SmarterGlass

state-of-the-art display solutions

www.smarterglass.com 978 997 4104 sales@smarterglass.com

SPECIFICATION FOR APPROVAL

1	(Preliminar	y Specification
١		, i i c iiiiiiiiai	y opecilication

() Final Specification

Title	12.1" WXGA TFT LCD		
	-		

Customer	Panasonic
MODEL	

SUPPLIER	LG Display Co., Ltd.		
*MODEL	LP121WX4		
Suffix	TLA1		

^{*}When you obtain standard approval, please use the above model name without suffix

	APPROVED BY	SIGNATURE
	/	
	/	
	/	
•		

Please return 1 copy for your confirmation with your signature and comments.

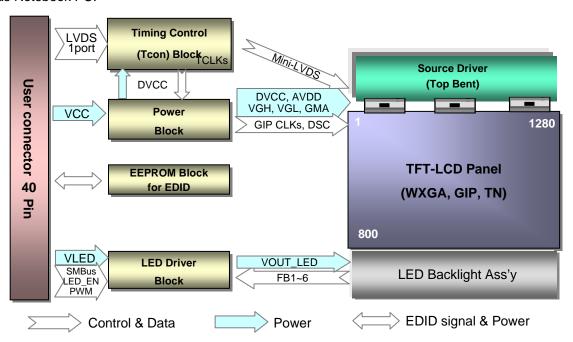
APP	ROVED BY	SIGNATURE
H. S. K	im / G.Manager	
REV	IEWED BY	
C. I. k	Kim / Manager	
PRE	PARED BY	
C. H. (Cho / Engineer	
S. C. J	lung / Engineer	
Pro	ducts Engineerii	ng Dept.

LG Display Co., Ltd

Ver. 0.0 Mar. 23, 2010 1 / 32

Contents

No	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	
3-1	ELECTRICAL CHARACTREISTICS	6
3-2	INTERFACE CONNECTIONS	7
3-3	LVDS SIGNAL TIMING SPECIFICATIONS	9
3-4	SIGNAL TIMING SPECIFICATIONS	11
3-5	SIGNAL TIMING WAVEFORMS	11
3-6	COLOR INPUT DATA REFERNECE	12
3-7	POWER SEQUENCE	13
4	OPTICAL SFECIFICATIONS	14
5	MECHANICAL CHARACTERISTICS	18
6	RELIABLITY	26
7	INTERNATIONAL STANDARDS	
7-1	SAFETY	27
7-2	EMC	27
8	PACKING	
8-1	DESIGNATION OF LOT MARK	28
8-2	PACKING FORM	28
9	PRECAUTIONS	29


RECORD OF REVISIONS

Revision No	Revision Date	Page	Description	EDID ver
0.0	Mar. 23. 2010	-	First Draft (Preliminary Specification)	x

1. General Description

The LP121WX4 is a Color Active Matrix Liquid Crystal Display with an integral LED backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 12.1 inches diagonally measured active display area with WXGA resolution (1280 horizontal by 800 vertical pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors. The LP121WX4 has been designed to apply the interface method that enables low power, high speed, low EMI. The LP121WX4 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP121WX4 characteristics provide an excellent flat display for office automation products such as Notebook PC.

General Features

Active Screen Size	12.1 inches diagonal			
Outline Dimension	270.6(H,Typ.) × 187.5(V,Typ.) × 2.95(D,Max.) [mm]			
Pixel Pitch	0.2028mm × 0.2028 mm			
Pixel Format	1280 horiz. By 800 vert. Pixels RGB strip arrangement			
Color Depth	6-bit, 262,144 colors			
Luminance, White	250 cd/m ² (Typ.5 point)			
Power Consumption	Total 3.8 Watt(Typ.) @ LCM circuit 0.9 Watt (TypMosaic), B/L 2.9Watt(Typ.)			
Weight	145g(Typ.)			
Display Operating Mode	Transmissive mode, normally white			
Surface Treatment	Anti-Glare treatment of the front polarizer			
RoHS / Low Halogen Comply	Yes			
BFR / PVC /As Free	Yes of all			

2. Absolute Maximum Ratings

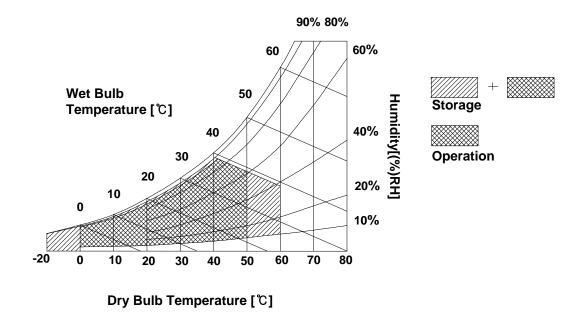

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Val	ues	Units	Notes	
Farameter	Symbol	Min	Max	Offics		
Power Input Voltage	VCC	-0.3	4.0	Vdc	at 25 ± 5°C	
Operating Temperature	Тор	0	50	°C	1	
Storage Temperature	Нѕт	-20	60	°C	1	
Operating Ambient Humidity	Нор	10	90	%RH	1	
Storage Humidity	Нѕт	10	90	%RH	1	

