SPECIFICATION FOR APPROVAL

() Preliminary Specification
(●) Final Specification

<table>
<thead>
<tr>
<th>Title</th>
<th>30.0” WXGA TFT LCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUYER</td>
<td></td>
</tr>
<tr>
<td>MODEL</td>
<td></td>
</tr>
<tr>
<td>SUPPLIER</td>
<td>LG.Philips LCD Co., Ltd.</td>
</tr>
<tr>
<td>*MODEL</td>
<td>LC300W01</td>
</tr>
<tr>
<td>MODEL</td>
<td>A3P7</td>
</tr>
</tbody>
</table>

*When you obtain standard approval, please use the above model name without suffix

<table>
<thead>
<tr>
<th>SIGNATURE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please return 1 copy for your confirmation with your signature and comments.

S.W.Lee / G.Manager
REVIEWED BY

J.H. Park / Manager
PREPARED BY

J.Y. LEE / Engineer
J.H. LEE / Engineer

MNT/TV Products Engineering Dept.
LG. Philips LCD Co., Ltd.

Ver. 2.0 Feb. 04, 2003
Contents

<table>
<thead>
<tr>
<th>No</th>
<th>ITEM</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GENERAL DESCRIPTION</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>ABSOLUTE MAXIMUM RATINGS</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>ELECTRICAL SPECIFICATIONS</td>
<td>6</td>
</tr>
<tr>
<td>3-1</td>
<td>ELECTRICAL CHARACTERISTICS</td>
<td>6</td>
</tr>
<tr>
<td>3-2</td>
<td>INTERFACE CONNECTIONS</td>
<td>8</td>
</tr>
<tr>
<td>3-3</td>
<td>SIGNAL TIMING SPECIFICATIONS</td>
<td>12</td>
</tr>
<tr>
<td>3-4</td>
<td>SIGNAL TIMING WAVEFORMS</td>
<td>14</td>
</tr>
<tr>
<td>3-5</td>
<td>COLOR INPUT DATA REFERNECE</td>
<td>15</td>
</tr>
<tr>
<td>3-6</td>
<td>POWER SEQUENCE</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>OPTICAL SPECIFICATIONS</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>MECHANICAL CHARACTERISTICS</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>RELIABILITY</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>INTERNATIONAL STANDARDS</td>
<td>25</td>
</tr>
<tr>
<td>7-1</td>
<td>SAFETY</td>
<td></td>
</tr>
<tr>
<td>7-2</td>
<td>EMC</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Packing</td>
<td>26</td>
</tr>
<tr>
<td>8-1</td>
<td>DESIGNATION OF LOT MARK</td>
<td></td>
</tr>
<tr>
<td>8-2</td>
<td>Packing FORM</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PRECAUTIONS</td>
<td>27</td>
</tr>
</tbody>
</table>
RECORD OF REVISIONS

<table>
<thead>
<tr>
<th>Revision No</th>
<th>Revision Date</th>
<th>Page</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Jul 02.2002</td>
<td>-</td>
<td>First Draft (Preliminary)</td>
</tr>
<tr>
<td>1.1</td>
<td>Sep 06.2002</td>
<td>5</td>
<td>Table 1. ABSOLUTE MAXIMUM RATINGS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Table 2. ELECTRICAL CHARACTERISTICS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>Table 4. Backlight Connector Pin Configuration(CN2,CN3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>Insert a timing table for wide range</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>5. Mechanical Characteristics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>weight : 6400 -> 6700 (due to adding a thermal PAD)</td>
</tr>
<tr>
<td>1.2</td>
<td>Oct 10.2002</td>
<td>1</td>
<td>Final Draft – Change the Model name from A3M2 to A3M3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>Change the Rear View of LCM(Added Hole)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>Change the Front View of LCM (Added Hole)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>Change the Rear View of LCM (Added Hole)</td>
</tr>
<tr>
<td>2.0</td>
<td>Feb 04.2003</td>
<td>1</td>
<td>Model suffix name change (A3M2 -> A3P7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9,22,23</td>
<td>Mechanical Drawing Revision</td>
</tr>
</tbody>
</table>
1. General Description

The LC300W01 is a Color Active Matrix Liquid Crystal Display with an integral Cold Cathode Fluorescent Lamp (CCFL) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally black mode. This TFT-LCD has a 30.0 inch diagonally measured active display area with XGA resolution (768 vertical by 1280 horizontal pixel array) Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for each dot, thus, presenting a palette of more than 16,7M(true) colors with 8Bit.

The LC300W01 has been designed to apply the 8Bit LVDS interface.
The LC300W01 is intended to support LCD TV, PCTV where high brightness, wide viewing angle, high color saturation, and high color are important.

