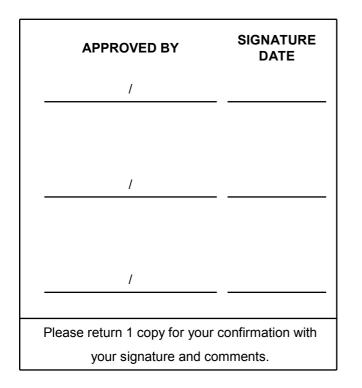
SPECIFICATION FOR APPROVAL

() Preliminary Specification

(
) Final Specification


Titl	۵
110	e


BUYER	
MODEL	

17" WXGA T	FT LCD
------------	--------

SUPPLIER	LG Display Co., Ltd.
*MODEL	LC170WXL
SUFFIX	SAA1(RoHS Verified)

*When you obtain standard approval, please use the above model name without suffix

CONTENTS

Number	ITEM	Page		
	COVER	1		
	CONTENTS			
	RECORD OF REVISIONS	3		
1	GENERAL DESCRIPTION	4		
2	ABSOLUTE MAXIMUM RATINGS	5		
3	ELECTRICAL SPECIFICATIONS	6		
3-1	ELECTRICAL CHARACTERISTICS	6		
3-2	INTERFACE CONNECTIONS	8		
3-3	SIGNAL TIMING SPECIFICATIONS	10		
3-4	SIGNAL TIMING WAVEFORMS	11		
3-5	COLOR DATA REFERENCE	12		
3-6	POWER SEQUENCE	13		
4	OPTICAL SPECIFICATIONS	15		
5	MECHANICAL CHARACTERISTICS	19		
6	RELIABILITY	22		
7	INTERNATIONAL STANDARDS	23		
7-1	SAFETY	23		
7-2	EMC	23		
8	PACKING	24		
8-1	DESIGNATION OF LOT MARK	24		
8-2	PACKING FORM	24		
9	PRECAUTIONS	25		
9-1	MOUNTING PRECAUTIONS	25		
9-2	OPERATING PRECAUTIONS	25		
9-3	ELECTROSTATIC DISCHARGE CONTROL	26		
9-4	PRECAUTIONS FOR STRONG LIGHT EXPOSURE	26		
9-5	STORAGE	26		
9-6	HANDLING PRECAUTIONS FOR PROTECTION FILM	26		

RECORD OF REVISIONS

1.0 Feb. 9, 2009 - Final Specification Image: Specification Image: Specification Image: Specification Image: Specification <	Revision No.	Revision Date	Page	Description
Image: series of the series	1.0	Feb. 9, 2009	-	Final Specification
Image: section of the section of th				
Image: section of the section of th				
Image: section of the section of th				
Image: section of the section of th				
Image: series of the series				
Image: series of the series				
Image: series of the series				
Image: series of the series				
Image: series of the series				
Image: section of the section of th				
Image: section of the section of th				
Image: section of the section of th				
Image: set of the				
Image: state in the state in				
Image: state of the state of				
Image: section of the section of th				
Image: set of the				
Image: state of the state of				
Image: second				
Image: state of the state of				
Image: Constraint of the second sec				
Image: Constraint of the second sec				
Image: Constraint of the second sec				
		L		

1. General Description

The LC170WXL is a Color Active Matrix Liquid Crystal Display with an LED backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive display type which is operating in the normally black mode. It has a 16.8 inch diagonally measured active display area with WXGA resolution (768 vertical by 1366 horizontal pixel array).

Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arrayed in vertical stripes. Gray scale or the luminance of the sub-pixel color is determined with a 8-bit gray scale signal for each dot. Therefore, it can present a palette of more than 16.7M(true) colors.

It has been designed to apply the 8-bit 1-port LVDS interface.

It is intended to support LCD TV, PCTV where high brightness, super wide viewing angle, high color gamut, high color depth and fast response time are important.

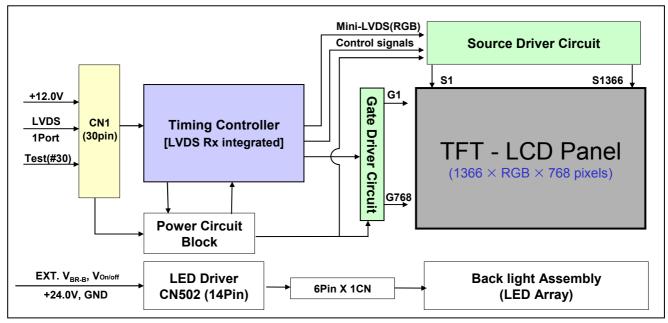


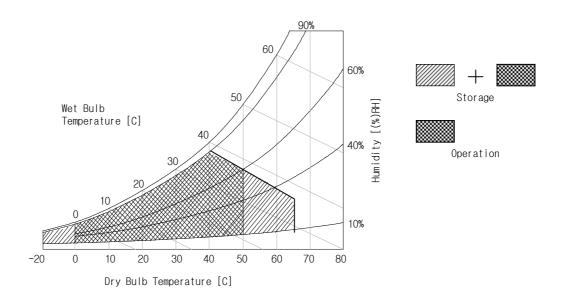
Figure 1. Block diagram

General Features

Active Screen Size	16.84 inches(427.816mm) diagonal
Outline Dimension	397.9 (H) $ imes$ 234.6 (V) $ imes$ 13.5 (D) mm (Typ.)
Pixel Pitch	0.091(H) x 0.273(V) mm x RGB
Pixel Format	1366 horiz. by 768 vert. Pixels, RGB stripe arrangement
Color Depth	8-bit, 16.7 M colors
Luminance, White	350 cd/m ² (Center 1point ,Typ.)
Viewing Angle (CR>10)	Viewing angle free (R/L 178 (Min.), U/D 178 (Min.))
Power Consumption	Total 20.1W (Typ.) (Logic=2.5 W, LED Driver=18W)
Weight	1130g (Тур.)
Display Mode	Transmissive mode, Normally black
Surface Treatment	Hard coating(3H), Anti-glare treatment of the front polarizer (Haze 13%)

Ver. 1.0

2. Absolute Maximum Ratings


The following items are maximum values which, if exceeded, may cause faulty operation or damage to the LCD module.