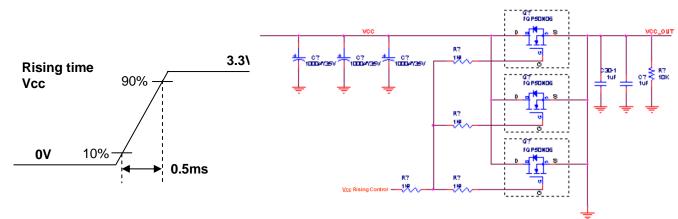
Note: 1. Temperature and relative humidity range are shown in the figure below.

Wet bulb temperature should be 39°C Max, and no condensation of water.

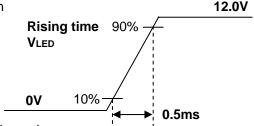
3. Electrical Specifications

3-1. Electrical Characteristics

The LP121WX4 requires two power inputs. The first logic is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second backlight is the input about LED BL with LED Driver.


Table 2. ELECTRICAL CHARACTERISTICS

		Councile of	Values				
Parameter	Symbol	Min	Тур	Max	Unit	Notes	
LOGIC :							
Power Supply Input Voltage		Vcc	3.0	3.3	3.6	V	1
Power Supply Input Current	White	Icc	170	200	250	mA	2
Power Consumption		Pcc	-	0.66	0.83	W	3
Power Supply Inrush Current		Icc_p	-	-	1.5	Α	4
LVDS Impedance		ZLVDS	90	100	110	Ω	5
BACKLIGHT : (with LED Drive	r)						
LED Power Input Voltage		VLED	7.0	12.0	21.0	V	6
LED Power Input Current		lled	-	16.0	16.5	mA	6
LED Power Consumption		PLED	-	2.9	3.1	W	7
LED Power Inrush Current		ILED_P	-	-	2	Α	8
PWM Duty Ratio			3	-	100	%	9
PWM Jitter		-	0	-	0.2	%	10
PWM Impedance		Zpwm	20	40	60	kΩ	
PWM Frequency		Fpwm	200	-	1000	Hz	11
PWM High Level Voltage		V _{PWM_H}	3.0	-	5.3	V	
PWM Low Level Voltage		V _{PWM_L}	0	-	0.3	V	
LED_EN Impedance		Zpwm	20	40	60	kΩ	
LED_EN High Voltage		VLED_EN_H	3.0	-	5.3	V	
LED_EN Low Voltage	VLED_EN_L	0	-	0.3	V		
Life Time			15,000	-	-	Hrs	12


Note)

- 1. The measuring position is the connector of LCM and the test conditions are under 25 $^{\circ}$ C, fv = 60Hz, Black pattern.
- 2. The specified lcc current and power consumption are under the Vcc = 3.3V, $25^{\circ}C$, fv = 60Hz condition and White pattern.
- 3. This Spec. is the max load condition for the cable impedance designing.
- 4. The below figures are the measuring Vcc condition and the Vcc control block LGD used. The Vcc condition is same as the minimum of T1 at Power on sequence.

- 5. This impedance value is needed for proper display and measured form LVDS Tx to the mating connector.
- 6. The measuring position is the connector of LCM and the test conditions are under 25 °C.
- 7. The current and power consumption with LED Driver are under the Vled = 12.0V, 25°C, Dimming of Max luminance and White pattern with the normal frame frequency operated(60Hz).
- 8. The below figures are the measuring Vled condition and the Vled control block LGD used.

VLED control block is same with Vcc control block.

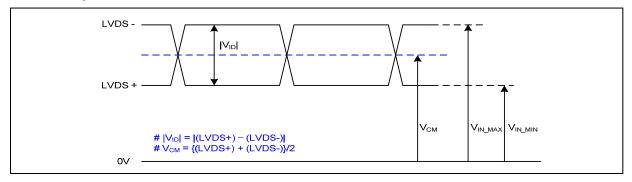
- The operation of LED Driver below minimum dimming ratio
 may cause flickering or reliability issue. LGD LED Driver guarantee 6.0% at PWM minimum dimming ratio.

 Minimum dimming ratio 1.5% is based on Lenovo's.
- 10. If Jitter of PWM is bigger than maximum, it may induce flickering.
- 11. This Spec. is not effective at 100% dimming ratio as an exception because it has DC level equivalent to 0Hz. In spite of acceptable range as defined, the PWM Frequency should be fixed and stable for more consistent brightness control at any specific level desired.
- 12. The life time is determined as the time at which brightness of LCD is 50% compare to that of minimum value specified in table 7. under general user condition.

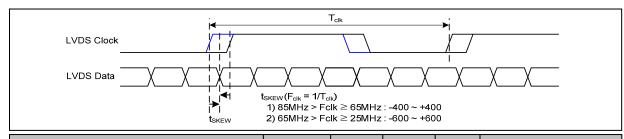
3-2. Interface Connections

This LCD employs two interface connections, a 40 pin connector is used for the module electronics interface and the other connector is used for the integral backlight system.