<table>
<thead>
<tr>
<th>General Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Screen Size</td>
</tr>
<tr>
<td>Outline Dimension</td>
</tr>
<tr>
<td>Pixel Pitch</td>
</tr>
<tr>
<td>Pixel Format</td>
</tr>
<tr>
<td>Color Depth</td>
</tr>
<tr>
<td>Luminance, White</td>
</tr>
<tr>
<td>Power Consumption</td>
</tr>
<tr>
<td>Weight</td>
</tr>
<tr>
<td>Display Operating Mode</td>
</tr>
<tr>
<td>Surface Treatment</td>
</tr>
</tbody>
</table>

![Diagram of LC300W01 Block Diagram](#)
2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1. ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Input Voltage</td>
<td>Vcc</td>
<td>-0.3</td>
<td>+14.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Backlight inverter</td>
<td>Vin</td>
<td>-0.3</td>
<td>+27.0</td>
<td></td>
</tr>
<tr>
<td>ON/OFF Control Voltage</td>
<td>VON/OFF</td>
<td>-0.3</td>
<td>+5.25</td>
<td>Vdc</td>
</tr>
<tr>
<td>Brightness Control Voltage</td>
<td>VBr</td>
<td>0</td>
<td>+5.0V</td>
<td>Vdc</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>TOP</td>
<td>0</td>
<td>+40°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>TST</td>
<td>-20</td>
<td>+50°C</td>
<td></td>
</tr>
<tr>
<td>Operating Ambient Humidity</td>
<td>HOP</td>
<td>10</td>
<td>90 %RH</td>
<td></td>
</tr>
<tr>
<td>Storage Humidity</td>
<td>HST</td>
<td>10</td>
<td>90 %RH</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 °C Max, and no condensation of water.
3. Electrical Specifications

3-1. Electrical Characteristics

The LC300W01 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which power for the inverter. And an inverter is integrated in LCD.

Table 2. ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Values</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>MODULE:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply Input Voltage</td>
<td>Vcc</td>
<td></td>
<td>11.4</td>
<td>12.0</td>
<td>12.6</td>
</tr>
<tr>
<td>Power Supply Input Current</td>
<td>Icc</td>
<td></td>
<td>370</td>
<td>435</td>
<td>500</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>Pc</td>
<td></td>
<td>4.44</td>
<td>5.22</td>
<td>6.00</td>
</tr>
<tr>
<td>Rush current</td>
<td>I_rush</td>
<td></td>
<td>-</td>
<td>-</td>
<td>2.0</td>
</tr>
<tr>
<td>LAMP:</td>
<td></td>
<td></td>
<td>50,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Values</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>INVERTER:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage</td>
<td>Vin</td>
<td></td>
<td>21.6</td>
<td>24.0</td>
<td>26.4</td>
</tr>
<tr>
<td>Input Current</td>
<td>I_in</td>
<td>Vbr = 0V</td>
<td>1.26</td>
<td>1.53</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vbr = 5V</td>
<td>1.77</td>
<td>2.14</td>
<td>2.62</td>
</tr>
<tr>
<td>Input Power</td>
<td>P_in</td>
<td>Vbr = 5V</td>
<td>46.2</td>
<td>51.3</td>
<td>56.4</td>
</tr>
<tr>
<td>Back-Light</td>
<td>V_on</td>
<td>Lamp ON = HIGH</td>
<td>2.0</td>
<td>-</td>
<td>5.25</td>
</tr>
<tr>
<td>ON/OFF Control</td>
<td>V_off</td>
<td>Lamp OFF = LOW</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lamp Voltage</td>
<td>V_out</td>
<td>Vbr = 0V</td>
<td>819</td>
<td>910</td>
<td>1001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vbr = 5V</td>
<td>738</td>
<td>820</td>
<td>902</td>
</tr>
<tr>
<td>Lamp Current</td>
<td>I_out(Min)</td>
<td>Vbr = 0V</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vbr = 5V</td>
<td>5.5</td>
<td>6.0</td>
<td>6.5</td>
</tr>
<tr>
<td>Frequency</td>
<td>Freq</td>
<td>Vbr = 5V</td>
<td>45</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>Output Power</td>
<td>P_out</td>
<td>Vbr = 5V</td>
<td>35.4</td>
<td>39.4</td>
<td>43.3</td>
</tr>
<tr>
<td>Open Lamp Voltage</td>
<td>V_s</td>
<td>No load 0°C</td>
<td>2000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vin = 21.6V, Vbr = 5V</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Striking Time</td>
<td>T_s</td>
<td>No load 0°C</td>
<td>0.6</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vin = 21.6V, Vbr = 5V</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Efficiency</td>
<td>n</td>
<td>Vbr = 5V</td>
<td>70</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
1. The specified current and power consumption are under the $V_{CC}=12.0V$, $25^\circ C,f_v=60Hz$ condition whereas mosaic pattern(8 x 6) is displayed and f_v is the frame frequency.