Parameter		Symbol		Unit	Remark		
	arameter	Symbol	Min	Max	Offic	Reindik	
Power Input	LCM	Vlcd	-0.3	+14.0	VDC	at 25 \pm 2 °C	
Voltage LED Driver		VBL	-0.3	+27.0	VDC		
ON/OFF Co	ON/OFF Control Voltage		-0.3	+5. 5	VDC		
Brightness (Brightness Control Voltage		0	+5.0	VDC		
Operating T	Operating Temperature		0	+50	°C		
Storage Temperature		Тѕт	-20	+65	°C	Note 1.2	
Operating Ambient Humidity		Нор	10	90	%RH	Note 1,2	
Storage Hur	nidity	Нѕт	10	90	%RH		

Table 1. ABSOLUTE MAXIMUM RATINGS

Notes :

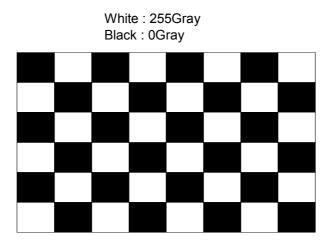
- 1. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 °C Max, and no condensation.
- 2. Gravity mura can be guaranteed under 40 °C condition.
- 3. Abnormal visual problems by panel front side surface temperature can be occurred in specific range (60 °C ~ 65 °C), But materials (exp : polarizer) are not damaged permanently in this range, TSUR.

3. Electrical Specifications

3-1. Electrical Characteristics

It requires two power inputs. One is employed to power for the LCD circuit. The other Is used for the LED backlight and LED Driver circuit.

Table 2. ELECTRICAL CHARACTERISTICS


Parameter	Symbol	Value			Unit	Note
	Gymbol	Min	Тур	Max	0 m	Note
Circuit :						
Power Input Voltage	VLCD	11.4	12.0	12.6	VDC	
Dower Input Current	ILCD	-	210	240	mA	1
Power Input Current		-	250	280	mA	2
Power Consumption PLC		-	2.5		Watt	1
Rush current	Irush	-	-	2.4	А	3

Notes:

1. The specified current and power consumption are under the V_{LCD}=12.0V, $25 \pm 2^{\circ}$ C, f_V=60Hz condition whereas mosaic pattern(8 x 6) is displayed and f_V is the frame frequency.

2. The current is specified at maximum current pattern.

3. The duration of rush current is about 2ms and rising time of power input is 0.5ms (min.).

Mosaic Pattern(8 x 6)

Table 3. ELECTRICAL CHARACTERISTICS (Continue)

Item	Symbol	Condition	Min	Тур	Max	Unit	Remark		
Input Voltage	Vin		22.8	24.0	25.2	V			
Input Current	lin	Vin = 24V, EXTVbr-B = 100%		0.75	0.8	A	Aging 2hrs @ LCM,1		
Input Power	Pin	Vin = 24V EXTVbr-B=100%		18	19.2	w			
Back light		LED ON = High	2.5	-	5.25				
ON/OFF Control	Von/off	LED OFF = Low	-0.3	-	0.8	V			
Boost up Voltage	Vout	Vin = 24V, Vbr-B = 100%	42	45	48	Vdc	Aging 2hrs @ LCM,1		
				High Level	2.4	-	5.0	Vdc	
PWM Duty	EXT Vbr-B	Low Level	0.0	-	0.8	Vdc			
		Vin = 24V EXTVbr-B = 20%	20%		100%	Duty	Input signal, 5		
LED Current	lout	Vin = 24V EXTVbr-B = 100%	75	80	85	mA	@1ch		
Boost Frequency	Freq.	Vin = 24V, EXTVbr-B = 3.3V	390	410	430	KHz	1,2		
Burst Mode	Fb	Vin=24V	-	120	-	Hz	3		
Frequency	FD	VIII=24V	-	100	-	ΠZ	3		
Life Time			30,000	50.000		Hrs	4		

Notes :

 Electrical characteristics are determined after the unit has been 'ON' and stable for approximately 120 minutes at 25±2°C. The specified current and power consumption are under the typical supply Input voltage 24V it is total power consumption.

The ripple voltage of the power supply input voltage is under 0.5 Vp-p. LGD recommend Input Voltage is 24.0V \pm 5%.

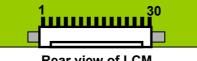
2. Electrical characteristics are determined within 30 minutes at $25\pm2^{\circ}$ C.

The specified currents are under the typical supply Input voltage 24V.

- 3. LGD recommend that the PWM freq. is synchronized with two times (NTSC) or double (PAL) harmonic of Vsync signal of system.
- 4. The life time is determined as the time at which brightness of LED is 50% compare to that of initial value at the typical LED current, 25±2°C
- 5. The low duty(3%~20%)can be used, but continuous driving is recommended to be used within 10minutes

3-2. Interface Connections

This LCD module employs two kinds of interface connection, a 30-pin connector is used for the module electronics and 14-pin connector is used for the integral backlight system.