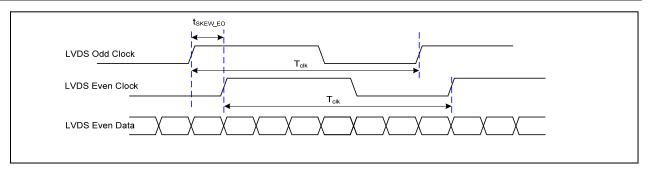
The electronics interface connector is a model CABLINE-VS RECE ASS'Y manufactured by I-PEX.


Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1)

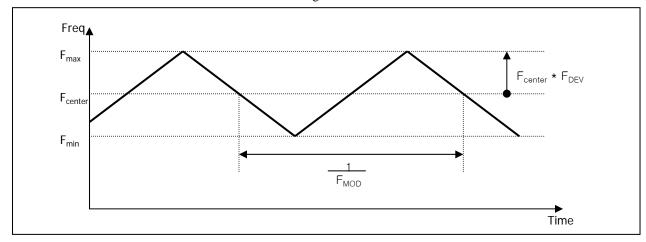
Pin	Symbol	Description	Notes
1	VSS	Ground	
2	VSS	Ground	
3	Odd Rx IN0-	-LVDS Differential Data INPUT(R0-R5,G0)	1, Interface chips
4	Odd Rx IN0+	+LVDS Differential Data INPUT(R0-R5,G0)	1.1 LCD: SW, SW0633 (LCD Controller)
5	Odd Rx IN1-	-LVDS Differential Data INPUT(G1-G5,B0-B1)	including LVDS Receiver 1.2 System : THC63LVDF823A
6	Odd Rx IN1+	+LVDS Differential Data INPUT(G1-G5,B0-B1)	or equivalent
7	Odd Rx IN2-	-LVDS Differential Data INPUT(B2-B5,HS,VS,DE)	* Pin to Pin compatible with LVDS
8	Odd Rx IN2+	+LVDS Differential Data INPUT(B2-B5,HS,VS,DE)	2. Connector
9	Odd Rx CKIN-	-LVDS Differential Clock INPUT	2.1 LCD : 20347-030E-02, I-PEX
10	Odd Rx CKIN+	+LVDS Differential Clock INPUT	or its compatibles
11	VSS	Ground	2.2 Mating: 20345-030T-02PLUG CABLE ASS'Y or equivalent.
12	PWM	PWM for luminance control	2.3 Connector pin arrangement
13	CLKEDID	EDID Clock Input	30 1
14	VDD	Power Supply (3.3V typ.)	│
15	VDD	Power Supply (3.3V typ.)	
16	VDD	Power Supply (3.3V typ.)	
17	VDD	Power Supply (3.3V typ.)	[LCD Module Rear View]
18	DATAEDID	EDID Data Input	
19	GND	Ground	
20	GND	Ground	
21	GND	Ground	
22	GND	Ground	
23	GND	Ground	
24	GND	Ground	
25	GND	Ground	
26	NC	No Connection	
27	VLED	7V-21V LED power	
28	VLED	7V-21V LED power	
29	VLED	7V-21V LED power	
30	VLED	7V-21V LED power	


3-3. LVDS Signal Timing Specifications

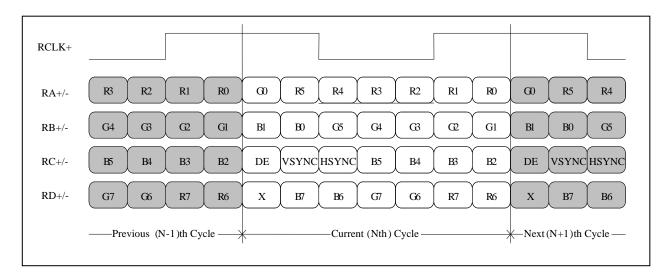
3-3-1. DC Specification


Description	Symb ol	Min	Max	Unit	Notes
LVDS Differential Voltage	V _{ID}	100	600	mV	-
LVDS Common mode Voltage	V _{CM}	0.6	1.8	V	-
LVDS Input Voltage Range	V _{IN}	0.3	2.1	V	-

3-3-2. AC Specification



Description	Symbol	Min	Max	Unit	Notes
LVDS Clock to Data Skow Margin	t _{SKEW}	- 400	+ 400	ps	85MHz > Fclk ≥ 65MHz
LVDS Clock to Data Skew Margin	t _{SKEW}	- 600	+ 600	ps	65MHz > Fclk ≥ 25MHz
LVDS Clock to Clock Skew Margin (Even to Odd)	t _{SKEW_EO}	- 1/7	+ 1/7	T _{clk}	-
Maximum deviation of input clock frequency during SSC	F _{DEV}	-	± 3	%	-
Maximum modulation frequency of input clock during SSC	F _{MOD}	-	200	KHz	-