2. The duration of rush current is about 2ms and rising time of Power Input is 1ms(min.).

3. The life is determined as the time at which luminance of the lamp is 50% compared to that of initial value at the typical lamp current on condition of continuous operating at $25 \pm 2^\circ C$.

4. The inverters of assembled with LCM are consist of two pieces.

5. Operating voltage and current are measured after lighted for 3-5 minutes at $25 \pm 2^\circ C$. The variance of the voltage is $\pm 10\%$.

Note. The output of the inverter must have symmetrical(negative and positive) voltage waveform and symmetrical current waveform(Asymmetry ratio is less than 10%). Please do not use the inverter which has asymmetrical voltage and asymmetrical current and spike wave.

Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp. It shall help increase the lamp lifetime and reduce its leakage current.

a. The asymmetry rate of the inverter current and voltage waveform should be 10% below;

b. The distortion rate of the current and voltage waveform should be within $\sqrt{2} \pm 10\%$;

c. The ideal sine current and voltage waveform shall be symmetric in positive and negative polarities.

\[* \text{Asymmetry rate} = \frac{|I_p - I_{-p}|}{I_{rms}} \times 100\% \]

\[* \text{Distortion rate} = \frac{I_p (or I_{-p})}{I_{rms}} \]

* * I_p \text{ and } I_{-p} \text{ are the peak values of current and voltage waveforms.}
3-2. Interface Connections

This LCD employs three interface connections, a 20 pin connector is used for the module electronics and two inverter connectors, are used for the inverter for backlight system. The electronics interface connector is a model GT100-20P-LS-SMT-R manufactured by LG Cable and the pin configuration for the connector is shown in the table below.

LCD Connector: GT100-20P-LS-SMT-R or equivalent (Hirose, DF19KR-20P-1H),
Mating connector: GT100-20S-LS or equivalent

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Symbol</th>
<th>Description</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>VCC</td>
<td>Power Supply +12.0V</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>VCC</td>
<td>Power Supply +12.0V</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>VCC</td>
<td>Power Supply +12.0V</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>VCC</td>
<td>Power Supply +12.0V</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>RD+</td>
<td>LVDS Receiver Signal(+)</td>
<td>Positive</td>
</tr>
<tr>
<td>10</td>
<td>RD-</td>
<td>LVDS Receiver Signal(-)</td>
<td>Negative</td>
</tr>
<tr>
<td>11</td>
<td>RCLK+</td>
<td>LVDS Receiver Clock Signal(+)</td>
<td>Positive</td>
</tr>
<tr>
<td>12</td>
<td>RCLK-</td>
<td>LVDS Receiver Clock Signal(-)</td>
<td>Negative</td>
</tr>
<tr>
<td>13</td>
<td>RC-</td>
<td>LVDS Receiver Signal(-)</td>
<td>Negative</td>
</tr>
<tr>
<td>14</td>
<td>RB+</td>
<td>LVDS Receiver Signal(+)</td>
<td>Positive</td>
</tr>
<tr>
<td>15</td>
<td>RB-</td>
<td>LVDS Receiver Signal(-)</td>
<td>Negative</td>
</tr>
<tr>
<td>16</td>
<td>RA+</td>
<td>LVDS Receiver Signal(+)</td>
<td>Positive</td>
</tr>
<tr>
<td>17</td>
<td>RA-</td>
<td>LVDS Receiver Signal(-)</td>
<td>Negative</td>
</tr>
<tr>
<td>18</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. All GND (ground) pins should be connected together and to Vss which should also be connected to the LCD’s metal frame.
2. All VDD (power input) pins should be connected together.
The connector of inverter interface for backlight system is a model 53261-1590, manufactured by MOLEX. And the mating connector part number is 51021-1500 or equivalent.