3-2-1. LCD Module

- LCD Connector(CN1) : FI-X30SSL-HF (Manufactured by JAE)

- Mating Connector : FI-X30C2L (Manufactured by JAE) or Equivalent

Table 4. MODULE CONNECTOR(CN1) PIN CONFIGURATION

Pin No.	Symbol	Description	Note
1	VLCD	Power Supply +12.0V	
2	VLCD	Power Supply +12.0V	
3	VLCD	Power Supply +12.0V	
4	VLCD	Power Supply +12.0V	
5	GND	Ground	
6	GND	Ground	
7	GND	Ground	
8	GND	Ground	
9	LVDS Select	'H' =JEIDA , 'L' or NC = VESA	Appendix V
10	NC	No Connection	Disable
11	GND	Ground	
12	RA-	LVDS Receiver Signal(-)	
13	RA+	LVDS Receiver Signal(+)	
14	GND	Ground	
15	RB-	LVDS Receiver Signal(-)	
16	RB+	LVDS Receiver Signal(+)	
17	GND	Ground	
18	RC-	LVDS Receiver Signal(-)	
19	RC+	LVDS Receiver Signal(+)	
20	GND	Ground	
21	RCLK-	LVDS Receiver Clock Signal(-)	
22	RCLK+	LVDS Receiver Clock Signal(+)	
23	GND	Ground	
24	RD-	LVDS Receiver Signal(-)	
25	RD+	LVDS Receiver Signal(+)	
26	GND	Ground	
27	Reserved	No Connection	
28	Reserved	No Connection	
29	GND	Ground	
30	GND	Ground	

Rear view of LCM

Notes: 1. All GND(ground) pins should be connected together to the LCD module's metal frame.

- 2. All VLCD (power input) pins should be connected together.
- 3. All Input levels of LVDS signals are based on the EIA 644 Standard.
- 4. Specific pin No. #30 is used for "No signal detection" of system signal interface. It should be GND for NSB(No Signal Black) during the system interface signal is not. If this pin is "H", LCD Module displays AGP(Auto Generation Pattern).

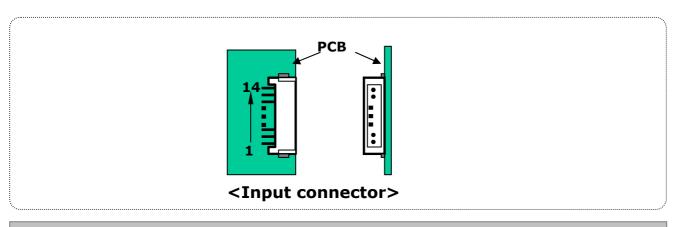
3-2-2. LED Driver For Backlight

- LED Connector : SM14B-SRSS-TB(Manufactured by JST)
- Mating Connector : SHR-14V-S-B(With protrusions) or SHR-14V-S(Without protrusions) ; (Manufacture by JST)

Table 5.	LED Drive	r CONNECTOR	PIN CONFIGULATION
----------	-----------	-------------	-------------------

Pin No	Symbol	Description	Note
1	VBL	Power Supply +24.0V	
2	VBL	Power Supply +24.0V	
3	VBL	Power Supply +24.0V	
4	VBL	Power Supply +24.0V	
5	VBL	Power Supply +24.0V	
6	GND	Backlight Ground	
7	GND	Backlight Ground	
8	GND	Backlight Ground	1
9	GND	Backlight Ground	
10	GND	Backlight Ground	
11	VBR-A	N.C	
12	VON/OFF	Backlight ON/OFF control	2
13	EXTVBR-B	External PWM	3
14	Status	LED Status	4

Notes :


1. GND should be connected to the LCD module's metal frame.

2.0N : 2.4 \sim 5.0V / OFF : 0.0 \sim 0.8V . Open or 'H' for B/L On is default status

3. High : LED ON/ Low : LED OFF, Pin#13 can be opened. (if Pin #13 is open , EXTVBR-B is 100%)

4. Normal : Under 0.7V, Abnormal : External Pull-up

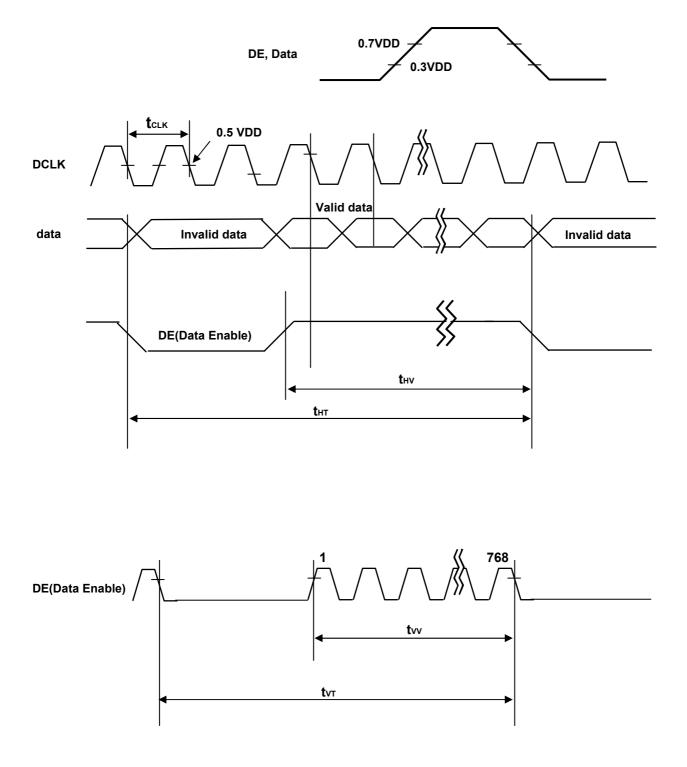
5. Each impedance of 12 and 13 is 88 [K Ω] and 70 [K Ω].

Ver. 1.0

3-3. Signal Timing Specifications

Table 6 shows the signal timing required at the input of the LVDS transmitter. All of the interface signal timings should be satisfied with the following specification for normal operation.