< Clock skew margin between channel >

< Spread Spectrum >

3-3-3. Data Format

1) LVDS 1 Port

< LVDS Data Format >

3-4. Signal Timing Specifications

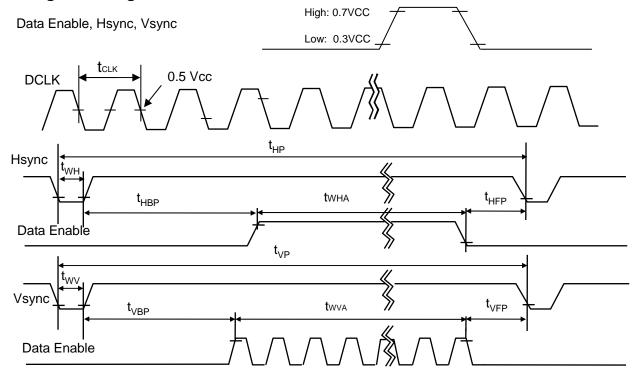

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation.

Table 4. TIMING TABLE

ITEM	Symbol		Min	Тур	Max	Unit	Note
DCLK	Frequency	f _{CLK}	-	69.3	-	MHz	
	Period	Thp	1376	1408	1480		
Hsync	Width	t _{WH}	24	32	40	tCLK	
	Width-Active	t _{WHA}	1280	1280	0 1280		
	Period	t _{VP}	810	820	832		
Vsync	Width	t _{wv}	2	4	6	tHP	
	Width-Active	t _{wva}	800	800	800		
	Horizontal back porch	t _{HBP}	56	72	96	+CL IV	
Data	Horizontal front porch	t _{HFP}	16	24	64	tCLK	
Enable	Vertical back porch	t _{VBP}	6	12	18	+I ID	
	Vertical front porch	t _{VFP}	2	4	8	tHP	

Appendix) all reliabilities are specified for timing specification based on refresh rate of 60Hz. However, LP121WX4 has a good actual performance even at lower refresh rate (e.g. 40Hz or 50Hz) for power saving mode, whereas LP121WX4 is secured only for function under lower refresh rate. 60Hz at Normal mode, 50Hz, 40Hz at Power save mode. Don't care Flicker level (power save mode). Condition : VCC =3.3V

3-5. Signal Timing Waveforms

3-6. Color Input Data Reference

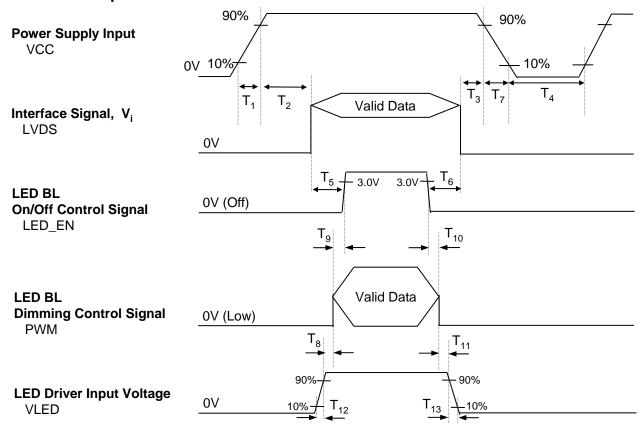

The brightness of each primary color (red,green and blue) is based on the 6-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 5. COLOR DATA REFERENCE

									Inp	out Co	olor D	ata							
	Color			RE	D					GRE	EN					BL	UE		
		MSE						MSE					LSB	MSE					LSB
	T	R 5	R 4	R 3	R 2	R 1		G 5	G 4	G 3	G 2		G 0	B 5	B 4	B 3	B 2	B 1	B 0
	Black	0	0	0			0	0	0	0	0	0	0	0		0		0	0
	Red	1	1			1	1	0	0		0	0	0	0	0	0	0	0	0
	Green	0	0		0	0	0	1	1				1	0	0	0	0	0	0
Basic	Blue	0	0	0	0		0	0	0	0	0	0	0	1		1		1	
Color	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (01)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
RED		ļ																	
	RED (62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (01)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
GREEN																	 		
	GREEN (62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	GREEN (63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	BLUE (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (01)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	 1
BLUE		ļ			 												 		
	BLUE (62)	0	0	0	0	0	0	0	0	0	0	0	0	1	 1	1	1	1	0
	BLUE (63)	0	0	0	0	0	0	0	0	0	 0	0	0	1	 1	1	 1	 1	1
	` ′																		

3-7. Power Sequence

Table 6. POWER SEQUENCE TABLE

Logic		Value		Units	LED		Value		Units
Parameter	Min.	Тур.	Max.	Units	Parameter	Min.	Тур.	Max.	Units
T ₁	0.5	-	10	ms	T ₈	10	-	-	ms
T ₂	0	-	50	ms	T ₉	0	-	-	ms
T ₃	0	-	50	ms	T ₁₀	0	-	-	ms
T ₄	400	-	-	ms	T ₁₁	10	-	-	ms
T ₅	200	-	-	ms	T ₁₂	0.5	-	-	ms
T ₆	200	-	-	ms	T ₁₃	0	-	5000	ms
T ₇	3	-	10	ms					

Note)

- 1. Do not insert the mating cable when system turn on.
- 2. Valid Data have to meet "3-3. LVDS Signal Timing Specifications"
- 3. LVDS, LED_EN and PWM need to be on pull-down condition on invalid status.
- 4. LGD recommend the rising sequence of VLED after the Vcc and valid status of LVDS turn on.

