SPECIFICATION FOR APPROVAL

<table>
<thead>
<tr>
<th>Title</th>
<th>10.1” HD TFT LCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
<td></td>
</tr>
<tr>
<td>MODEL</td>
<td></td>
</tr>
<tr>
<td>SUPPLIER</td>
<td>LG Display Co., Ltd.</td>
</tr>
<tr>
<td>*MODEL</td>
<td>LP101WH1</td>
</tr>
<tr>
<td>Suffix</td>
<td>TLB1</td>
</tr>
</tbody>
</table>

*When you obtain standard approval, please use the above model name without suffix

<table>
<thead>
<tr>
<th>APPROVED BY</th>
<th>SIGNATURE</th>
</tr>
</thead>
</table>
| / | /
| / | /
| / | /

Please return 1 copy for your confirmation with your signature and comments.

<table>
<thead>
<tr>
<th>APPROVED BY</th>
<th>SIGNATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. J. Kwon / Manager</td>
<td></td>
</tr>
<tr>
<td>REVIEWED BY</td>
<td></td>
</tr>
<tr>
<td>C. J. Jun / Manager</td>
<td></td>
</tr>
<tr>
<td>PREPARED BY</td>
<td></td>
</tr>
<tr>
<td>P. A. Choi / Engineer</td>
<td></td>
</tr>
</tbody>
</table>

Products Engineering Dept.
LG Display Co., Ltd
Contents

<table>
<thead>
<tr>
<th>No</th>
<th>ITEM</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COVER</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CONTENTS</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>RECORD OF REVISIONS</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>GENERAL DESCRIPTION</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>ABSOLUTE MAXIMUM RATINGS</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>ELECTRICAL SPECIFICATIONS</td>
<td>6</td>
</tr>
<tr>
<td>3-1</td>
<td>ELECTRICAL CHARACTERISTICS</td>
<td>7</td>
</tr>
<tr>
<td>3-2</td>
<td>INTERFACE CONNECTION</td>
<td>8</td>
</tr>
<tr>
<td>3-3</td>
<td>LVDS SIGNAL TIMING SPECIFICATIONS</td>
<td>10</td>
</tr>
<tr>
<td>3-4</td>
<td>SIGNAL TIMING SPECIFICATIONS</td>
<td>10</td>
</tr>
<tr>
<td>3-5</td>
<td>SIGNAL TIMING WAVEFORMS</td>
<td>11</td>
</tr>
<tr>
<td>3-6</td>
<td>COLOR INPUT DATA REFERENCE</td>
<td>12</td>
</tr>
<tr>
<td>3-7</td>
<td>POWER SEQUENCE</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>OPTICAL SPECIFICATIONS</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>MECHANICAL CHARACTERISTICS</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>RELIABILITY</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>INTERNATIONAL STANDARDS</td>
<td>21</td>
</tr>
<tr>
<td>7-1</td>
<td>SAFETY</td>
<td>21</td>
</tr>
<tr>
<td>7-2</td>
<td>EMC</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>PACKING</td>
<td>22</td>
</tr>
<tr>
<td>8-1</td>
<td>DESIGNATION OF LOT MARK</td>
<td>22</td>
</tr>
<tr>
<td>8-2</td>
<td>PACKING FORM</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>PRECAUTIONS</td>
<td>23</td>
</tr>
<tr>
<td>A</td>
<td>APPENDIX. Enhanced Extended Display Identification Data</td>
<td>25</td>
</tr>
</tbody>
</table>
RECORD OF REVISIONS

<table>
<thead>
<tr>
<th>Revision No</th>
<th>Revision Date</th>
<th>Page</th>
<th>Description</th>
<th>EDID ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>Sep. 22. 2008</td>
<td>All</td>
<td>First Draft (Preliminary Specification)</td>
<td>-</td>
</tr>
<tr>
<td>0.1</td>
<td>Oct. 22. 2008</td>
<td>All</td>
<td>Spec update</td>
<td>-</td>
</tr>
<tr>
<td>0.2</td>
<td>Dec. 10. 2008</td>
<td>6</td>
<td>Electrical Characteristics</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>36 pin(@ Pin Map)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>Timing Table</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>Activer Area Dimension</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25~27</td>
<td>EDID update</td>
<td>-</td>
</tr>
<tr>
<td>0.3</td>
<td>Jan. 13. 2009</td>
<td>6</td>
<td>Electrical Characteristics</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>Optical Characteristics</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>Gray Scale specification</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17~18</td>
<td>Mechanical Characteristics</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25~27</td>
<td>EDID</td>
<td>-</td>
</tr>
<tr>
<td>1.0</td>
<td>Feb. 06. 2009</td>
<td>-</td>
<td>Final CAS</td>
<td>-</td>
</tr>
</tbody>
</table>
1. General Description

The LP101WH1 is a Color Active Matrix Liquid Crystal Display with an integral LED backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 10.1 inches diagonally measured active display area with HD resolution (1366 horizontal by 768 vertical pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors.