Table 6. TIMING TABLE for NTSC & PAL


[DE (Data Enable) Only]

ITEM	Symbol		Min	Тур	Мах	Unit	Note
	Period	tc∟ĸ	12.5	13.8	15.8	ns	
DCLK	Frequency	-	63	72.4	80	MHz	
	Period	tнт	1456	1528	1920	t CLK	
	Horizontal Valid	tн∨	1366	1366	1366	tclk	
	Horizontal Blank	-	tHP- tH∨	162	thp- thv		
Hsync	Frequency	fн	45	47.4	50	KHz	
	Width	twн	-	32	-	tськ	
	Horizontal Back Porch	tнвр	24	48	-		
	Horizontal Front Porch	thep	40	80	-		
	Period	t∨⊤	776 (894)	790 (948)	1063 (1008)	tHP	
	Vertical Valid	t∨v	768	768	768	tHP	
	Vertical Blank	-	tvp- tvv	22	tvp- tvv	tHP	
Vsync	Frequency	f∨	57 (47)	60 (50)	63 (53)	Hz	Note 1) NTSC : 57~63Hz
	Width	tw∨	-	5 (12)	-	tHP	(PAL : 47~53Hz)
	Vertical Back Porch	tvвр	5	15 (128)	-	Hz	
	Vertical Front Porch	tvfp	1	2 (40)	-	tHP	

Note :

- 1. The input of HSYNC & VSYNC signal does not have an effect on normal operation(DE Only Mode). If you use spread spectrum of EMI, add some additional clock to minimum value for clock margin.
- 2. The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rate and the horizontal frequency
- 3. Timing should be set based on clock frequency.

3-4. Signal Timing Waveforms

3-5. Color Data Reference

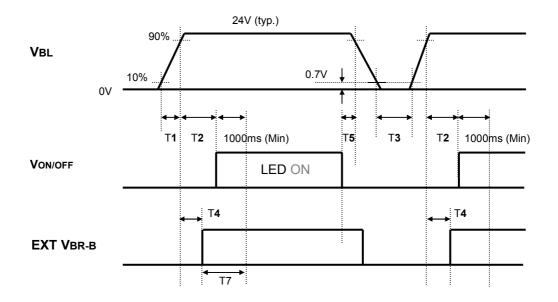

The brightness of each primary color(red,green,blue) is based on the 8-bit gray scale data input for the color. The higher binary input, the brighter the color. Table 7 provides a reference for color versus data input.

Table 7. COLOR DATA REFERENCE

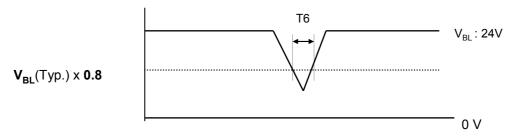
													Inpu	ut Co	olor	Data	a									
	Color					RE	D							GRE	EEN							BL	UE			
			MS								MS								MS							SB
									R1																	
	Black		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)		1	1	1	1	1	1	1	1	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (255)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue (255)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (001)		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED																										
	RED (254)		1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (255)		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (001)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
GREEN			İ																							
	GREEN (254)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN (255)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (001)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE																										
	BLUE (254)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	BLUE (255)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

3-6. Power Sequence

3-6-1. LCD Driving circuit


Table 8. POWER SEQUENCE

Deremeter		l la it	Natas		
Parameter	Min	Max	Unit	Notes	
T1	0.5	-	20	ms	
T2	0.5	-	-	ms	4, 5
Т3	200	-	-	ms	3
T4	200	-	-	ms	3
T5	0	-	-	ms	
Т6	2.0	-	-	s	6
Τ7	0.5	-	T2	ms	4
Т8	0	-	-	ms	4


Note : 1. Please avoid floating state of interface signal at invalid period.

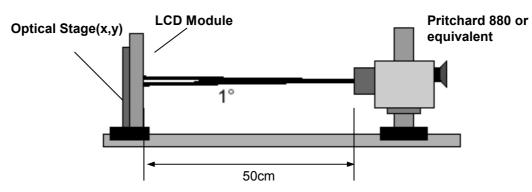
- 2. When the interface signal is invalid, be sure to pull down the power supply V_{LCD} to 0V.
- 3. The T3/T4 is recommended value, the case when failed to meet a minimum specification, abnormal display would be shown. There is no reliability problem.
- 4. If the on time of signals(Interface signal and Option signals) precedes the on time of Power(V_{LCD}), it will be happened abnormal display.
- 5. T6 should be measured after the Module has been fully discharged between power off and on period.

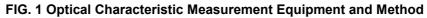
3-6-2. Sequence for LED Driver

3-6-3. Deep condition for LED Driver

Table 9. Power Sequence for LED Driver

Parameter		Values		Units	Remarks
Falameter	Min	Тур	Max	Units	Remarks
T1	20	-	-	ms	1
T2	500	-	-	ms	
Т3	200	-	-	ms	
T4	0		-	ms	2
T5	10	-	-	ms	
Т6	-	-	10	ms	V_{BL} (Тур) х 0.8
T7	1000	-	-	ms	3


Notes : 1. T1 describes rising time of 0V to 24V and this parameter does not applied at restarting time. 2. T4(max) is less than T2.


3. In T7 section, EXTVBR-B is recommended 100%.

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable in a dark environment at $25\pm2^{\circ}$ C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 °.

FIG. 1 shows additional information concerning the measurement equipment and method.

Table 10. OPTICAL CHARACTERISTICS

Dam		Quest	- 1		Value		11-24	Nista
Para	ameter	Symb	OI	Min	Тур	Max	Unit	Note
Contrast Ratio		CR		700	900	-		1
Surface Lumina	nce, white	L _{WH}		280	350	-	cd/m ²	2
Luminance Varia	ation	δ _{WHITE} 5P		-	-	1.3		3
Response Time	Rise Time	Tr _R		-	8	12	ms	4,5
Response nine	Decay Time	Tr _D		-	10	15	IIIS	4,5
RED		Rx			0.640			
	RED	Ry			0.336]		
	GREEN	Gx Gy			0.282]		
Color Coordinates	GILLIN			Тур	0.638	Тур		
[CIE1931]	BLUE	Bx		-0.03	0.148	+0.03		
		Ву			0.064]		
	WHITE	Wx			0.279			
		Wy			0.292]		
Viewing Angle (CR>10)								
xa	axis, right(φ=0°)	θr		89	-	-		
xa	axis, left (థ=180°)	θI		89	-	-		
y a	axis, up (φ=90°)	θu		89	-	-	degree	6
y a	y axis, down (_{\$=270°})		θd		-	-		
Gray Scale				-	-	-		7