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and Θ equal to 0° .

FIG. 1 presents additional information concerning the measurement equipment and method.

FIG. 1 Optical Characteristic Measurement Equipment and Method

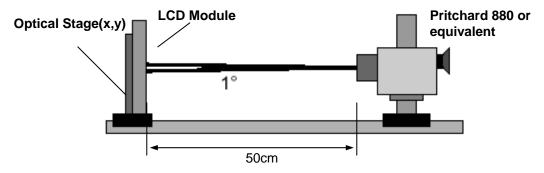


Table 7. OPTICAL CHARACTERISTICS

Ta=25°C, VCC=3.3V, f_{V} =60Hz, f_{CLK} = 69.3MHz

Do no monto n	0:		Values		Linita	Nista
Parameter	Symbol	Min	Тур	Max	Units	Notes
Contrast Ratio	CR	250	-	-		1
Surface Luminance, white	L _{WH}	215	250	-	cd/m ²	2
Luminance Variation (5point)	δ_{WHITE}	70	-	-	%	3
Luminance Variation (13point)	δ_{WHITE}	60	-		%	
Response Time	Tr _R + Tr _D		25]	ms	4
Color Coordinates					1	
RED	RX	TBD	TBD	TBD	1	
	RY	TBD	TBD	TBD	[
GREEN	GX	TBD	TBD	TBD		
	GY	TBD	TBD	TBD	1	
BLUE	BX	TBD	TBD	TBD	1	
	BY	TBD	TBD	TBD	1	
WHITE	WX	0.283	0.313	0.343	1	
	WY	0.299	0.329	0.359		
Viewing Angle					1	5
x axis, right(Φ=0°)	Θr	-	45	-	degree	
x axis, left (Φ=180°)	Θl	-	45	-	degree	
y axis, up (Φ=90°)	Θu	-	15	-	degree	
y axis, down (Φ=270°)	Θd	-	35	-	degree	
Gray Scale					1	6

Note)

1. Contrast Ratio(CR) is defined mathematically as

Surface Luminance with all white pixels

Contrast Ratio =

Surface Luminance with all black pixels

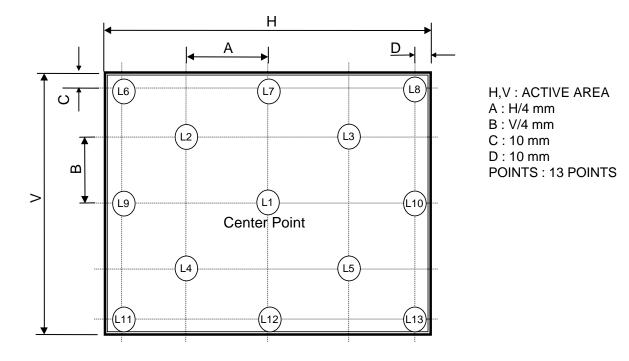
2. Surface luminance is the average of 5 point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 1.

$$L_{WH} = Average(L_1, L_2, ... L_5)$$

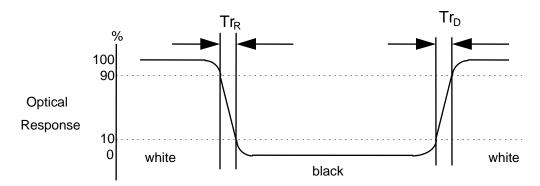
3. The variation in surface luminance , The panel total variation (δ_{WHITE}) is determined by measuring L_N at each test position 1 through 13 and then defined as followed numerical formula. For more information see FIG 2.

$$\delta_{\text{WHITE}} \text{ (\%) = } \frac{ \text{Minimum}(\textbf{L}_{1}, \textbf{L}_{2}, \ \dots \ \textbf{L}_{n}) }{ \text{Maximum}(\textbf{L}_{1}, \textbf{L}_{2}, \ \dots \ \textbf{L}_{n}) } \times \text{100(\%)}$$

- 4. Response time is the time required for the display to transition from white to black (rise time, Tr_R) and from black to white(Decay Time, Tr_D). For additional information see FIG 3.
- 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.
- 6. Gray scale specification


*
$$f_{V} = 60Hz$$

Gray Level	Luminance [%] (Typ)
L0	0.19
L7	1.36
L15	4.20
L23	8.30
L31	14.0
L39	25.0
L47	43.0
L55	69.0
L63	100