The LP101WH1 has been designed to apply the interface method that enables low power, high speed, low EMI.

The LP101WH1 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP101WH1 characteristics provide an excellent flat display for office automation products such as Notebook PC.

General Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Screen Size</td>
<td>10.1 inches diagonal</td>
</tr>
<tr>
<td>Outline Dimension</td>
<td>235(H) × 143(V) × 5.3(D,Max.) [mm]</td>
</tr>
<tr>
<td>Pixel Pitch</td>
<td>0.16305mm × 0.16305 mm</td>
</tr>
<tr>
<td>Pixel Format</td>
<td>1366 horiz. By 768 vert. Pixels RGB strip arrangement</td>
</tr>
<tr>
<td>Color Depth</td>
<td>6-bit, 262,144 colors</td>
</tr>
<tr>
<td>Luminance, White</td>
<td>250 cd/m²(Typ. 5 point)</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>Total 3.58 Watt(Typ.) @ LCM circuit 1.16 Watt(Typ.), B/L input 2.42 Watt(Typ.) (W/O LED Driver)</td>
</tr>
<tr>
<td>Weight</td>
<td>210g (Max.)</td>
</tr>
<tr>
<td>Display Operating Mode</td>
<td>Transmissive mode, normally white</td>
</tr>
<tr>
<td>Surface Treatment</td>
<td>Anti-Glare treatment of the front polarizer</td>
</tr>
<tr>
<td>RoHS Comply</td>
<td>Yes</td>
</tr>
</tbody>
</table>

LED Backlight Ass’y

Source Driver Circuit

TFT-LCD Panel (1366 x 768)

Control & Data

Power

EDID signal & Power
2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1. ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Input Voltage</td>
<td>VCC</td>
<td>Min</td>
<td>Max</td>
<td>Vdc</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>TOP</td>
<td>0</td>
<td>50</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>HST</td>
<td>-20</td>
<td>60</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Ambient Humidity</td>
<td>HOP</td>
<td>10</td>
<td>90</td>
<td>%RH</td>
</tr>
<tr>
<td>Storage Humidity</td>
<td>HST</td>
<td>10</td>
<td>90</td>
<td>%RH</td>
</tr>
</tbody>
</table>

Note: 1. Temperature and relative humidity range are shown in the figure below.
 Wet bulb temperature should be 39°C Max, and no condensation of water.
3. Electrical Specifications

3-1. Electrical Characteristics

The LP101WH1 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the LED BL.

Table 2. ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>MODULE :</td>
<td>VCC</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
</tr>
<tr>
<td>Power Supply Input Voltage</td>
<td>ILED</td>
<td>-</td>
<td>350</td>
<td>402</td>
</tr>
<tr>
<td>Power Supply Input Current</td>
<td>Pc</td>
<td>-</td>
<td>1.16</td>
<td>1.33</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>Zm</td>
<td>90</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>LED Backlight (With LED Driver)</td>
<td>PLED</td>
<td>-</td>
<td>0.21</td>
<td>0.25</td>
</tr>
<tr>
<td>LED Driver (@12V)</td>
<td>VLED</td>
<td>-</td>
<td>28.8</td>
<td>30.6</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>ILED</td>
<td>-</td>
<td>21</td>
<td>-</td>
</tr>
<tr>
<td>Operating Current per string</td>
<td>PBL</td>
<td>-</td>
<td>2.42</td>
<td>2.57</td>
</tr>
<tr>
<td>Power Consumption</td>
<td></td>
<td>15,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life Time</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note)

1. The specified current and power consumption are under the Vcc = 3.3V, 25°C, fv = 60Hz condition whereas Mosaic pattern is displayed and fv is the frame frequency.

2. This impedance value is needed to proper display and measured form LVDS Tx to the mating connector.

3. The typical operating current is for the typical surface luminance (LWH) in optical characteristics.

4. The LED power consumption shown above does not include power of external LED driver circuit for typical current condition.

5. The life time is determined as the time at which brightness of LED is 50% compare to that of initial value at the typical LED current.
3-2. Interface Connection

This LCD employs one interface connection, a 40 pin connector is used for the module electronics interface.

Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CT1/NC</td>
<td>Connector Test/No Connection(Reserved)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>VDD</td>
<td>+3.3V Power Supply</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E_DDD</td>
<td>+3.3V EDID Power</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Test</td>
<td>Panel Self Test</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EDID</td>
<td>EDID Clock Input</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DATAEDD</td>
<td>EDID Data Input</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Rx1N0</td>
<td>LVDS differential data input</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Rx1IN1</td>
<td>LVDS differential data input</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Rx1IN1+</td>
<td>LVDS differential data input</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Rx1IN2</td>
<td>LVDS differential data input</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Rx1IN2+</td>
<td>LVDS differential data input</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Rx1CLKIN</td>
<td>LVDS differential clock input</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>NC</td>
<td>No Connection</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>NC</td>
<td>No Connection</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>NC</td>
<td>No Connection</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>NC</td>
<td>No Connection</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>NC</td>
<td>No Connection</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>NC</td>
<td>No Connection</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>NC</td>
<td>No Connection</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>NC</td>
<td>No Connection</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>VLED_GND</td>
<td>LED Ground</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>VLED_GND</td>
<td>LED Ground</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>VLE_GND</td>
<td>LED Ground</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>CT2/NC</td>
<td>Connector Test/No Connection(Reserved)</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>BL_ON</td>
<td>LED Enable(3.3V Input)[Note 1]</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>VLED</td>
<td>4.5-21V LED Power Supply</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>BL_PWMN</td>
<td>System PWM signal input(+3.3V swing)</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>VLED</td>
<td>4.5-21V LED Power Supply</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>VLED</td>
<td>4.5-21V LED Power Supply</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>VLED</td>
<td>4.5-21V LED Power Supply</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Interface chips
 1.1 LCD : SiW, 1port including LVDS Receiver
 1.2 System : * Pin to Pin compatible with LVDS
2. Connector
 2.1 LCD : I-PEX 20455-040E-0* (Locking type) or equivalent
 2.2 Mating:
 2.3 Connector pin arrangement

[Note 1] On: 2.0V↑, Off: 0~0.4V

[Diagram of LCD Module Rear View]
3-3. LVDS Signal Timing Specifications

3-3-1. DC Specification

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVDS Differential Voltage</td>
<td>(</td>
<td>V_{IZ}</td>
<td>)</td>
<td>100</td>
<td>600</td>
</tr>
<tr>
<td>LVDS Common mode Voltage</td>
<td>(V_{CM})</td>
<td>0.6</td>
<td>1.8</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>LVDS Input Voltage Range</td>
<td>(V_{IN})</td>
<td>0.3</td>
<td>2.1</td>
<td>V</td>
<td>-</td>
</tr>
</tbody>
</table>

3-3-2. AC Specification

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVDS Clock to Data Skew Margin</td>
<td>(t_{SKEW})</td>
<td>-400</td>
<td>+400</td>
<td>ps</td>
<td>85MHz > Fclk (\geq) 65MHz</td>
</tr>
<tr>
<td>LVDS Clock to Clock Skew Margin (Even to Odd)</td>
<td>(t_{SKEW})</td>
<td>-600</td>
<td>+600</td>
<td>ps</td>
<td>65MHz > Fclk (\geq) 25MHz</td>
</tr>
<tr>
<td>Maximum deviation of input clock frequency during SSC</td>
<td>(F_{DEV})</td>
<td>-</td>
<td>±3</td>
<td>%</td>
<td>-</td>
</tr>
<tr>
<td>Maximum modulation frequency of input clock during SSC</td>
<td>(F_{MOD})</td>
<td>-</td>
<td>200</td>
<td>KHz</td>
<td>-</td>
</tr>
</tbody>
</table>
3-3-3. Data Format

- LVDS 1 Port

< LVDS Data Format >
3-4. Signal Timing Specifications

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation.

Table 5. TIMING TABLE

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCLK Frequency</td>
<td>f_{CLK}</td>
<td>-</td>
<td>72.3</td>
<td>-</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Hsync Period</td>
<td>T_{hp}</td>
<td>1470</td>
<td>1526</td>
<td>1586</td>
<td>tCLK</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>t_{WH}</td>
<td>23</td>
<td>32</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width-Active</td>
<td>t_{WHA}</td>
<td>1366</td>
<td>1366</td>
<td>1366</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vsync Period</td>
<td>t_{VP}</td>
<td>779</td>
<td>790</td>
<td>801</td>
<td>tHP</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>t_{WV}</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width-Active</td>
<td>t_{WVA}</td>
<td>768</td>
<td>768</td>
<td>768</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Enable</td>
<td>t_{HBP}</td>
<td>72</td>
<td>80</td>
<td>124</td>
<td>tCLK</td>
<td></td>
</tr>
<tr>
<td>Horizontal front porch</td>
<td>t_{HP}</td>
<td>8</td>
<td>48</td>
<td>48</td>
<td></td>
<td>tHP</td>
</tr>
<tr>
<td>Vertical back porch</td>
<td>t_{VBP}</td>
<td>8</td>
<td>14</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical front porch</td>
<td>t_{VFP}</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3-5. Signal Timing Waveforms