Table 4. Backlight Connector Pin Configuration(CN2,CN3)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Description</th>
<th>Notes</th>
<th>Pin</th>
<th>Symbol</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
<td></td>
<td>9</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Bright- Adjust</td>
<td>0V (Min), 5V (Max)</td>
<td></td>
<td>10</td>
<td>Vin</td>
<td>+24V</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground</td>
<td></td>
<td>11</td>
<td>Vin</td>
<td>+24V</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>On/Off</td>
<td>On (5V), 0V (Off)</td>
<td></td>
<td>12</td>
<td>Vin</td>
<td>+24V</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
<td></td>
<td>13</td>
<td>Vin</td>
<td>+24V</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>Ground</td>
<td></td>
<td>14</td>
<td>Vin</td>
<td>+24V</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
<td>No Connection</td>
<td></td>
<td>15</td>
<td>Vin</td>
<td>+24V</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6. Requires Signal Assignment for LVDS Transmitter
(THC63LVDM83A / LVDF83A or compatible one)

<table>
<thead>
<tr>
<th>Host System 24 Bit</th>
<th>THC63LVDF 83A/84A</th>
<th>Timing Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED0</td>
<td>50</td>
<td>GT100-20-LS-SMT-R (DF14H-20P-1.25H)</td>
</tr>
<tr>
<td>RED1</td>
<td>2</td>
<td>RA-</td>
</tr>
<tr>
<td>RED2</td>
<td>51</td>
<td>RA+</td>
</tr>
<tr>
<td>RED3</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>RED4</td>
<td>54</td>
<td>RB-</td>
</tr>
<tr>
<td>RED5</td>
<td>55</td>
<td>RB+</td>
</tr>
<tr>
<td>RED6</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>RED7</td>
<td>3</td>
<td>RC-</td>
</tr>
<tr>
<td>GREEN0</td>
<td>8</td>
<td>RC+</td>
</tr>
<tr>
<td>GREEN1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>GREEN2</td>
<td>4</td>
<td>RCLK-</td>
</tr>
<tr>
<td>GREEN3</td>
<td>6</td>
<td>RCLK+</td>
</tr>
<tr>
<td>GREEN4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>GREEN5</td>
<td>11</td>
<td>RD-</td>
</tr>
<tr>
<td>GREEN6</td>
<td>12</td>
<td>RD+</td>
</tr>
<tr>
<td>GREEN7</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>BLUE0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>BLUE1</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>BLUE2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>BLUE3</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>BLUE4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>BLUE5</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>BLUE6</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>BLUE7</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Hsync</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Vsync</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Data Enable</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>CLOCK</td>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>

Note: The LCD Module uses a 100Ohm resistor between positive and negative lines of each receiver input.
Note: Refer to LVDS Transmitter Data Sheet for detail descriptions.
Pin 17: N/C for THC63LVDF83A
Note: An above diagram shows an example for your convenience.
Table 6. (Continued)

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Pin Name</th>
<th>Symbol</th>
<th>Description</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>TA0</td>
<td>Red2</td>
<td>Red Pixel Data</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>TA1</td>
<td>Red3</td>
<td>Red Pixel Data</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>TA2</td>
<td>Red4</td>
<td>Red Pixel Data</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>TA3</td>
<td>Red5</td>
<td>Red Pixel Data</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>TA4</td>
<td>Red6</td>
<td>Red Pixel Data</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TA5</td>
<td>Red7 [MSB]</td>
<td>Red Pixel Data</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>TA6</td>
<td>Green2</td>
<td>Green Pixel Data</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>TB0</td>
<td>Green3</td>
<td>Green Pixel Data</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>TB1</td>
<td>Green4</td>
<td>Green Pixel Data</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TB2</td>
<td>Green5</td>
<td>Green Pixel Data</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>TB3</td>
<td>Green6</td>
<td>Green Pixel Data</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>TB4</td>
<td>Green7 [MSB]</td>
<td>Green Pixel Data</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>TB5</td>
<td>Blue2</td>
<td>Blue Pixel Data</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>TB6</td>
<td>Blue3</td>
<td>Blue Pixel Data</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>TC0</td>
<td>Blue4</td>
<td>Blue Pixel Data</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>TC1</td>
<td>Blue5</td>
<td>Blue Pixel Data</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>TC2</td>
<td>Blue6</td>
<td>Blue Pixel Data</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>TC3</td>
<td>Blue7 [MSB]</td>
<td>Blue Pixel Data</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>TC4</td>
<td>Hsync.</td>
<td>Horizontal Sync.</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>TC5</td>
<td>Vsync.</td>
<td>Vertical Sync.</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>TC6</td>
<td>DE</td>
<td>Data Enable</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>TD0</td>
<td>Red0 [LSB]</td>
<td>Red Pixel Data</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>TD2</td>
<td>Green0 [LSB]</td>
<td>Green Pixel data</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TD3</td>
<td>Green1</td>
<td>Green Pixel data</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>TD4</td>
<td>Blue0 [LSB]</td>
<td>Blue Pixel Data</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>TD5</td>
<td>Blue1</td>
<td>Blue Pixel Data</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>TD6</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>CLK IN</td>
<td>CLK</td>
<td>Transmitter CLK IN</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>R/F(N/C)</td>
<td></td>
<td>N/C for THC83LVDF83A</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Refer to LVDS Transmitter Data Sheet for detail descriptions.
3-3. Signal Timing Specifications

This is the signal timing required at the input of the LVDS Transmitter. All of the interface signal timing should be satisfied with the following specifications for its proper operation.

