SPECIFICATION FOR APPROVAL

(●) Preliminary Specification
() Final Specification

<table>
<thead>
<tr>
<th>Title</th>
<th>4.8”WVGA TFT LCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
<td>Acer</td>
</tr>
<tr>
<td>MODEL</td>
<td></td>
</tr>
</tbody>
</table>

SUPPLIER	LG.Philips LCD Co., Ltd.
*MODEL	LP048WV1
Suffix	TLD1

*When you obtain standard approval, please use the above model name without suffix

<table>
<thead>
<tr>
<th>SIGNATURE</th>
<th>DATE</th>
<th>APPROVED BY</th>
<th>SIGNATURE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>J.S.Baek / S.Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>REVIEWED BY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y.C.Jung / S.Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PREPARED BY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.J.Nam / Engineer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>J.H.Kim / Engineer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y.S.Kim / Engineer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>J.S.Oh / Engineer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please return 1 copy for your confirmation with your signature and comments.

Ver. 0.1. Jan, 26, 2007
1 / 23
Contents

<table>
<thead>
<tr>
<th>No</th>
<th>ITEM</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COVER</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>CONTENTS</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>RECORD OF REVISIONS</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>GENERAL DESCRIPTION</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>ABSOLUTE MAXIMUM RATINGS</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>ELECTRICAL SPECIFICATIONS</td>
<td>6</td>
</tr>
<tr>
<td>3-1</td>
<td>ELECTRICAL CHARACTERISTICS</td>
<td>6</td>
</tr>
<tr>
<td>3-2</td>
<td>Back Light Unit</td>
<td>6</td>
</tr>
<tr>
<td>3-3</td>
<td>INTERFACE CONNECTIONS</td>
<td>7</td>
</tr>
<tr>
<td>3-4</td>
<td>SIGNAL TIMING SPECIFICATIONS</td>
<td>8</td>
</tr>
<tr>
<td>3-5</td>
<td>SIGNAL TIMING WAVEFORMS</td>
<td>8</td>
</tr>
<tr>
<td>3-6</td>
<td>COLOR INPUT DATA REFERENCE</td>
<td>9</td>
</tr>
<tr>
<td>3-7</td>
<td>POWER SEQUENCE</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Touch Screen Panel Specifications</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>OPTICAL SPECIFICATIONS</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>MECHANICAL CHARACTERISTICS</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>RELIABILITY</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>INTERNATIONAL STANDARDS</td>
<td>20</td>
</tr>
<tr>
<td>8-1</td>
<td>SAFETY</td>
<td>20</td>
</tr>
<tr>
<td>8-2</td>
<td>EMC</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>PACKING</td>
<td>20</td>
</tr>
<tr>
<td>9-1</td>
<td>DESIGNATION OF LOT MARK</td>
<td>21</td>
</tr>
<tr>
<td>9-2</td>
<td>PACKING FORM</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>PRECAUTIONS</td>
<td>22</td>
</tr>
</tbody>
</table>
RECORD OF REVISIONS

<table>
<thead>
<tr>
<th>Revision No</th>
<th>Revision Date</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>Jan. 26, 2007</td>
<td>-</td>
<td>Final Specification</td>
</tr>
</tbody>
</table>

Ver. 0.1.
Jan, 26, 2007
1. General Description

The LP048WV1 is a Color Active Matrix Liquid Crystal Display with an integral LED backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 4.8 inches diagonally measured active display area with WVGA resolution (800 horizontal by 480 vertical pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors.

The LP048WV1 has been designed to apply the interface method that enables low power, high speed, low EMI.

The LP048WV1 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP048WV1 characteristics provide an excellent flat display for office automation products such as UMPC.

General Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Screen Size</td>
<td>4.8 inches diagonal</td>
</tr>
<tr>
<td>Outline Dimension (Typ)</td>
<td>114.65 (H) x 74.7 (V) x 2.9 (D) mm w/o TSP, w/o Comp</td>
</tr>
<tr>
<td>Pixel Pitch (Typ)</td>
<td>0.12975mm x 0.12975mm</td>
</tr>
<tr>
<td>Pixel Format</td>
<td>800 horiz. by 480 vert. Pixels RGB strip arrangement</td>
</tr>
<tr>
<td>Color Depth</td>
<td>6-bit, 262,144 colors</td>
</tr>
<tr>
<td>Luminance, White (Typ.)</td>
<td>300 cd/m² (Typ.) , 1 point</td>
</tr>
<tr>
<td>Power Consumption (Typ.)</td>
<td>1.3 Watt (Typ.) @ LCM circuit 0.5 Watt (Typ.), B/L input 0.8 Watt (Typ.)</td>
</tr>
<tr>
<td>Weight (Typ)</td>
<td>60g w/o TSP, w Component</td>
</tr>
<tr>
<td>Display Operating Mode</td>
<td>Transmissive mode, normally white</td>
</tr>
<tr>
<td>Surface Treatment</td>
<td>Hard coating (3H) Anti-glare 12% treatment of the front polarizer</td>
</tr>
</tbody>
</table>
2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1. ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Input Voltage</td>
<td>VCC</td>
<td>-0.3</td>
<td>4.0</td>
<td>Vdc at 25 ± 5°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>TOP</td>
<td>0</td>
<td>50</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>HST</td>
<td>-20</td>
<td>60</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Ambient Humidity</td>
<td>HOP</td>
<td>10</td>
<td>90</td>
<td>%RH</td>
</tr>
<tr>
<td>Storage Humidity</td>
<td>HST</td>
<td>10</td>
<td>90</td>
<td>%RH</td>
</tr>
</tbody>
</table>

Note: 1. Temperature and relative humidity range are shown in the figure below.
Wet bulb temperature should be 39°C Max, and no condensation of water.
3. Electrical Specifications

3-1. Electrical Characteristics

The LP048WV1 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the LED, is typically generated by a LED Driver. The LED Driver is an internal unit to the LCD.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODULE:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply Input Voltage</td>
<td>VCC</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
</tr>
<tr>
<td>Power Supply Input Current</td>
<td>I<sub>CC</sub></td>
<td>150</td>
<td>TBD</td>
<td>mA</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>P<sub>C</sub></td>
<td>-</td>
<td>0.5</td>
<td>TBD</td>
</tr>
<tr>
<td>Differential Impedance</td>
<td>Z<sub>m</sub></td>
<td>90</td>
<td>100</td>
<td>110</td>
</tr>
</tbody>
</table>

Note)
1. The specified current and power consumption are under the V_{cc} = 3.3V, 25℃, f_v = 60Hz condition whereas Mosaic pattern is displayed and f_v is the frame frequency.
2. This impedance value is needed to proper display and measured form LVDS Tx to the mating connector.

3-2. Back Light Unit

The edge-lighting type of back light unit consists of 12 LEDs which is connected in parallel.

Table 3 Electrical Characteristics Of Back Light Unit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED Current</td>
<td>I<sub>LED</sub></td>
<td>-</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>P<sub>LED</sub></td>
<td>-</td>
<td>770</td>
<td>840</td>
</tr>
</tbody>
</table>

Note)
1. The permissible forward current of LED vary with environmental temperature.
2. I_{LED} is 20mA / “1 LED”
3. The LED power consumption shown above does not include loss of LED Driver Block.
3-3. Interface Connections

This LCD employs one interface connections, a 40 pin connector is used for the module electronics interface and the integral backlight system.

The electronics interface connector is a model FI-JH-40S manufactured by JAE.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>VCC</td>
<td>Power Supply, 3.3V Typ.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>NC</td>
<td>No Connection</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>R0</td>
<td>Red data (LSB)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R1</td>
<td>Red data</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>R2</td>
<td>Red data</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>R3</td>
<td>Red data</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>R4</td>
<td>Red data</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>G3</td>
<td>Red data (MSB)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>G0</td>
<td>Green Data (LSB)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>G1</td>
<td>Green Data</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>G2</td>
<td>Green Data</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>G3</td>
<td>Green Data</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>G4</td>
<td>Green Data</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>G5</td>
<td>Green Data (MSB)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>B0</td>
<td>Blue Data (LSB)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>B1</td>
<td>Blue Data</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>B2</td>
<td>Blue Data</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>B3</td>
<td>Blue Data</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>B4</td>
<td>Blue Data</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>B5</td>
<td>Blue Data (MSB)</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>HSYNC</td>
<td>Horizontal Sync Signal</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>VSYNC</td>
<td>Vertical Sync Signal</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>CLK</td>
<td>Dot Clock</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>VLED</td>
<td>LED Driving circuit power Supply, 3.3V Typ.</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>VLED</td>
<td>LED Driving circuit power Supply, 3.3V Typ.</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>LED Dimming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>X1</td>
<td>X Right Touch Panel</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Y1</td>
<td>Y Bottom Touch Panel</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>X2</td>
<td>X Left Touch Panel</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Y2</td>
<td>Y Top Touch Panel</td>
<td></td>
</tr>
</tbody>
</table>
3-4. Signal Timing Specifications

