.0. Warranty 5.1. Warranty Period 5.2. Repair Warranty 5.3. Warranty avoidance	10 10 10
6.0. Others	10
Appendix A	11

Rev.1.0 30/Mar/2015							
Copyright LG Display	y Co., LTD. 201	5	2	2/11	 Ē	LG D	isplay

Revision Status

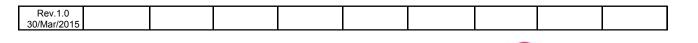
Rev. No.	Chapter	Contents	Date	Issued & amended by
1.0	All	Originated 215 IIS	30/Mar/15	Mike Lee
Rev.1.0 30/Mar/2015	Display Co., LTD.	2015 3/11		LG Display

1.0 Introduction

1.1. Scope

This Incoming Inspection Standard shall be applied to TFT-LCD modules (hereafter called the "LCMs") supplied by LG Display (hereafter called the "Supplier") to its Customer.

1.2. Incoming inspection Right


The Customer shall have the right to conduct at its own cost and expense, an incoming inspection of the LCMs at the destination specified in the relevant B/L(Bills of Lading) in accordance with the LCM's specifications separately agreed upon and the inspection criteria set forth in this article.

The Customer shall notify the Supplier in writing of the inspection results (acceptance or rejectance) in accordance with the said Incoming Inspection Standard within 40 days from the date of the B/L.

Should the Customer fail to notify the results to Supplier within 40 days period, the right to reject the LCMs shall then lapse, and the said LCMs shall be deemed to have been accepted by the Customer.

1.3. Handling Precautions

- LCM Devices are made of fragile material such as Glass and plastic and may be broken or cracked if dropped it, so **PLEASE** handle them with care.
- **DO NOT** press the area covered with PET or such materials. These are weak point of LCMs since of TCPs(Driver ICs) and PWBs.
- PLEASE support the Bezel with your finger when connecting the interface cable.
- Please **DO NOT** touch the surface of the Glass(Polarizer).
- PLEASE wear the Wrist Strap when handling.
 Semiconductive devices are included in the LCMs and they should be handled with care to prevent any electrostatic discharge(ESD).
- PLEASE keep the LCMs in the specified, original packing boxes when storage.
- DO NOT stack the LCMs too high without wrapping material such as AIR CAP.
- Before use the LCMs, **PLEASE** check the Engineering specification.
- LCMs contain a small amount of Liquid Crystal and Mercury. **PLEASE** follow local ordinances or regulations for disposal.

🕞 LG Display

2.0 Generals

2.1. Sampling Method

Unless otherwise agreed upon in writing, the sampling inspection shall be applied to the Customer's incoming inspection.

- 2.1.1. Lot size : Quantity per shipment lot (minimum lot size : 100 pieces)
- 2.1.2. Sampling type : Normal inspection, Single sampling
- 2.1.3. Inspection level : II
- 2.1.4. Sampling table : MIL-STD-105D

2.2. Acceptable Quality Level(AQL)

2.3. Classification of defects

Level(AQL) The AQL for major and minor defects shall be respectively set forth below at the set of the below at the set of the set Defects are classified as either a major defect or a minor defect based on the degree of defect defined herein.

2.2.1. Major defect

The major defect is a defect that is likely to result in product failure, or reduction in the product's intended usage.

2.2.2. Minor defect

The minor defect is a defect that has little bearing on the effective use or operation of the product.

Specific criteria of judgment of major and/or minor defects or other related issues shall be in accordance with the Appendix A, "Classification of Defects".

2.4. Determination of acceptability and subsequent disposal

If the number of defects found in the LCM sampling lot is equal to or less than the AQL(Acceptable Quality Level), the lot shall be accepted.

If the number of defects found in the LCM sampling lot is greater than the AQL, the lot shall be rejected. The Customer shall inform the Supplier of the results of such inspection detailly within the time period stipulated in chapter 1.2. "Incoming inspection Right".

Rev.1.0 30/Mar/2015

🕞 LG Display

2.4.1. Accepted lot

An acceptance under the above incoming inspection shall constitute an acceptance by the Customer of such lot of the LCMs in terms of the landed quality thereof.

2.4.2. Rejected lot

If a shipment lot of products is rejected under the above incoming inspection due to any defects of which the Supplier is responsible and such a fact is clearly confirmed by the Supplier through a separate inspection or as otherwise decided, the Supplier shall choose one of the following three options which must be determined by mutual consent.

The Supplier shall advise the Customer of its choice not later than 10 working days(Monday through Friday) of receipt of the "Customer's notification of rejected lot" :

a. The Customer shall return the rejected lot to the place to be designated by the Supplier and the Supplier shall screen all of the products in the lot and repair or replace the defective LCMs.

b. The Supplier shall screen all of the LCMs in the lot and repair or replace the defective LCMs within a reasonable time period at the Customer's facility.

c. The Customer shall screen the entire lot of LCMs at the expense of Supplier's, and the expense must be agreed by the Supplier. The rejected LCMs shall be returned to the place designated by the Supplier.

2.5. Inspection Method

2.5.1. Ambient conditions

2.5.2. Viewing distance

The distance between the LCM and the inspector's eyes shall be at least 35-50 cm.

2.5.3. Viewing Angle

The inspection shall be conducted within normal viewing angle range. * Refer to the CAS for viewing angle. (The surface of the MODULE and the eyes of the inspectors shall be 90 degrees.

Rev.1.0 30/Mar/2015

LG Display

3.0 Inspection Criteria

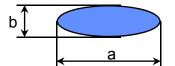
3.1. Dot Defect

3.1.1. Bright Dot

Dots(sub-pixels) which appeared brightly in the screen when the LCM displayed only with Full Black pattern.