Table 7. Timing Table

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCLK Period</td>
<td>tCLK</td>
<td>14.9</td>
<td>15.4</td>
<td>15.9</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
<td>63</td>
<td>65</td>
<td>67</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Hsync Period</td>
<td>thP</td>
<td>1312</td>
<td>1344</td>
<td>1368</td>
<td>tCLK</td>
<td>Note 1)</td>
</tr>
<tr>
<td>Frequency</td>
<td>fH</td>
<td>46.05</td>
<td>48.36</td>
<td>51.07</td>
<td>KHz</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>tWH</td>
<td>8</td>
<td>16</td>
<td>-</td>
<td>tCLK</td>
<td></td>
</tr>
<tr>
<td>Vsync Period</td>
<td>tvP</td>
<td>774</td>
<td>806</td>
<td>830</td>
<td>thP</td>
<td>Note 2)</td>
</tr>
<tr>
<td>Frequency</td>
<td>fV</td>
<td>58</td>
<td>60</td>
<td>62</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>tvV</td>
<td>2</td>
<td>6</td>
<td>-</td>
<td>thP</td>
<td></td>
</tr>
<tr>
<td>DE Horizontal Valid</td>
<td>thV</td>
<td>1280</td>
<td>1280</td>
<td>1280</td>
<td>tCLK</td>
<td>tWH ≥ tWH + thBP + thFP</td>
</tr>
<tr>
<td>Horizontal Back Porch</td>
<td>thBP</td>
<td>8</td>
<td>16</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal Front Porch</td>
<td>thFP</td>
<td>16</td>
<td>32</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal Blank</td>
<td></td>
<td>32</td>
<td>64</td>
<td>thP- thV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Valid</td>
<td>tvV</td>
<td>768</td>
<td>768</td>
<td>768</td>
<td>tHP</td>
<td>twV ≥ twV + tvBP + tvFP</td>
</tr>
<tr>
<td>Vertical Back Porch</td>
<td>tvBP</td>
<td>2</td>
<td>29</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Front Porch</td>
<td>tvFP</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Blank</td>
<td></td>
<td>5</td>
<td>38</td>
<td>tvP- tvV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Hsync Period and Hsync Width-Active should be even number times of tCLK. If the value is odd number times of tCLK, display control signal can be asynchronous. This LCM operates in Hsync., Vsync. and Data Enable mode.

Note1: *Horizontal Frequency should be keep the above specification. If not, It can cause wave noise.*

Note2: *Vertical Frequency should be keep the above specification when the resolution & mode are changed*
Table 7.1 Timing Table (Reference for wide range)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCLK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period</td>
<td>tCLK</td>
<td>12.2</td>
<td>12.5</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>-</td>
<td>-</td>
<td>80</td>
<td>82</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Hsync</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period</td>
<td>tHP</td>
<td>1312</td>
<td>1648</td>
<td>-</td>
<td>tCLK</td>
<td>Note 1)</td>
</tr>
<tr>
<td>Frequency</td>
<td>fH</td>
<td>46.05</td>
<td>48.54</td>
<td>51.07</td>
<td>KHz</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>twH</td>
<td>8</td>
<td>16</td>
<td>-</td>
<td>tCLK</td>
<td></td>
</tr>
<tr>
<td>Vsync</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period</td>
<td>tvP</td>
<td>774</td>
<td>810</td>
<td>-</td>
<td>tHP</td>
<td>Note 2) NTSC: 57 ~63Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PAL: 47~53Hz</td>
</tr>
<tr>
<td>Frequency</td>
<td>fv</td>
<td>47</td>
<td>60</td>
<td>63</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>twV</td>
<td>2</td>
<td>6</td>
<td>-</td>
<td>tHP</td>
<td></td>
</tr>
<tr>
<td>DE (Data Enable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal Valid</td>
<td>tHV</td>
<td>1280</td>
<td>1280</td>
<td>1280</td>
<td>tCLK</td>
<td></td>
</tr>
<tr>
<td>Horizontal Back Porch</td>
<td>tHBP</td>
<td>8</td>
<td>80</td>
<td>-</td>
<td>tCLK</td>
<td></td>
</tr>
<tr>
<td>Horizontal Front Porch</td>
<td>tHFP</td>
<td>16</td>
<td>272</td>
<td>-</td>
<td>tCLK</td>
<td></td>
</tr>
<tr>
<td>Horizontal Blank</td>
<td>-</td>
<td>32</td>
<td>368</td>
<td>thP- tHv</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Valid</td>
<td>tvV</td>
<td>768</td>
<td>768</td>
<td>768</td>
<td>tHP</td>
<td></td>
</tr>
<tr>
<td>Vertical Back Porch</td>
<td>tvBP</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>tvP- tvV</td>
<td></td>
</tr>
<tr>
<td>Vertical Front Porch</td>
<td>tvFP</td>
<td>1</td>
<td>16</td>
<td>-</td>
<td>tvP- tvV</td>
<td></td>
</tr>
<tr>
<td>Vertical Blank</td>
<td>-</td>
<td>5</td>
<td>42</td>
<td>tvP- tvV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Hsync Period and Hsync Width-Active should be even number times of tCLK. If the value is odd number times of tCLK, display control signal can be asynchronous. This LCM operates in Hsync., Vsync. and Data Enable mode.