Condition: VCC = 3.3V

Data Enable, Hsync, Vsync

DCLK: t_{CLK}

Hsync: t_{WH}

Data Enable: t_{HBP}, t_{WHA}, t_{HFP}

Vsync: t_{WV}

Data Enable: t_{VBP}, t_{WVA}, t_{VFP}

Ver. 1.0

Feb. 06, 2009
3-6. Color Input Data Reference

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 7. COLOR DATA REFERENCE

<table>
<thead>
<tr>
<th>Color</th>
<th>Input Color Data</th>
<th>RED</th>
<th>GREEN</th>
<th>BLUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MSB</td>
<td>MSB</td>
<td>MSB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LSB</td>
<td>LSB</td>
<td>LSB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R5</td>
<td>R4</td>
<td>R3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R2</td>
<td>R1</td>
<td>R0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G5</td>
<td>G4</td>
<td>G3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2</td>
<td>G1</td>
<td>G0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B5</td>
<td>B4</td>
<td>B3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2</td>
<td>B1</td>
<td>B0</td>
</tr>
<tr>
<td>Basic Color</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Red</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Green</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cyan</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Magenta</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yellow</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>White</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RED</td>
<td>RED (00)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>RED (01)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>RED (62)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>RED (63)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GREEN</td>
<td>GREEN (00)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>GREEN (01)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>GREEN (62)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>GREEN (63)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BLUE</td>
<td>BLUE (00)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>BLUE (01)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>BLUE (62)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>BLUE (63)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
3-7. Power Sequence

Power Supply For LCD (VCC)

Interface Signal, \(V_i \)
(LVDS Signal of Transmitter)

LED Power
(VLED,BL_ON,S_PWMIN Signal:
Refer to Table 3.)

Table 7. POWER SEQUENCE TABLE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>T2</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>T3</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>T4</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>T5</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>T6</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>T7</td>
<td>400</td>
<td>-</td>
</tr>
</tbody>
</table>

Note:
1. Valid Data is Data to meet “3-3. LVDS Signal Timing Specifications”
2. Please avoid floating state of interface signal at invalid period.
3. When the interface signal is invalid, be sure to pull down the power supply for LCD VCC to 0V.
4. LED power must be turn on after power supply for LCD and interface signal are valid.
4. Optical Specification

Optical characteristics are determined after the unit has been ‘ON’ and stable for approximately 30 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of φ and Θ equal to 0°. FIG. 1 presents additional information concerning the measurement equipment and method.

FIG. 1 Optical Characteristic Measurement Equipment and Method

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast Ratio</td>
<td>CR</td>
<td>400</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Luminance Variation</td>
<td>(\delta)</td>
<td>-</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Response Time</td>
<td>(T_{	ext{rise}} + T_{	ext{fall}})</td>
<td>-</td>
<td>16</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 8. OPTICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color Coordinates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RED</td>
<td>RX</td>
<td>0.564</td>
<td>0.594</td>
<td>0.624</td>
</tr>
<tr>
<td></td>
<td>RY</td>
<td>0.323</td>
<td>0.353</td>
<td>0.383</td>
</tr>
<tr>
<td>GREEN</td>
<td>GX</td>
<td>0.297</td>
<td>0.327</td>
<td>0.357</td>
</tr>
<tr>
<td></td>
<td>GY</td>
<td>0.554</td>
<td>0.584</td>
<td>0.614</td>
</tr>
<tr>
<td>BLUE</td>
<td>BX</td>
<td>0.121</td>
<td>0.151</td>
<td>0.181</td>
</tr>
<tr>
<td></td>
<td>BY</td>
<td>0.081</td>
<td>0.111</td>
<td>0.141</td>
</tr>
<tr>
<td>WHITE</td>
<td>WX</td>
<td>0.283</td>
<td>0.313</td>
<td>0.343</td>
</tr>
<tr>
<td></td>
<td>WY</td>
<td>0.299</td>
<td>0.329</td>
<td>0.359</td>
</tr>
</tbody>
</table>

Viewing Angle

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>x axis, right((\phi = 0^\circ))</td>
<td>60</td>
<td>degree</td>
</tr>
<tr>
<td>x axis, left ((\phi = 180^\circ))</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>y axis, up ((\phi = 90^\circ))</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>y axis, down ((\phi = 270^\circ))</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Gray Scale