Ver. 1.0

Notes :

1. Contrast Ratio(CR) is defined mathematically as :

Surface Luminance at all white pixels CRn -

- 2. Surface luminance are determined after the unit has been 'ON' and 1 Hour after lighting the backlight in a dark environment at 25±2°C. Surface luminance is the luminance value at center 1-point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see the FIG. 2.
- 3. The variation in surface luminance , δ WHITE and δ BLACK are defined as : - δ WHITE(5P) = Maximum(L_{on1},L_{on2}, L_{on3}, L_{on4}, L_{on5}) / Minimum(L_{on1},L_{on2}, L_{on3}, L_{on4}, L_{on5}) Where Lon1 to Lon5 are the luminance with all pixels displaying white at 5 locations . For more information, see the FIG. 2.
- 4. Response time is the time required for the display to transition from black to white (Rise Time, Tr_R) and from white to black (Decay Time, Tr_D). For additional information, see FIG 3.
- 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD module surface. For more information, see the FIG. 4.
- 6. Gray scale specification Gamma Value is approximately 2.2. For more information, see the Table 11.
- 7. Image sticking When it changes into pattern-B after a 1-hour drive by pattern-A, it disappears within 10 minutes. For more information, see the FIG. 5.

Gray Level		Luminance [%]	
Glay Level	Minimum	Typical	Maximum
LO		0.111	
L15		0.27	
L31		1.00	
L47		2.40	
L63		4.60	
L79		7.60	
L95		11.4	
L111		16.0	
L127		21.6	
L143		28.0	
L159		35.4	
L175		43.7	
L191		53.0	
L207		63.2	
L223		74.5	
L239		88.0	
L255		100	
Ver. 1.0			16 / 36

Table 11. GRAY SCALE SPECIFICATION

Measuring point for surface luminance & measuring point for luminance variation.

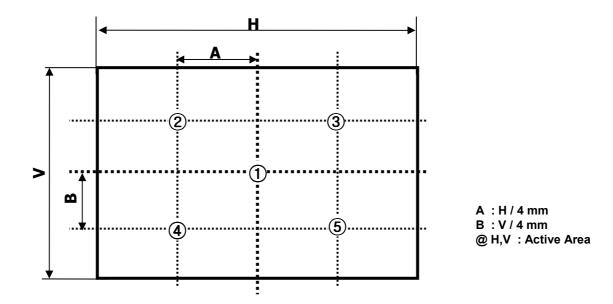


FIG. 2 5 Points for Luminance Measure

Response time is defined as the following figure and shall be measured by switching the input signal for "Gray(N)" and "Gray(M)".

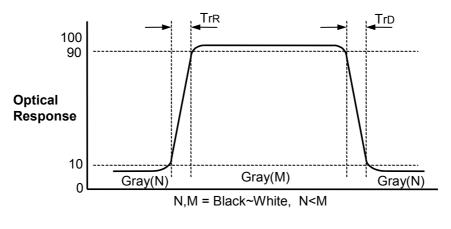


FIG. 3 Response Time

Dimension of viewing angle range

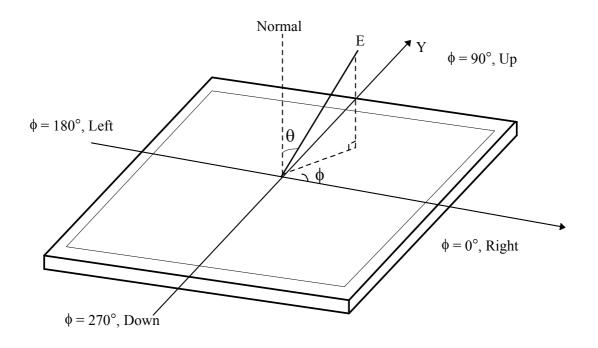
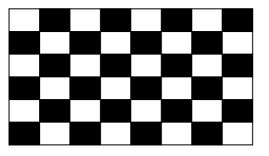
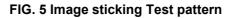



Image sticking


When it changes into pattern-B after a 1-hour drive by pattern-A, it disappears within 10 minutes.

<Pattern-A, Chess board (8x6)>

<Pattern-B, Mid-gray(127 gray)>

5. Mechanical Characteristics

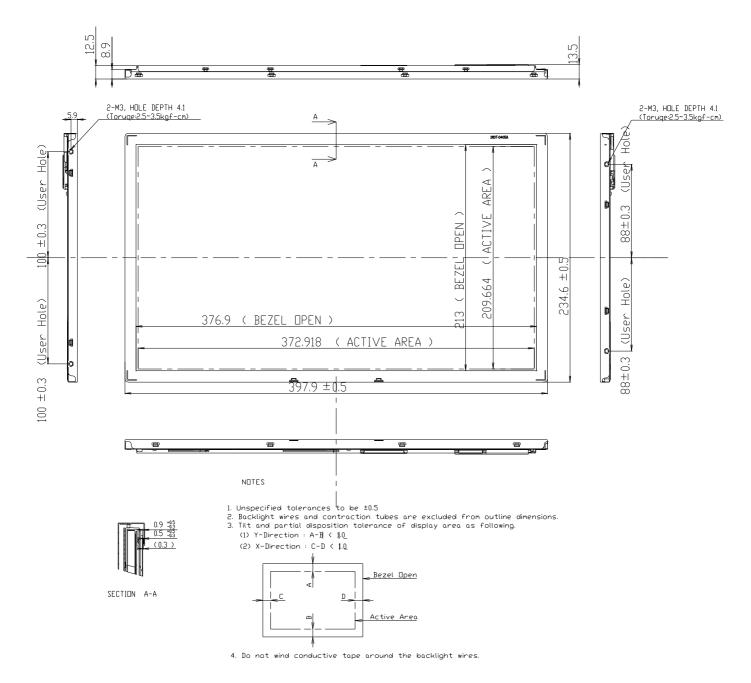
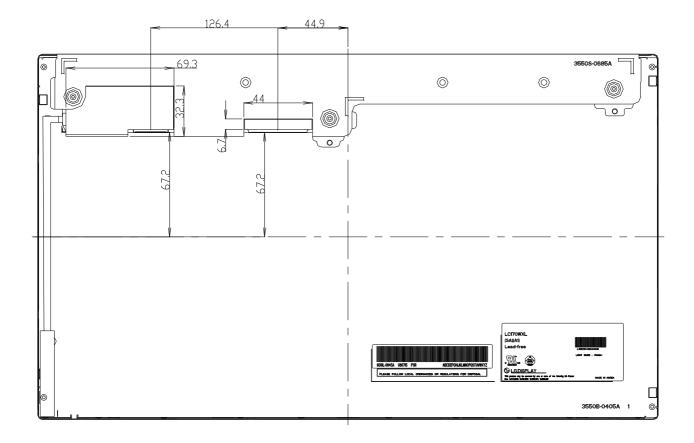