Note 1: *Horizontal Frequency should be keep the above specification. If not, it can cause wave noise.*

Note 2: *Vertical Frequency should be keep the above specification when the resolution & mode are changed*
3-4. Signal Timing Waveforms

![Signal Timing Waveforms Diagram]

Signals
- **DCLK** (Data Clock): 2.0V
- **DATA**: 2.0V, 0.8V
- **DE** (Data Enable)

Symbols
- t_{CH}: CLK IN High Time
- t_{CL}: CLK IN Low Time
- t_{TS}: TTL Data setup to CLK IN
- t_{TH}: TTL Data hold to CLK IN
- t_{TCIT}: CLK IN Transition Time

Timing Parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{CH}</td>
<td>CLK IN High Time</td>
<td>0.35T</td>
<td>0.5T</td>
<td>0.65T</td>
<td>ns</td>
</tr>
<tr>
<td>t_{CL}</td>
<td>CLK IN Low Time</td>
<td>0.35T</td>
<td>0.5T</td>
<td>0.65T</td>
<td>ns</td>
</tr>
<tr>
<td>t_{TS}</td>
<td>TTL Data setup to CLK IN</td>
<td>2.5</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{TH}</td>
<td>TTL Data hold to CLK IN</td>
<td>0</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{TCIT}</td>
<td>CLK IN Transition time</td>
<td>5</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Refer to THC63LVDF83A/M83A data sheet for detail descriptions.
3-5. Color Input Data Reference

The brightness of each primary color (red, green, blue) is based on the 8-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 8. COLOR DATA REFERENCE

<table>
<thead>
<tr>
<th>Color</th>
<th>Input Color Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RED</td>
</tr>
<tr>
<td></td>
<td>MSB</td>
</tr>
<tr>
<td></td>
<td>R7</td>
</tr>
<tr>
<td>Black</td>
<td>0</td>
</tr>
<tr>
<td>Red (255)</td>
<td>1</td>
</tr>
<tr>
<td>Green (255)</td>
<td>0</td>
</tr>
<tr>
<td>Blue (255)</td>
<td>0</td>
</tr>
<tr>
<td>Cyan</td>
<td>0</td>
</tr>
<tr>
<td>Magenta</td>
<td>1</td>
</tr>
<tr>
<td>Yellow</td>
<td>1</td>
</tr>
<tr>
<td>White</td>
<td>1</td>
</tr>
</tbody>
</table>

The table above provides a reference for color versus data input. The data is organized into three columns: RED, GREEN, and BLUE, with each column further divided into MSB and LSB sections. The table includes the basic color combinations for each primary color, along with their corresponding binary representations.
3-6. Power Sequence

Table 9. Power Sequence

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>T1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T2</td>
<td>0.01</td>
<td>-</td>
</tr>
<tr>
<td>T3</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>T4</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>T5</td>
<td>0.01</td>
<td>-</td>
</tr>
<tr>
<td>T6</td>
<td>0.01</td>
<td>-</td>
</tr>
<tr>
<td>T7</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:
1. Please avoid floating state of interface signal at invalid period.
2. When the interface signal is invalid, be sure to pull down the power supply for LCD V_{cc} to 0V.
3. Lamp power must be turn on after power supply for LCD and interface signal are valid.
4. Optical Specification

Optical characteristics are determined after the unit has been ‘ON’ and stable for approximately 2Hrs in a dark environment at 25 °C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of ϕ and θ equal to 0 °. FIG. 1 presents additional information concerning the measurement equipment and method.