FIG. 2 Luminance

<measuring point for surface luminance & measuring point for luminance variation>

FIG. 3 Response Time

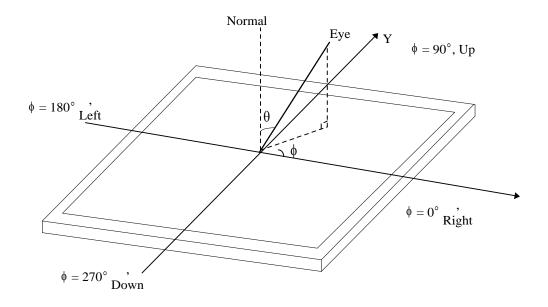
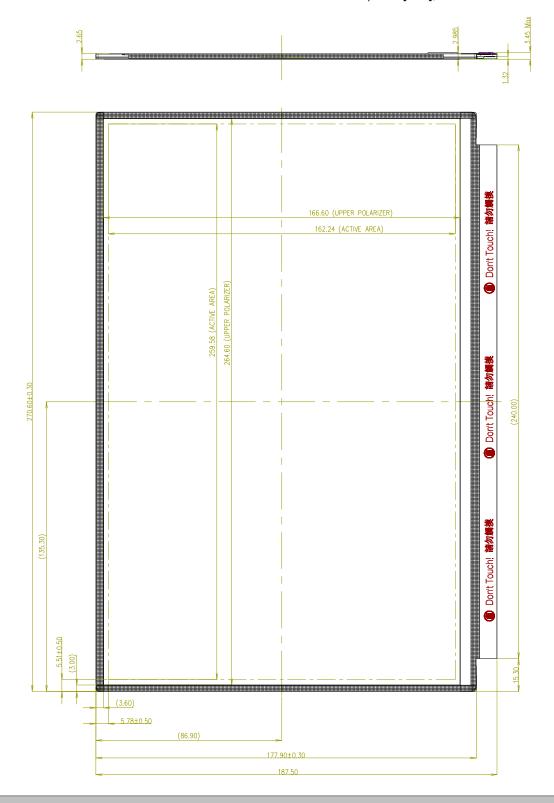

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

FIG. 4 Viewing angle

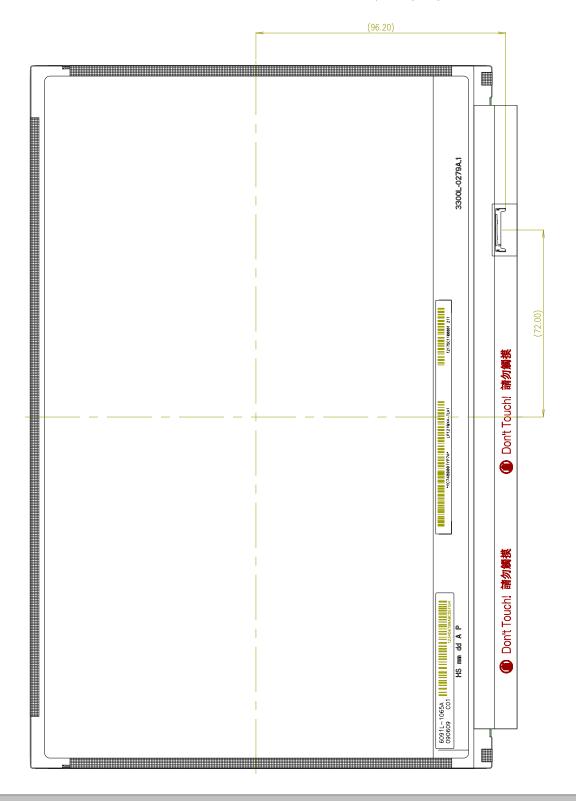
<Dimension of viewing angle range>

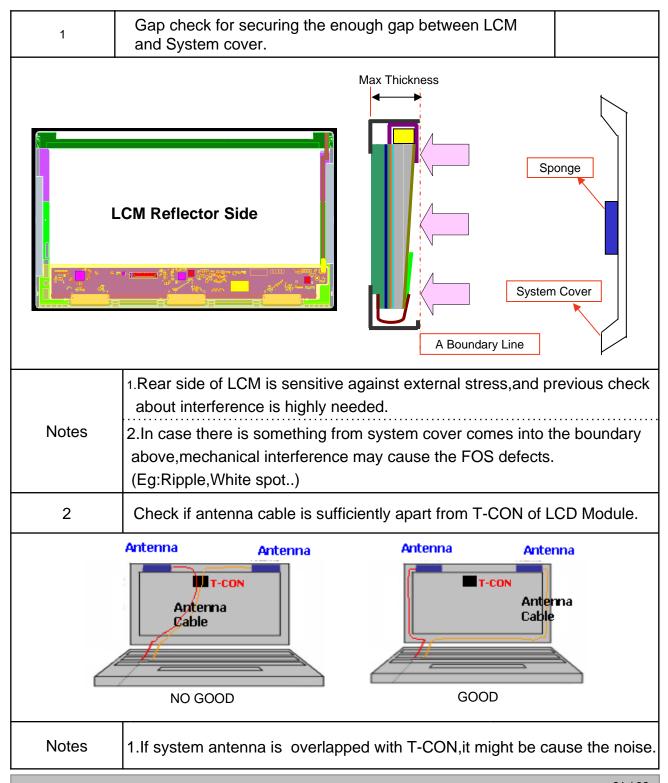
5. Mechanical Characteristics


The contents provide general mechanical characteristics for the model LP121WX4. In addition the figures in the next page are detailed mechanical drawing of the LCD.