<table>
<thead>
<tr>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>6</td>
</tr>
</tbody>
</table>
Note)
1. Contrast Ratio (CR) is defined mathematically as
 \[
 \text{Contrast Ratio} = \frac{\text{Surface Luminance with all white pixels}}{\text{Surface Luminance with all black pixels}}
 \]

2. Surface luminance is the average of 5 point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 1.
 \[
 L_{\text{WH}} = \text{Average}(L_1, L_2, \ldots L_5)
 \]

3. The variation in surface luminance, The panel total variation (δ_{WHITE}) is determined by measuring L_N at each test position 1 through 13 and then defined as followed numerical formula.
 For more information see FIG 2.
 \[
 \delta_{\text{WHITE}} = \frac{\text{Maximum}(L_1, L_2, \ldots L_{13})}{\text{Minimum}(L_1, L_2, \ldots L_{13})}
 \]

4. Response time is the time required for the display to transition from white to black (rise time, T_{R}) and from black to white (Decay Time, T_{D}). For additional information see FIG 3.

5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.

6. Gray scale specification
 \[
 f_V = 60\text{Hz}
 \]

<table>
<thead>
<tr>
<th>Gray Level</th>
<th>Luminance [%] (Typ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0</td>
<td>0.24</td>
</tr>
<tr>
<td>L7</td>
<td>0.74</td>
</tr>
<tr>
<td>L15</td>
<td>2.57</td>
</tr>
<tr>
<td>L23</td>
<td>6.75</td>
</tr>
<tr>
<td>L31</td>
<td>15.48</td>
</tr>
<tr>
<td>L39</td>
<td>32.89</td>
</tr>
<tr>
<td>L47</td>
<td>56.63</td>
</tr>
<tr>
<td>L55</td>
<td>76.95</td>
</tr>
<tr>
<td>L63</td>
<td>100</td>
</tr>
</tbody>
</table>
FIG. 2 Luminance
<measuring point for surface luminance & measuring point for luminance variation>

FIG. 3 Response Time
The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

FIG. 4 Viewing angle
5. Mechanical Characteristics
The contents provide general mechanical characteristics for the model LP101WH1. In addition the figures in the next page are detailed mechanical drawing of the LCD.

<table>
<thead>
<tr>
<th></th>
<th>Outline Dimension</th>
<th>Bezel Area</th>
<th>Active Display Area</th>
<th>Weight</th>
<th>Surface Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Horizontal</td>
<td>Horizontal</td>
<td>Horizontal</td>
<td></td>
<td>Anti-Glare treatment of the front polarizer</td>
</tr>
<tr>
<td></td>
<td>Vertical</td>
<td>Vertical</td>
<td>Vertical</td>
<td>210g (Max.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickness</td>
<td>Thickness</td>
<td>Thickness</td>
<td>5.3mm (max)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>235.0 ± 0.5 mm</td>
<td>226.00 mm</td>
<td>222.72 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>143.0 ± 0.5 mm</td>
<td>128.70 mm</td>
<td>125.28 mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LP101WH1

Liquid Crystal Display

Product Specification

[DETAIL DESCRIPTION OF SIDE MOUNTING SCREW]

* Mounting Screw Length (A) = 1.5(Min) / 1.8(Max)
* Mounting Screw Hole Depth (B) = 1.8(Min)
* Mounting hole location : 2.8(typ.)
* Torque : 2.0 kgf.cm(Max)
 (Measurement gauge : torque meter)

Section A-A

Notes: 1. Screw plated through the method of non-electrolytic nickel plating is preferred to reduce possibility that results in vertical and/or horizontal line defect due to the conductive particles from screw surface.

[DETAIL INFORMATION OF PPID LABEL AND REVISION CODE]

* PPID Label Revision:
 It is subject to change with Dell event. Please refer to the below table for detail.

<table>
<thead>
<tr>
<th>Classification</th>
<th>No Change</th>
<th>1st Revision</th>
<th>2nd Revision</th>
<th>...</th>
<th>9th Revision</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST(WS)</td>
<td>X00</td>
<td>X01</td>
<td>X02</td>
<td>...</td>
<td>A09</td>
<td>...</td>
</tr>
<tr>
<td>PT(ES)</td>
<td>X10</td>
<td>X11</td>
<td>X12</td>
<td>...</td>
<td>A19</td>
<td>...</td>
</tr>
<tr>
<td>ST(CS)</td>
<td>X20</td>
<td>X21</td>
<td>X22</td>
<td>...</td>
<td>A29</td>
<td>...</td>
</tr>
<tr>
<td>XB(MP)</td>
<td>A00</td>
<td>A01</td>
<td>A02</td>
<td>...</td>
<td>A09</td>
<td>...</td>
</tr>
</tbody>
</table>