Table 10. OPTICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast Ratio</td>
<td>CR</td>
<td>280 350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Luminance, white</td>
<td>L\textsubscript{WH}</td>
<td>380 450</td>
<td>cd/m2</td>
<td>2</td>
</tr>
<tr>
<td>Luminance Variation</td>
<td>δ_{WHITE}</td>
<td>1.3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Response Time</td>
<td>Tr</td>
<td>25</td>
<td>ms</td>
<td>4</td>
</tr>
<tr>
<td>Color Coordinates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RED</td>
<td>RX</td>
<td>0.601 0.631 0.661</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREEN</td>
<td>GX</td>
<td>0.252 0.282 0.312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLUE</td>
<td>BX</td>
<td>0.114 0.144 0.174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHITE</td>
<td>WX</td>
<td>0.254 0.284 0.314</td>
<td></td>
<td></td>
</tr>
<tr>
<td>View Angles (CR>10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x axis, right ($\phi=0^\circ$)</td>
<td>θ_r</td>
<td>80 85</td>
<td>degree</td>
<td>5</td>
</tr>
<tr>
<td>x axis, left ($\phi=180^\circ$)</td>
<td>θ_l</td>
<td>80 85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>y axis, up ($\phi=90^\circ$)</td>
<td>θ_u</td>
<td>80 85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>y axis, down ($\phi=270^\circ$)</td>
<td>θ_d</td>
<td>80 85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray Scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notes
1. Contrast Ratio (CR) is defined mathematically as:

\[
\text{Contrast Ratio} = \frac{\text{Surface Luminance with all white pixels}}{\text{Surface Luminance with all black pixels}}
\]

2. Surface luminance is the center point across the LCD surface 50cm from the surface with all pixels displaying white under the condition of \(I_{BL} = 6 \text{mA rms} \). For more information see FIG 1.

3. The variation in surface luminance, \(\delta \text{WHITE} \) is defined by measuring \(L_{ON} \) at watch test position 1 through 9, and then dividing maximum \(L_{ON} \) of 9 points luminance by minimum \(L_{ON} \) of each 9 points luminance. For more information see FIG 2.

\[
\delta \text{WHITE} = \frac{\text{Maximum (}L_{ON1}, L_{ON2}, \ldots, L_{ON9}\text{)}}{\text{Minimum (}L_{ON1}, L_{ON2}, \ldots, L_{ON9}\text{)}}
\]

4. Response time is the time required for the display to transition from black to white (Rise Time, \(T_{R} \)) and from white to black (Decay Time, \(T_{D} \)). For additional information see FIG 3.

5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or \(x \) axis and the vertical or \(y \) axis with respect to the \(z \) axis which is normal to the LCD surface. For more information see FIG 4.

6. Gray scale specification

<table>
<thead>
<tr>
<th>Gray Level</th>
<th>Luminance [%] (Typ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
</tr>
<tr>
<td>L0</td>
<td>0.020</td>
</tr>
<tr>
<td>L15</td>
<td>0.22</td>
</tr>
<tr>
<td>L31</td>
<td>0.39</td>
</tr>
<tr>
<td>L47</td>
<td>0.80</td>
</tr>
<tr>
<td>L63</td>
<td>1.60</td>
</tr>
<tr>
<td>L79</td>
<td>2.75</td>
</tr>
<tr>
<td>L95</td>
<td>4.50</td>
</tr>
<tr>
<td>L111</td>
<td>6.60</td>
</tr>
<tr>
<td>L127</td>
<td>9.20</td>
</tr>
<tr>
<td>L143</td>
<td>12.8</td>
</tr>
<tr>
<td>L159</td>
<td>18.2</td>
</tr>
<tr>
<td>L175</td>
<td>24.2</td>
</tr>
<tr>
<td>L191</td>
<td>32.5</td>
</tr>
<tr>
<td>L207</td>
<td>42.6</td>
</tr>
<tr>
<td>L223</td>
<td>55.6</td>
</tr>
<tr>
<td>L239</td>
<td>72.7</td>
</tr>
<tr>
<td>L255</td>
<td>100</td>
</tr>
</tbody>
</table>
FIG. 2 Luminance

<measuring point for surface luminance & measuring point for luminance variation>

FIG. 3 Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for “black” and “white”.

A : H / 4 mm
B : V / 4 mm
H : 643.20 mm
V : 385.92 mm
@ H,V : Active Area
FIG. 4 Viewing angle

<Dimension of viewing angle range>

\[\phi = 0^\circ, \text{Right} \]
\[\phi = 90^\circ, \text{Up} \]
\[\phi = 180^\circ, \text{Left} \]
\[\phi = 270^\circ, \text{Down} \]
5. Mechanical Characteristics
The contents provide general mechanical characteristics for the model LC300W01. In addition the figures in the next page are detailed mechanical drawing of the LCD.