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications for its proper operation.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCLK</td>
<td>Frequency</td>
<td>fCLK</td>
<td>28.0</td>
<td>29.5</td>
<td>31.0</td>
<td>MHz</td>
</tr>
<tr>
<td>DE (Data Enable)</td>
<td>Active Data</td>
<td>tDE</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>tCLK</td>
</tr>
<tr>
<td>Blank (Blank Period)</td>
<td>Blank</td>
<td>tBLK</td>
<td>24</td>
<td>192</td>
<td>400</td>
<td>tCLK</td>
</tr>
</tbody>
</table>

Table 5. TIMING TABLE

3-5. Signal Timing Waveforms

[Signal timing waveforms diagram]

Condition: VCC = 3.3V

High: 0.7VCC
Low: 0.3VCC
3-6. Color Input Data Reference

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

<table>
<thead>
<tr>
<th>Color</th>
<th>Input Color Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSB</td>
</tr>
<tr>
<td></td>
<td>R5</td>
</tr>
<tr>
<td></td>
<td>G5</td>
</tr>
<tr>
<td></td>
<td>B5</td>
</tr>
<tr>
<td>Black</td>
<td>0</td>
</tr>
<tr>
<td>Red</td>
<td>1</td>
</tr>
<tr>
<td>Green</td>
<td>0</td>
</tr>
<tr>
<td>Cyan</td>
<td>0</td>
</tr>
<tr>
<td>Magenta</td>
<td>1</td>
</tr>
<tr>
<td>Yellow</td>
<td>1</td>
</tr>
<tr>
<td>White</td>
<td>1</td>
</tr>
<tr>
<td>RED</td>
<td>0</td>
</tr>
<tr>
<td>GREEN</td>
<td>0</td>
</tr>
<tr>
<td>BLUE</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6. COLOR DATA REFERENCE

<table>
<thead>
<tr>
<th>Color</th>
<th>Input Color Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSB</td>
</tr>
<tr>
<td></td>
<td>R5</td>
</tr>
<tr>
<td></td>
<td>G5</td>
</tr>
<tr>
<td></td>
<td>B5</td>
</tr>
<tr>
<td>BLACK</td>
<td>0</td>
</tr>
<tr>
<td>RED</td>
<td>0</td>
</tr>
<tr>
<td>GREEN</td>
<td>0</td>
</tr>
<tr>
<td>BLUE</td>
<td>0</td>
</tr>
</tbody>
</table>

Ver. 0.1. Jan, 26, 2007 9 / 23
3-7. Power Sequence

Table 7. POWER SEQUENCE TABLE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>(ms)</td>
</tr>
<tr>
<td>T_2</td>
<td>0</td>
<td>-</td>
<td>50</td>
<td>(ms)</td>
</tr>
<tr>
<td>T_3</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>(ms)</td>
</tr>
<tr>
<td>T_4</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>(ms)</td>
</tr>
<tr>
<td>T_5</td>
<td>0</td>
<td>-</td>
<td>50</td>
<td>(ms)</td>
</tr>
<tr>
<td>T_6</td>
<td>0</td>
<td>-</td>
<td>10</td>
<td>(ms)</td>
</tr>
<tr>
<td>T_7</td>
<td>400</td>
<td>-</td>
<td>-</td>
<td>(ms)</td>
</tr>
</tbody>
</table>

Note:
1. Please avoid floating state of interface signal at invalid period.
2. When the interface signal is invalid, be sure to pull down the power supply for LCD VCC to 0V.
3. LED power must be turn on after power supply for LCD and interface signal are valid.
4. Touch Screen Panel Specifications

4-1. Electrical Characteristics : TBD
4-2. Mechanical & Reliability Characteristics : TBD
5. Optical Specification

Optical characteristics are determined after the unit has been ‘ON’ and stable for approximately 5 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and Θ equal to 0°.

FIG. 1 presents additional information concerning the measurement equipment and method.