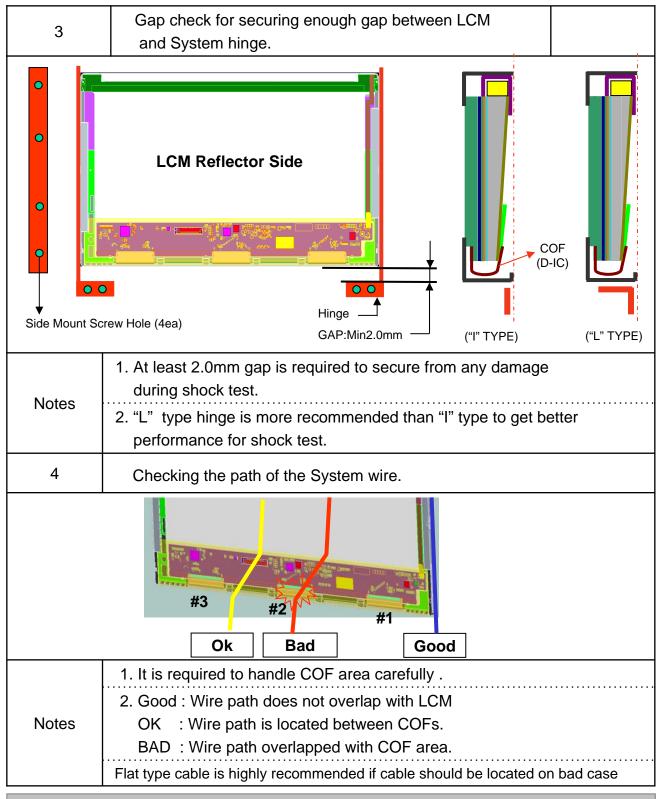
	Horizontal	270.6 ± 0.5mm				
Outline Dimension	Vertical	187.5 ± 0.5mm				
	Thickness	2.95mm (max) – Upper Part 3.45mm (max) – PCB Side				
Bezel Area	Horizontal	264.6 ± 0.5mm				
Dezei Area	Vertical	166.6 ± 0.5mm				
Active Diepley Area	Horizontal	259.594 mm				
Active Display Area	Vertical	162.240 mm				
Weight	155g(Max)					
Surface Treatment	Anti-Glare treatment of the front polarizer					