<table>
<thead>
<tr>
<th>Outline Dimension</th>
<th>Horizontal</th>
<th>697.8 +1.0/-0.5mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertical</td>
<td>431.8 +1.0/-0.5mm</td>
</tr>
<tr>
<td></td>
<td>Depth</td>
<td>50.9 +1.0/-0.7mm</td>
</tr>
<tr>
<td>Bezel Area</td>
<td>Horizontal</td>
<td>649.2mm</td>
</tr>
<tr>
<td></td>
<td>Vertical</td>
<td>391.8mm</td>
</tr>
<tr>
<td>Active Display Area</td>
<td>Horizontal</td>
<td>643.2mm</td>
</tr>
<tr>
<td></td>
<td>Vertical</td>
<td>385.92mm</td>
</tr>
<tr>
<td>Weight</td>
<td>6,700g (Typ.)</td>
<td>7,035 (Max.)</td>
</tr>
<tr>
<td>Surface Treatment</td>
<td>Hard coating(3H)</td>
<td>Anti-glare treatment of the front polarizer</td>
</tr>
</tbody>
</table>
<FRONT VIEW>
6. Reliability

Environment test condition

<table>
<thead>
<tr>
<th>No</th>
<th>Test Item</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High temperature storage test</td>
<td>Ta= 50°C 240h</td>
</tr>
<tr>
<td>2</td>
<td>Low temperature storage test</td>
<td>Ta= -20°C 240h</td>
</tr>
<tr>
<td>3</td>
<td>High temperature operation test</td>
<td>Ta= 40°C 50%RH 240h</td>
</tr>
<tr>
<td>4</td>
<td>Low temperature operation test</td>
<td>Ta= 0°C 240h</td>
</tr>
<tr>
<td>5</td>
<td>Vibration test (non-operating)</td>
<td>Wave form: random</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vibration level: 1.0Grms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bandwidth: 10-500Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Duration: X,Y,Z, 10 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>One time each direction</td>
</tr>
<tr>
<td>6</td>
<td>Shock test (non-operating)</td>
<td>Shock level: 100Grms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waveform: half sine wave, 2ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Direction: ±X, ±Y, ±Z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>One time each direction</td>
</tr>
<tr>
<td>7</td>
<td>Humidity condition Operation</td>
<td>Ta= 40°C, 90%RH</td>
</tr>
<tr>
<td>8</td>
<td>Altitude operating storage / shipment</td>
<td>0 - 14,000 feet (4267.2m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 - 40,000 feet (12192m)</td>
</tr>
</tbody>
</table>

{ Result Evaluation Criteria }
There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

Note:
After environmental test in relation to temperature the display quality test should be conducted under normal operating condition after leaving in 2Hrs at the room temperature.
7. International Standards

7-1. Safety

European Committee for Electrotechnical Standardization(CENELEC) EUROPEAN STANDARD for Safety of Information Technology Equipment Including Electrical Business Equipment.

7-2. EMC

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

A, B, C : SIZE
D : YEAR
E : MONTH
F, G : PANEL CODE
H : ASSEMBLY CODE
I, J, K, L, M : SERIAL NO.

Note

1. YEAR

<table>
<thead>
<tr>
<th>Year</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

2. MONTH

<table>
<thead>
<tr>
<th>Month</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

3. Serial No.

<table>
<thead>
<tr>
<th>Year</th>
<th>1 ~ 99999</th>
<th>100000 ~</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>00001 ~ 99999</td>
<td>A0001 ~ A9999, , , Z9999</td>
</tr>
</tbody>
</table>

b) Location of Lot Mark

Serial NO. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

a) Package quantity in one box : 3 pcs

b) Box Size : 853mm X 497mm X 557mm
9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

(1) You must mount a module using holes arranged in four corners or four sides.
(2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
(3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
(4) You should adopt radiation structure to satisfy the temperature specification.
(5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
(6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
(7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
(8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
(9) Do not open the case because inside circuits do not have sufficient strength.

9-2. OPERATING PRECAUTIONS

(1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : V=±200mV(Over and under shoot voltage)
(2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
(3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
(4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
(5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
(6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
9-3. ELECTROSTATIC DISCHARGE CONTROL
Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don’t touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE
Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE
When storing modules as spares for a long time, the following precautions are necessary.

(1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
(2) The polarizer surface should not come in contact with any other object.
 It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM
(1) The protection film is attached to the bezel with a small masking tape.
 When the protection film is peeled off, static electricity is generated between the film and polarizer.
 This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
(2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
(3) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.