Ver. 1.0 Feb. 06, 2009
6. Reliability

Environment test condition

<table>
<thead>
<tr>
<th>No.</th>
<th>Test Item</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High temperature storage test</td>
<td>Ta= 60°C, 240h</td>
</tr>
<tr>
<td>2</td>
<td>Low temperature storage test</td>
<td>Ta= -20°C, 240h</td>
</tr>
<tr>
<td>3</td>
<td>High temperature operation test</td>
<td>Ta= 50°C, 50%RH, 240h</td>
</tr>
<tr>
<td>4</td>
<td>Low temperature operation test</td>
<td>Ta= 0°C, 240h</td>
</tr>
<tr>
<td>5</td>
<td>Vibration test (non-operating)</td>
<td>Sine wave, 10 ~ 500 ~ 10Hz, 1.5G, 0.37oct/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 axis, 1hour/axis</td>
</tr>
<tr>
<td>6</td>
<td>Shock test (non-operating)</td>
<td>Half sine wave, 180G, 2ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>one shock of each six faces(I.e. run 180G 6ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for all six faces)</td>
</tr>
<tr>
<td>7</td>
<td>Altitude operating storage / shipment</td>
<td>0 ~ 10,000 feet (3,048m) 24Hr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 ~ 40,000 feet (12,192m) 24Hr</td>
</tr>
</tbody>
</table>

{ Result Evaluation Criteria }
There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.
7. International Standards

7-1. Safety

7-2. EMC

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B, C: SIZE (INCH)</td>
<td>D: YEAR</td>
<td>E: MONTH</td>
<td>F ~ M: SERIAL NO.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note

1. YEAR

<table>
<thead>
<tr>
<th>Year</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

2. MONTH

<table>
<thead>
<tr>
<th>Month</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

a) Package quantity in one box: 40 pcs

b) Box Size: 395mm × 390mm × 309mm
9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

(1) You must mount a module using holes arranged in four corners or four sides.
(2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
(3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
(4) You should adopt radiation structure to satisfy the temperature specification.
(5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
(6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
(7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
(8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
(9) Do not open the case because inside circuits do not have sufficient strength.

9-2. OPERATING PRECAUTIONS

(1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage :
 \[V = \pm 200mV \] (Over and under shoot voltage)
(2) Response time depends on the temperature. (In lower temperature, it becomes longer.)
(3) Brightness depends on the temperature. (In lower temperature, it becomes lower.)
 And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
(4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
(5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
(6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
9-3. ELECTROSTATIC DISCHARGE CONTROL
Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don’t touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE
Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE
When storing modules as spares for a long time, the following precautions are necessary.

(1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
(2) The polarizer surface should not come in contact with any other object.
 It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM
(1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
(2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.
 Please carefully peel off the protection film without rubbing it against the polarizer.
(3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
(4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.
Field Name and Comments