<FRONT VIEW>

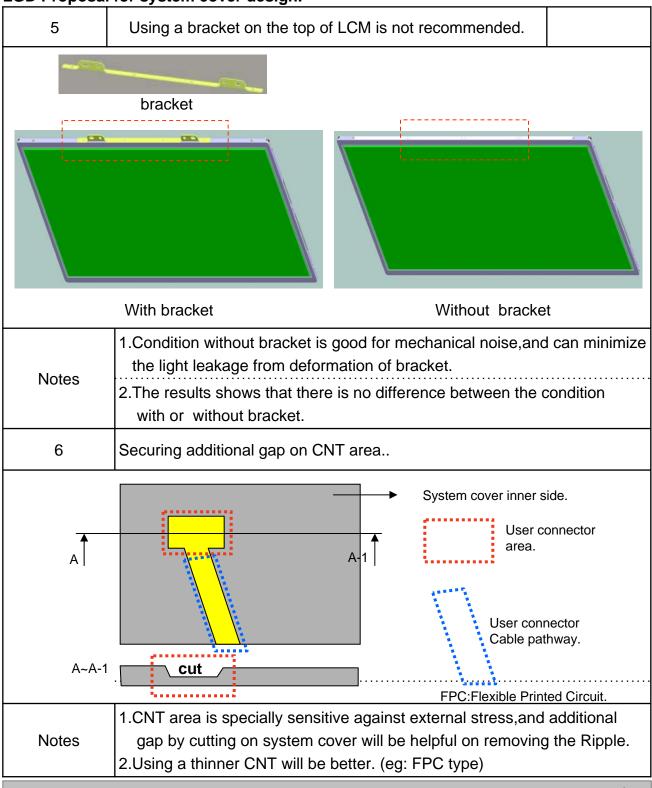

Note) Unit:[mm], General tolerance: ± 0.5mm


<REAR VIEW>

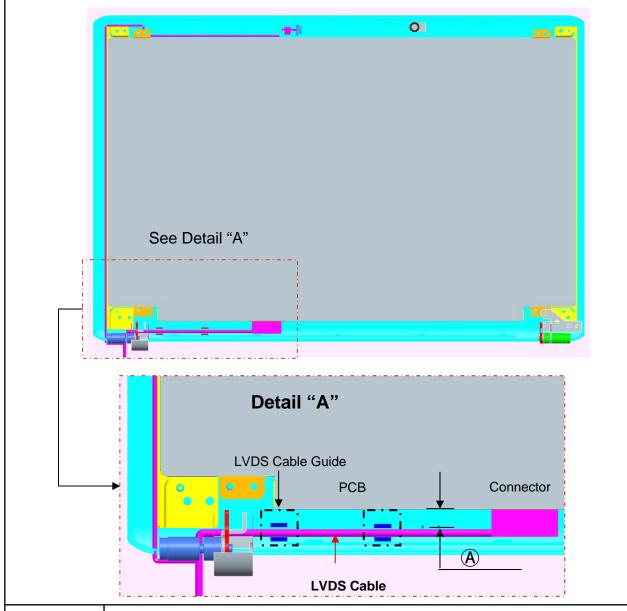
Note) Unit:[mm], General tolerance: ± 0.5mm



LGD Proposal for system cover design.(Appendix)



LGD Proposal for system cover design.


LGD Proposal for system cover design.

LGD Proposal for system cover design.

7 Checking the path of System LVDS Cable.

Notes

 At least 1.0mm gap (A) is required to secure from any damage by overlapping system cable and LCM (This overlap may cause a Abnormal Display after hinge test)

- 2."Flat" type of LVDS cable is more recommended than "Cylinderical" type.
- 3. Making LVDS Cable Guide will give better performance

. (Refer to detail "A")

LGD Proposal for system cover design. 8 Securing additional gap between front cover & LCD at edge of front cover. "A": Overlap between Front Cover & Liquid Crystal area No Good Panel Size Front Bezel Open Size Front Cover Active Area Liquid Crystal Supporter Main **Back Cover** Good Front Cover Supporter Main **Back Cover** Recess Depth(B): ?.?mm Resses Width(A): ?.?mm Recess Width(A): Up / Down /Left /Right * Recess Depth(B): Up / Down /Left /Right 1. Active area which is filled with Liquid Crystal is sensitive against external stress, so additional gap to make recess area on the edge of Notes front cover will be helpful to prevent mechanical Ripple. (Dimension of Recess depends on each model design)

6. Reliability

Environment test condition

No.	Test Item	Conditions				
1	High temperature storage test	Ta= 60°C, 240h				
2	Low temperature storage test	Ta= -20°C, 240h				
3	High temperature operation test	Ta= 50°C, 50%RH, 240h				
4	Low temperature operation test	Ta= 0°C, 240h				
5	Vibration test (non-operating)	Sine wave, 10 ~ 500 ~ 10Hz, 1.5G, 0.37oct/min 3 axis, 1hour/axis				
6	Shock test (non-operating)	Half sine wave, 180G, 2ms one shock of each six faces(I.e. run 180G, 2ms for all six faces)				
7	Altitude operating storage / shipment	0 ~ 10,000 feet (3,048m) 24Hr 0 ~ 40,000 feet (12,192m) 24Hr				

[{] Result Evaluation Criteria }

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

7. International Standards

7-1. Safety

- a) UL 60950-1, Second Edition, Underwriters Laboratories Inc.
 Information Technology Equipment Safety Part 1 : General Requirements.
- b) CAN/CSA C22.2 No.60950-1-07, Second Edition, Canadian Standards Association. Information Technology Equipment Safety Part 1 : General Requirements.
- c) EN 60950-1:2006 + A11:2009, European Committee for Electrotechnical Standardization (CENELEC). Information Technology Equipment Safety Part 1 : General Requirements.
- d) IEC 60950-1:2005, Second Edition, The International Electrotechnical Commission (IEC). Information Technology Equipment Safety Part 1 : General Requirements.

7-2. EMC

- a) ANSI C63.4 "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz." American National Standards Institute (ANSI), 2003.
- b) CISPR 22 "Information technology equipment Radio disturbance characteristics Limit and methods of measurement." International Special Committee on Radio Interference (CISPR), 2005.
- c) CISPR 13 "Sound and television broadcast receivers and associated equipment Radio disturbance characteristics – Limits and method of measurement." International Special Committee on Radio Interference (CISPR), 2006.

7-3. Environment

a) RoHS, Directive 2002/95/EC of the European Parliament and of the council of 27 January 2003

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

A B C D E F G H I J K L

A,B,C : SIZE(INCH) D : YEAR

E: MONTH $F \sim M$: SERIAL NO.

Note

1. YEAR

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Mark	1	2	3	4	5	6	7	8	9	0

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

a) Package quantity in one box: 30 pcs

b) Box Size: 480X370X244

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.
 - Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm~200mV(Over~and~under~shoot~voltage)$
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.)

 And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object.

 It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.
 - Please carefully peel off the protection film without rubbing it against the polarizer.
- (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.