Table 12 provides general mechanical characteristics.

Table 12. MECHANICAL CHARACTERISTICS

Item	Value					
	Horizontal	397.9 mm				
Outline Dimension	Vertical	234.6 mm				
	Depth	13.5 mm				
Densil Area	Horizontal	376.9 mm				
Bezel Area	Vertical	213.0 mm				
Active Display Area	Horizontal	372.918 mm				
Active Display Area	Vertical	209.664 mm				
Weight	1130g (Typ.) , 1180g (Max.)					


Note : Please refer to a mechanic drawing in terms of tolerance at the next page.

<FRONT VIEW>

LC170WXL

<REAR VIEW>

6. Reliability

Table 13. ENVIRONMENT TEST CONDITION

No.	Test Item	Condition						
1	High temperature storage test	Ta= 60°C, 500h						
2	Low temperature storage test	Ta= -20°C, 500h						
3	High temperature operation test	Ta= 50°C, 80%RH, 500h Ta= 60°C, 500h(2000h)						
4	Low temperature operation test	Ta= 0°C, 500h(1000h)						
5	Heat cycle test	Ta= -20 °C ~ 60 °C, 30min/5min/30min, 100cycles						
6	Soldering heat cycle test	Ta= -40 °C ~ 80 °C, 30min/5min/30min, 200cycles						
7	Vibration test (non-operating)	Wave form : random Vibration level : 1.0Grms Bandwidth : 10-300Hz Duration : X,Y,Z, 10 min One time each direction						
8	Shock test (non-operating)	Shock level : 100Grms Waveform : half sine wave, 2ms Direction : ±X, ±Y, ±Z One time each direction						
9	ESD test	Condition : 150pF, 330 ohm Case , air Evaluation : ± 15kV						
10	Humidity storage test	Ta= 40 °C, 70%RH, 240h						

Note : Before and after Reliability test, LCM should be operated with normal function.

7. International Standards

7-1. Safety

- a) UL 60065, 7th Edition, dated June 30, 2003, Underwriters Laboratories, Inc., Standard for Audio, Video and Similar Electronic Apparatus.
- b) CAN/CSA C22.2, No. 60065:03, Canadian Standards Association, Standard for Audio, Video and Similar Electronic Apparatus.
- c) IEC60065:2001, 7th Edition CB-scheme and EN 60065:2002, Safety requirements for Audio, Video and Similar Electronic Apparatus.

7-2. EMC

- a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992
- b) CISPR13 "Limits and Methods of Measurement of Radio interference characteristics of Sound and Television broadcast receivers and associated equipment"
 CISPR22 "Limits and Methods of Measurement of Radio interference characteristics of Information Technology Equipment" International Special Committee on Radio Interference.
- c) EN55013 "Limits and Methods of Measurement of Radio interference characteristics of Sound and Television broadcast receivers and associated equipment"
 EN55022 "Limits and Methods of Measurement of Radio interference characteristics of Information Technology Equipment" European Committee for Electro Technical Standardization.(CENELEC), 1988(Including A1:2000)

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

A,B,C : SIZE(INCH)

D : YEAR

F : PANEL CODE

H : ASSEMBLY CODE

E : MONTH G : FACTORY CODE I,J,K,L,M : SERIAL NO.

Note 1 YEAR

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Mark	1	2	3	4	5	6	7	8	9	0

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	4	4	5	6	7	8	9	А	В	С

b) Location of Lot Mark

Serial NO. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

- a) Package quantity in one Box : 12 pcs
- b) box Size : 375 mm X 320 mm X 484 mm.

9. Precautions

Please pay attention to the followings when you use this TFT LCD module.

9-1. Mounting Precautions

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzine. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. Operating Precautions

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm 200 \text{mV}(\text{Over and under shoot voltage})$
- (2) Response time depends on the temperature. (In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (7) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can't be operated its full characteristics perfectly.
- (8) A screw which is fastened up the steels should be a machine screw.
- (if not, it can causes conductive particles and deal LCM a fatal blow)
- (9) Please do not set LCD on its edge.

9-3. Electrostatic Discharge Control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. Precautions for Strong Light Exposure

Strong light exposure causes degradation of polarizer and color filter.

9-5. Storage

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object.It is recommended that they be stored in the container in which they were shipped.