- R, G,B 1 dot ----- 2 Max - Adjacent 2 dots ----- 1 Max - Total amount of Bright dots ----- 2 Max. - Minimum distance of Bright dots ----- 15 mm lation 3.1.2. Dark Dot Dots(sub-pixels) which appeared darkly in the screen when the LCM displayed with Full Red, Green and Blue patterns. _____ 5 Max - 1 dot - Adjacent 2 dots ---------- 2 Max - Total amount of Dark dot ------5 Max - Minimum distance of Dark dots -----15 mm 3.1.3. Total amount of Dot Defects ------- 5 Max(Combination) - 90% Bright dot free rate -----
 - Note) a. Every dot herein means Sub-Pixel(Each Red, Green, or Blue Color)
 - b. Bright dot defect damaged less than half size of sub-pixel is not counted as a bright dot defect. And dark dot defect damage less than half size of sub-pixel is not counted as a dark dot defect.
 - c. Dots darker than half brightness of sub-pixel are not defined as bright dot defect and dots brighter than half brightness of sub-pixel are not defined as dark dot defect.
- 3.2. Polarizer Defects

Items	Criteria
Scratches	0.05<=W<=0.1, 0.3<=L<=3.0, N<=4
Dent/Bubble	D<=0.7, N<=4


Where, W :Width


D

- : Length L
 - : Average diameter =(a+b)/2

Note)

- a. Average Diameter
- b. Linear : a >2b. Circular : a≤2b

Note) continued

- c. Extraneous substances which can be wiped out, like Finger Print, Particles, are not considered as a defect.
- b. Defects which is on the Black Matrix(outside of Active Area) are not considered as a defect.

3.3 Foreign Material

	Items	Criteria
	Linear	0.05<=W<=0.2, 0.5<=L<=10.0, N<=4
	Circular	0.1<=D<=0.7, N<=4
Where, W L D	:Width : Length : Average diameter =(a	a+b)/2 b
Note) a. Average b. Linear :		a≤2b

3.4. Line Defect

All kinds of line defects such as vertical, horizontal or cross are not allowed.

3.5. Bezel Appearance

Scratches, minor bents, stains, particles on the Bezel frame are not considered as a defect.

3.6. Other Visual Defects

3.<mark>6.1 Mu</mark>ra

No visible mura is allowed. A limit sample shall be used when necessary.

3.6.2 Light leakage

Light leakage in the active area is not allowed. A limit sample shall be used when necessary.

3.7. Others

Issues which is not defined in this criteria shall be discussed with both parties,

Customer and Supplier, for better solution.

Rev.1.0					
30/Mar/2015					
00/11/2010					

LG Display

4.0 RMAs

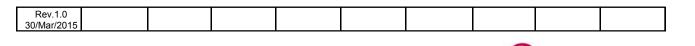
4.1. Verification

The Supplier can verify the defective LCMs to segregate the responsibilities at Customer's facility or can request the Customer to ship the defective LCMs to assigned place for verification

This verification result shall be agreed mutually by the Customer and Supplier. This result can be corrected/changed after detail failure analysis at Supplier's facilities.

4.2. Supplier Induced Defects

All of the Supplier induced defective LCMs shall be returned to the Supplier for repair or replacement.


Before return the defective LCMs, the Customer needs Supplier's confirmation with RMA Number.

All of the returned LCMs shall be returned to the Customer within agreed time period.

4.3. Customer Induced Defects

The Customer can return the customer induced defective LCMs to the Supplier for repair.

The repair cost for Customer induced defective LCMs shall be agreed with both parties, Customer and Supplier.

🕞 LG Display

5.0 Warranty

5.1. Warranty Period

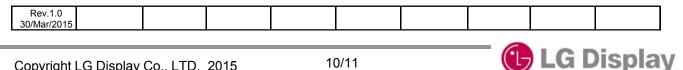
In-warranty period is **Eighteen(18)** Months from manufacturing month of LCM.

Note) The manufacturing Month is on the LCMs as Supplier's serial No.

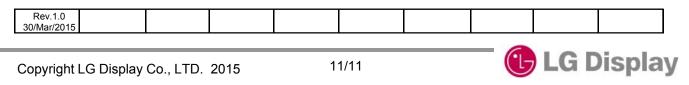
5.2. Repair Warranty

cloud Platform Repair warranty is Twelve(12) Months from repaired month for repaired LCMs

Note) The Label for repair will be added after repairing.


5.3. Warranty avoidance

The warranty will be avoided in cases of below,


- a. When the warranty period is expired
- b. The Customer induced defective LCMs
- c. When the LCMs were repaired by 3rd party without Supplier's approval.
- d. When the LCMs were treated like Disassemble and Rework by the Customer and/or Customer's representatives without Supplier's approval.

6. Others

If any problems arise with the LCMs supplied by supplier, the Customer and Supplier will cooperate and make efforts to solve it with mutual confidence and respect.

Defect Mede	Criterien fan Defect	Class
Defect Mode	Criterion for Defect	Class
Operating Frequency	Specified range in the CAS	Major
Power Consumption	Specified range in the CAS	Major
Contrast Ratio	Specified range in the CAS	Major
Line Defect	Not allowed any Vertical, Horizontal, and Cross line	Major
Polarizer Defects	Shall be accordance with the item 3.0 "Inspection Criteria" in this standard	Minor
Extraneous Substance	Shall be accordance with the item 3.0 "Inspection Criteria" in this standard	Minor
Dot Defect	Shall be accordance with the item 3.0 "Inspection Criteria" in this standard	Minor
Bezel Claw Forming	The bezel claw is not formed sufficiently	Minor