<table>
<thead>
<tr>
<th>Byte (Dec)</th>
<th>Byte (Hex)</th>
<th>Value (Hex)</th>
<th>Value (Bin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>FF</td>
<td>11111111</td>
</tr>
<tr>
<td>2</td>
<td>02</td>
<td>FF</td>
<td>11111111</td>
</tr>
<tr>
<td>3</td>
<td>03</td>
<td>FF</td>
<td>11111111</td>
</tr>
<tr>
<td>4</td>
<td>04</td>
<td>FF</td>
<td>11111111</td>
</tr>
<tr>
<td>5</td>
<td>05</td>
<td>FF</td>
<td>11111111</td>
</tr>
<tr>
<td>6</td>
<td>06</td>
<td>FF</td>
<td>11111111</td>
</tr>
<tr>
<td>7</td>
<td>07</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>8</td>
<td>08</td>
<td>30</td>
<td>00110000</td>
</tr>
<tr>
<td>9</td>
<td>09</td>
<td>E4</td>
<td>11100100</td>
</tr>
<tr>
<td>10</td>
<td>0A</td>
<td>DC</td>
<td>11011100</td>
</tr>
<tr>
<td>11</td>
<td>0B</td>
<td>01DCh</td>
<td>11011100</td>
</tr>
<tr>
<td>12</td>
<td>0C</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>13</td>
<td>0D</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>14</td>
<td>0E</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>15</td>
<td>0F</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td>12</td>
<td>00010010</td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>19</td>
<td>13</td>
<td>03</td>
<td>00000011</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>80</td>
<td>10000000</td>
</tr>
<tr>
<td>21</td>
<td>15</td>
<td>16</td>
<td>00011010</td>
</tr>
<tr>
<td>22</td>
<td>16</td>
<td>0D</td>
<td>00001010</td>
</tr>
<tr>
<td>23</td>
<td>17</td>
<td>78</td>
<td>01111000</td>
</tr>
<tr>
<td>24</td>
<td>18</td>
<td>0A</td>
<td>00001010</td>
</tr>
<tr>
<td>25</td>
<td>19</td>
<td>1E</td>
<td>00011110</td>
</tr>
<tr>
<td>26</td>
<td>1A</td>
<td>ES</td>
<td>11100010</td>
</tr>
<tr>
<td>27</td>
<td>1B</td>
<td>08</td>
<td>10011000</td>
</tr>
<tr>
<td>28</td>
<td>1C</td>
<td>5A</td>
<td>01011010</td>
</tr>
<tr>
<td>29</td>
<td>1D</td>
<td>53</td>
<td>01010011</td>
</tr>
<tr>
<td>30</td>
<td>1E</td>
<td>95</td>
<td>10010101</td>
</tr>
<tr>
<td>31</td>
<td>1F</td>
<td>26</td>
<td>00100110</td>
</tr>
<tr>
<td>32</td>
<td>20</td>
<td>1C</td>
<td>00011100</td>
</tr>
<tr>
<td>33</td>
<td>21</td>
<td>50</td>
<td>01010000</td>
</tr>
<tr>
<td>34</td>
<td>22</td>
<td>54</td>
<td>01010100</td>
</tr>
<tr>
<td>35</td>
<td>23</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>36</td>
<td>24</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>37</td>
<td>25</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>38</td>
<td>26</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>39</td>
<td>27</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>40</td>
<td>28</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>41</td>
<td>29</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>42</td>
<td>2A</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>43</td>
<td>2B</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>44</td>
<td>2C</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>45</td>
<td>2D</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>46</td>
<td>2E</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>47</td>
<td>2F</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>48</td>
<td>30</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>49</td>
<td>31</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>50</td>
<td>32</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>51</td>
<td>33</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>52</td>
<td>34</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>53</td>
<td>35</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>Field Name and Comments</td>
<td>Value (Hex)</td>
<td>Value (Bin)</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Pixel Clock(10,000) (LSB)</td>
<td>71 MHz @ 60Hz</td>
<td>BC</td>
<td>01111001</td>
</tr>
<tr>
<td>Horizontal Active</td>
<td>1366 Pixels</td>
<td>56</td>
<td>01011010</td>
</tr>
<tr>
<td>Horizontal Blanking(8)</td>
<td>132 Pixels</td>
<td>84</td>
<td>01001010</td>
</tr>
<tr>
<td>Horizontal Active / Horizontal Blanking(4) (upper)</td>
<td>768 Lines</td>
<td>BC</td>
<td>01111011</td>
</tr>
<tr>
<td>Vertical Blanking (Tvp-HA)</td>
<td>22 Lines</td>
<td>16</td>
<td>00000100</td>
</tr>
<tr>
<td>Horizontal Sync Offset (Thip)</td>
<td>48 Pixels</td>
<td>30</td>
<td>00011000</td>
</tr>
<tr>
<td>Horizontal Sync Pulse Width (HSPW)</td>
<td>32 Pixels</td>
<td>30</td>