9-6. Handling Precautions for Protection Film

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ionblown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

APPENDIX - I-1

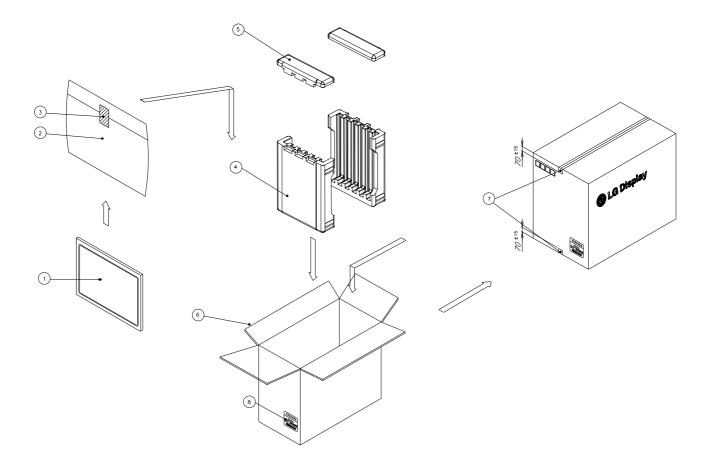
Required signal assignment for Flat Link (DS90C385) Transmitter(Pin9="L")

Host System		0S90C385				Timing
24 Bit	or	Compatible	FI-X	(30SSL	-HF	Controller
RED0	51					
RED1	52	TxOUT0-	48	12	>	RxIN0-
RED2	54	TxOUT0+	47	13	100Ω ≶	RxIN0+
RED3	55					
RED4	56					
RED5	3	TxOUT1-	46	15		RxIN1-
RED6	50	TxOUT1+	45	16	100Ω ≶	RxIN1+
RED7	2					
GREEN0	4		10			
GREEN1	6	TxOUT2-	42	18	4000 <	RxIN2-
GREEN2	7	TxOUT2+	41	19	100Ω ≶	RxIN2+
GREEN3	11					
GREEN4	12					
GREEN5	14	TxCLKOUT-	40	21	4000 2	RxCLKIN-
GREEN6	8	TxCLKOUT+	39	22	100Ω ≶	RxCLKIN+
GREEN7	10					
BLUE0	15		20			
BLUE1	19	TxOUT3-	38	24	100Ω ≶	RxIN3-
BLUE2	20	TxOUT3+	37	25	10022 5	RxIN3+
BLUE3	22					
BLUE4	23			9		
BLUE5	24			30		LCD Test
BLUE6	16					
BLUE7	18					
Hsync	27					
Vsync	28		GND	1		L
Data Enable	30		55			Iodulo
CLOCK	31					

Notes:

- 1. The LCD module uses a 100 Ohm(Ω) resistor between positive and negative lines of each receiver input.
- 2. Refer to LVDS transmitter data sheet for detail descriptions. (THC63LVD823 or Compatible)
- 3. '7' means MSB and '0' means LSB at R,G,B pixel data.

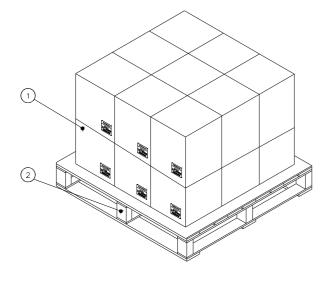
APPENDIX- I-2

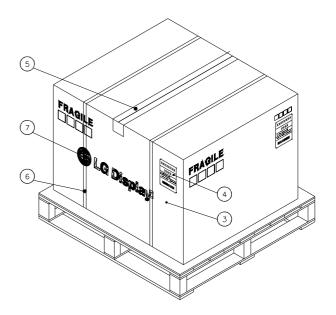

Required signal assignment for Flat Link Transmitter (Pin9="H")

Host System 24 Bit	DS90C385 or Compatible	FI-X30S	SSL-HF	Timing Controlle
RED0	50	48		
RED1	2 TxOUT0-	47 12	2 100Ω ≶	RxIN0-
RED2	51 TxOUT0+	47 1:	3	RxIN0+
RED3	52			
RED4	54	46		
RED5	55 TxOUT1-	45 1	5 100 Ω ≷	RxIN1-
RED6	56 TxOUT1+	45 10	6	RxIN1+
RED7	3			
GREEN0	8	42		
GREEN1		41 18	⁸ 100 Ω ≷	RxIN2-
GREEN2	4 TxOUT2+	41 19	9 10052 5	RxIN2+
GREEN3	6			
GREEN4	7			
GREEN5	11 TxCLKOUT-	40 2	1 1000 5	RxCLKIN-
GREEN6	12 TxCLKOUT+	39 2	ן 100Ω ≶	RxCLKIN+
GREEN7	14			
BLUE0	16			
BLUE1	18 TxOUT3-	38 24	4 4000 3	RxIN3-
BLUE2	15 TxOUT3+	37 2	⁴ 5 100Ω ≶	RxIN3+
BLUE3	19			
BLUE4	20	9	•	
BLUE5	22	30	o	LCD Test
BLUE6	23			
BLUE7	24			
Hsync	27			
Vsync	28	ର ଜ ।		L
Data Enable	30	GND		a du la
CLOCK	31			baule

Notes:

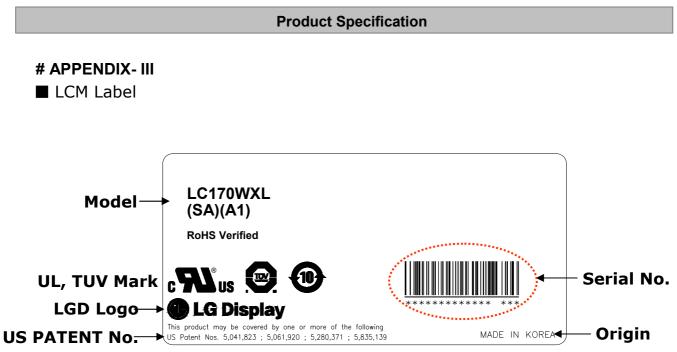
- 1. The LCD module uses a 100 Ohm(Ω) resistor between positive and negative lines of each receiver input.
- 2. Refer to LVDS transmitter data sheet for detail descriptions. (DS90C385 or Compatible)
- 3. '7' means MSB and '0' means LSB at R,G,B pixel data.