Table 8. OPTICAL CHARACTERISTICS

$Ta=25^\circ C$, $VCC=3.3V$, $f_{V}=60Hz$, $f_{CLK}=88.75MHz$, $I_{out}=6.5mA$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast Ratio</td>
<td>CR</td>
<td>TBD</td>
<td>1</td>
</tr>
<tr>
<td>Surface Luminance, white (w/o TSP)</td>
<td>L_{WH}</td>
<td>100</td>
<td>cd/m²</td>
</tr>
<tr>
<td>Surface Luminance, white (w TSP)</td>
<td>L_{WH}</td>
<td>TBD</td>
<td>cd/m²</td>
</tr>
<tr>
<td>Luminance Uniformity</td>
<td>U</td>
<td>1.2</td>
<td>3</td>
</tr>
<tr>
<td>Response Time</td>
<td>$T_{R_{1}}, T_{D_{1}}$</td>
<td>16</td>
<td>ms</td>
</tr>
<tr>
<td>Color Coordinates</td>
<td></td>
<td></td>
<td>±0.05</td>
</tr>
<tr>
<td>RED</td>
<td>RX</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>RED</td>
<td>RY</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>GREEN</td>
<td>GX</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>GREEN</td>
<td>GY</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>BLUE</td>
<td>BX</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>BLUE</td>
<td>BY</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>WHITE</td>
<td>WX</td>
<td>0.263</td>
<td></td>
</tr>
<tr>
<td>WHITE</td>
<td>WY</td>
<td>0.379</td>
<td></td>
</tr>
<tr>
<td>Viewing Angle</td>
<td>Θ_{x}</td>
<td>65</td>
<td>degree</td>
</tr>
<tr>
<td>Viewing Angle</td>
<td>Θ_{y}</td>
<td>65</td>
<td>degree</td>
</tr>
<tr>
<td>Gray Scale</td>
<td>Θ_{x}</td>
<td>50</td>
<td>degree</td>
</tr>
<tr>
<td>Gray Scale</td>
<td>Θ_{y}</td>
<td>50</td>
<td>degree</td>
</tr>
</tbody>
</table>
Note)
1. Contrast Ratio (CR) is defined mathematically as
 \[\text{Contrast Ratio} = \frac{\text{Surface Luminance with all white pixels}}{\text{Surface Luminance with all black pixels}} \]

2. Surface luminance is the 1point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 2. When \(I_{\text{LED}} = 20\text{mA}, L_{\text{WH}} = 300\text{cd/m}^2 \) (Typ.)

3. Luminance uniformity is measured for 9 points. For more information see FIG 2.
 \[\text{Luminance Uniformity} = \frac{\text{Maximum of 9 points (1~9)}}{\text{Minimum of 9 points (1~9)}} \]

4. Response time is the time required for the display to transition from white to black (rise time, \(T_{R} \)) and from black to white (Decay Time, \(T_{D} \)). For additional information see FIG 3.

5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.

6. Gray scale specification
 * \(f_v = 60\text{Hz} \)

<table>
<thead>
<tr>
<th>Gray Level</th>
<th>Luminance [%] (Typ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0</td>
<td>TBD</td>
</tr>
<tr>
<td>L7</td>
<td>TBD</td>
</tr>
<tr>
<td>L15</td>
<td>TBD</td>
</tr>
<tr>
<td>L23</td>
<td>TBD</td>
</tr>
<tr>
<td>L31</td>
<td>TBD</td>
</tr>
<tr>
<td>L39</td>
<td>TBD</td>
</tr>
<tr>
<td>L47</td>
<td>TBD</td>
</tr>
<tr>
<td>L55</td>
<td>TBD</td>
</tr>
<tr>
<td>L63</td>
<td>TBD</td>
</tr>
</tbody>
</table>
FIG. 2 Luminance

<measuring point for surface luminance & measuring point for luminance variation>

A : H/4 mm
B : V/4 mm
H : 103.8 mm
V : 62.28 mm
H×V: Active Area

FIG. 3 Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for “black” and “white”.

Optical Response

% 100 90 80 70 60 50 40 30 20 10 0

white black white

TrR TrD
FIG. 4 Viewing angle

<Dimension of viewing angle range>
6. Mechanical Characteristics
The contents provide general mechanical characteristics for the model LP048WV1. In addition, the figures in the next page are detailed mechanical drawing of the LCD.

<table>
<thead>
<tr>
<th>Outline Dimension</th>
<th>Horizontal</th>
<th>114.65 ± 0.3mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertical</td>
<td>74.7 ± 0.3mm</td>
</tr>
<tr>
<td></td>
<td>Depth</td>
<td>2.9 ± 0.3mm (w/o TSP, w/o Comp)</td>
</tr>
<tr>
<td>Bezel Area</td>
<td>Horizontal</td>
<td>106.8 ± 0.3mm</td>
</tr>
<tr>
<td></td>
<td>Vertical</td>
<td>65.28 ± 0.3mm</td>
</tr>
<tr>
<td>Active Display Area</td>
<td>Horizontal</td>
<td>103.8 mm</td>
</tr>
<tr>
<td></td>
<td>Vertical</td>
<td>62.28 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>60g ± 5g</td>
<td>w/o TSP</td>
</tr>
<tr>
<td></td>
<td>TBD</td>
<td>w TSP</td>
</tr>
<tr>
<td>Surface Treatment</td>
<td>Hard coating(3H)</td>
<td>Anti-glare 12% treatment of the front polarizer</td>
</tr>
</tbody>
</table>
<FRONT VIEW> Note) Unit:[mm], General tolerance: ± 0.5mm
<REAR VIEW>

Note) Unit:[mm], General tolerance: ± 0.5mm
7. Reliability

Environment test condition

<table>
<thead>
<tr>
<th>No.</th>
<th>Test Item</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High temperature storage test</td>
<td>$Ta = 60^\circ C, 240h$</td>
</tr>
<tr>
<td>2</td>
<td>Low temperature storage test</td>
<td>$Ta = -20^\circ C, 240h$</td>
</tr>
<tr>
<td>3</td>
<td>High temperature operation test</td>
<td>$Ta = 50^\circ C, 50%RH, 240h$</td>
</tr>
<tr>
<td>4</td>
<td>Low temperature operation test</td>
<td>$Ta = 0^\circ C, 240h$</td>
</tr>
<tr>
<td>5</td>
<td>Vibration test (non-operating)</td>
<td>Sine wave, $5 \sim 150$Hz, 1.5G, 0.37oct/min 3 axis, $30min/axis$</td>
</tr>
<tr>
<td>6</td>
<td>Shock test (non-operating)</td>
<td>$-180G, 2msec, Half sine$ $-\pm X, \pm Y, \pm Z.$ Per 1time</td>
</tr>
<tr>
<td>7</td>
<td>Thermal Shock test</td>
<td>$-30 \grad C (0.5h) \sim 70 \grad C (0.5h), 100cycles$</td>
</tr>
</tbody>
</table>

{ Result Evaluation Criteria }
There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.
8. International Standards

8-1. Safety

European Committee for Electrotechnical Standardization(CENELEC)
EUROPEAN STANDARD for Safety of Information Technology Equipment Including Electrical Business Equipment.

8-2. EMC

9. Packing

9-1. Designation of Lot Mark

a) Lot Mark

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
</table>

Note

1. YEAR

<table>
<thead>
<tr>
<th>Year</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

2. MONTH

<table>
<thead>
<tr>
<th>Month</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

3. FACTORY CODE

<table>
<thead>
<tr>
<th>Factory Code</th>
<th>LPL Gumi</th>
<th>LPL Nanjing</th>
<th>HEESUNG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>K</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

4. SERIAL NO.

| Mark | 100001~199999, 200001~299999, 300001~399999, ..., A00001~A99999, ..., Z00001~Z99999 |

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

9-2. Packing Form

a) Package quantity in one box : TBD

b) Box Size : TBD
10. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

10-1. OPERATING PRECAUTIONS

(1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage:
 \[V = \pm 200\text{mV} \] (Over and under shoot voltage)

(2) Response time depends on the temperature. (In lower temperature, it becomes longer.)
(3) Brightness depends on the temperature. (In lower temperature, it becomes lower.)
 And in lower temperature, response time (required time that brightness is stable after turned on) becomes
 longer.
(4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or
 electrical contacted parts. And after fading condensation, smear or spot will occur.
(5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
(6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be
 done by system manufacturers. Grounding and shielding methods may be important to minimized the
 interference.

10-2. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that
 treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

10-3. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

10-4. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

(1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the
 temperature between 5°C and 35°C at normal humidity.
(2) The polarizer surface should not come in contact with any other object.
 It is recommended that they be stored in the container in which they were shipped.
10-5. HANDLING PRECAUTIONS FOR PROTECTION FILM

(1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.

(2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.

Please carefully peel off the protection film without rubbing it against the polarizer.

(3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.

(4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.