APPENDIX- II-1 ■ Packing Ass'y



NO.	DESCRIPTION	MATERIAL
1	LCD MODULE	
2	BAG	PE
3	TAPE	MASKING 20MM X 50M
4	PACKING, BOTTOM	EPS
5	PACKING, TOP	EPS
6	BOX	PAPER_SW3
7	TAPE	OPP 70MMX300M
8	LABEL	YUPO PAPER 100X100

LC170WXL

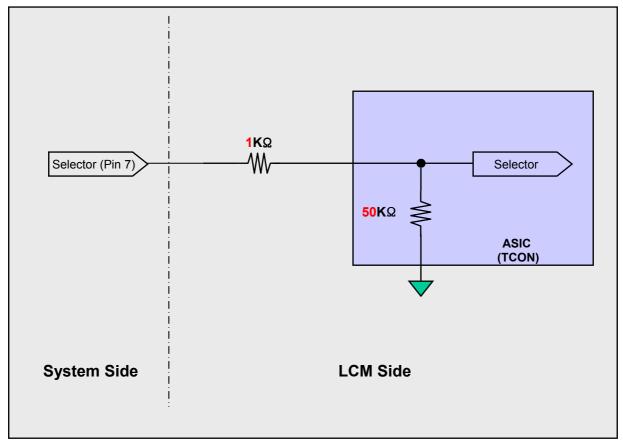

APPENDIX- II-2 ■ Pallet Ass'y

NO.	DESCRIPTION	MATERIAL
1	PACKING ASS'Y	
2	PALLET	Plywood_1140X990X117.5
3	ANGLE, PACKING	SWR4
4	LABEL	YUPO PAPER
5	TAPE	OPP
6	BAND	РР
7	BAND, CLIP	CLIP 18MM

LC170WXL

APPENDIX- IV

Box Label

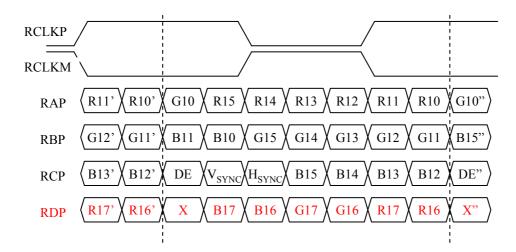

LC170WXL				
SAA1				
12 PCS	001/01-01			
MADE IN	RoHS	Verified		

Pallet Label				
L	LC170WXL			
	SAA1			
216 PCS	LOT/MM-DD			
MADE	MADE IN KOREA			

APPENDIX- V

Option Pin Circuit Block Diagram

Circuit Block Diagram of LVDS Format Selection pin

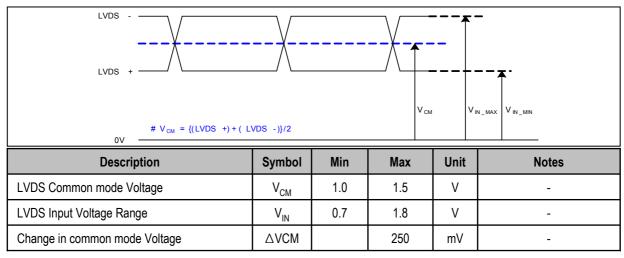


APPENDIX- VI

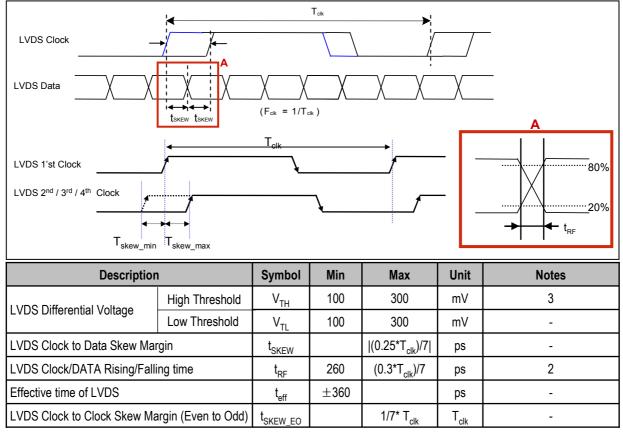
LVDS Data-Mapping info. (8bit)

RCLKP RCLKM G12" (R13') R12' G12 R17) R16 R15 R14 R13 R12 RAP G14' X G13' B13 B12 G17 G16 G15 G14 G13 B13" RBP B15' X B14' DE $\langle V_{SYNC} \rangle H_{SYNC}$ B17 B16 B15 B14 DE" RCP R11' R10' Х B11 B10 G11 G10 R11 R10 Х" RDP

LVDS Select : "L" Data-Mapping (VESA format)

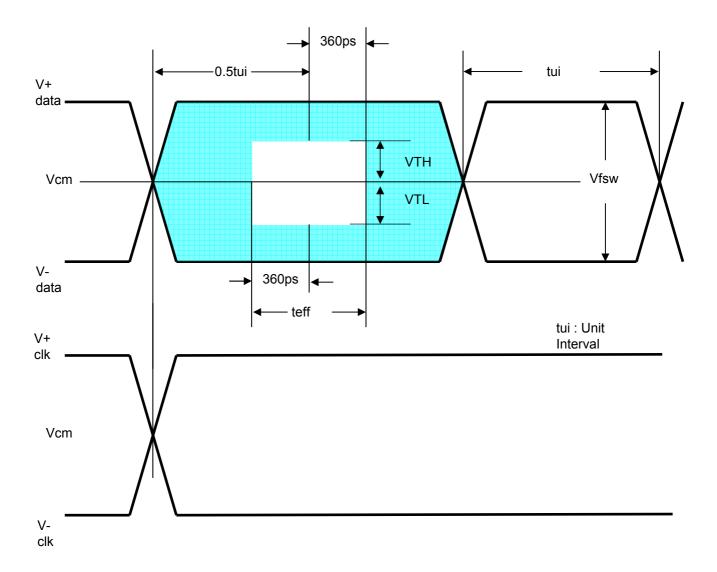


LVDS Select : "H" Data-Mapping (JEIDA format)


APPENDIX- VII-1

LVDS Input characteristics

1. DC Specification


2. AC Specification

Notes : 1. All Input levels of LVDS signals are based on the EIA 644 Standard. 2. If t_{RF} isn't enough, t_{eff} should be meet the range.

APPENDIX- VII-2

LVDS Input characteristics