<td>01101000</td>
</tr>
<tr>
<td>Vertical Sync Offset (VSPW)</td>
<td>3 Lines - 5 Lines</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>Vertical Image Size (mm)</td>
<td>224 mm</td>
<td>E0</td>
<td>11000000</td>
</tr>
<tr>
<td>Vertical Image Size</td>
<td>126 mm</td>
<td>7E</td>
<td>01111110</td>
</tr>
<tr>
<td>Horizontal Image Size / Vertical Image Size</td>
<td>126 mm</td>
<td>7E</td>
<td>01111110</td>
</tr>
<tr>
<td>Horizontal Blanking(2)</td>
<td>22 Lines</td>
<td>16</td>
<td>00000100</td>
</tr>
<tr>
<td>Vertical Border = 0 (Zero for Notebook LCD)</td>
<td>00</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>Vertical Border = 0 (Zero for Notebook LCD)</td>
<td>00</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>Vertical Active</td>
<td>768 Lines</td>
<td>16</td>
<td>00000100</td>
</tr>
<tr>
<td>Vertical Active</td>
<td>768 Lines</td>
<td>16</td>
<td>00000100</td>
</tr>
<tr>
<td>Pixel Clock/10,000 (LSB)</td>
<td>71 MHz @ 60Hz</td>
<td>BC</td>
<td>01111001</td>
</tr>
<tr>
<td>Horizontal Active</td>
<td>1366 Pixels</td>
<td>56</td>
<td>01011010</td>
</tr>
<tr>
<td>Horizontal Blanking(8)</td>
<td>132 Pixels</td>
<td>84</td>
<td>01001010</td>
</tr>
<tr>
<td>Horizontal Active / Horizontal Blanking(4) (upper)</td>
<td>768 Lines</td>
<td>BC</td>
<td>01111011</td>
</tr>
<tr>
<td>Vertical Blanking (Tvp-HA)</td>
<td>22 Lines</td>
<td>16</td>
<td>00000100</td>
</tr>
<tr>
<td>Horizontal Sync Offset (Thip)</td>
<td>48 Pixels</td>
<td>30</td>
<td>00011000</td>
</tr>
<tr>
<td>Horizontal Sync Pulse Width (HSPW)</td>
<td>32 Pixels</td>
<td>30</td>
<td>01101000</td>
</tr>
<tr>
<td>Vertical Sync Offset (VSPW)</td>
<td>3 Lines - 5 Lines</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>Vertical Image Size (mm)</td>
<td>224 mm</td>
<td>E0</td>
<td>11000000</td>
</tr>
<tr>
<td>Vertical Image Size</td>
<td>126 mm</td>
<td>7E</td>
<td>01111110</td>
</tr>
<tr>
<td>Horizontal Image Size / Vertical Image Size</td>
<td>126 mm</td>
<td>7E</td>
<td>01111110</td>
</tr>
<tr>
<td>Horizontal Blanking(2)</td>
<td>22 Lines</td>
<td>16</td>
<td>00000100</td>
</tr>
<tr>
<td>Vertical Border = 0 (Zero for Notebook LCD)</td>
<td>00</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>Vertical Border = 0 (Zero for Notebook LCD)</td>
<td>00</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>Vertical Active</td>
<td>768 Lines</td>
<td>16</td>
<td>00000100</td>
</tr>
<tr>
<td>Vertical Active</td>
<td>768 Lines</td>
<td>16</td>
<td>00000100</td>
</tr>
<tr>
<td>Pixel Clock/10,000 (LSB)</td>
<td>71 MHz @ 60Hz</td>
<td>BC</td>
<td>01111001</td>
</tr>
<tr>
<td>Horizontal Active</td>
<td>1366 Pixels</td>
<td>56</td>
<td>01011010</td>
</tr>
<tr>
<td>Horizontal Blanking(8)</td>
<td>132 Pixels</td>
<td>84</td>
<td>01001010</td>
</tr>
<tr>
<td>Horizontal Active / Horizontal Blanking(4) (upper)</td>
<td>768 Lines</td>
<td>BC</td>
<td>01111011</td>
</tr>
<tr>
<td>Vertical Blanking (Tvp-HA)</td>
<td>22 Lines</td>
<td>16</td>
<td>00000100</td>
</tr>
<tr>
<td>Horizontal Sync Offset (Thip)</td>
<td>48 Pixels</td>
<td>30</td>
<td>00011000</td>
</tr>
<tr>
<td>Horizontal Sync Pulse Width (HSPW)</td>
<td>32 Pixels</td>
<td>30</td>
<td>01101000</td>
</tr>
<tr>
<td>Vertical Sync Offset (VSPW)</td>
<td>3 Lines - 5 Lines</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>Vertical Image Size (mm)</td>
<td>224 mm</td>
<td>E0</td>
<td>11000000</td>
</tr>
<tr>
<td>Vertical Image Size</td>
<td>126 mm</td>
<td>7E</td>
<td>01111110</td>
</tr>
<tr>
<td>Horizontal Image Size / Vertical Image Size</td>
<td>126 mm</td>
<td>7E</td>
<td>01111110</td>
</tr>
<tr>
<td>Horizontal Blanking(2)</td>
<td>22 Lines</td>
<td>16</td>
<td>00000100</td>
</tr>
<tr>
<td>Vertical Border = 0 (Zero for Notebook LCD)</td>
<td>00</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>Vertical Border = 0 (Zero for Notebook LCD)</td>
<td>00</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>Vertical Active</td>
<td>768 Lines</td>
<td>16</td>
<td>00000100</td>
</tr>
<tr>
<td>Vertical Active</td>
<td>768 Lines</td>
<td>16</td>
<td>00000100</td>
</tr>
<tr>
<td>Pixel Clock/10,000 (LSB)</td>
<td>71 MHz @ 60Hz</td>
<td>BC</td>
<td>01111001</td>
</tr>
<tr>
<td>Horizontal Active</td>
<td>1366 Pixels</td>
<td>56</td>
<td>01011010</td>
</tr>
<tr>
<td>Horizontal Blanking(8)</td>
<td>132 Pixels</td>
<td>84</td>
<td>01001010</td>
</tr>
<tr>
<td>Horizontal Active / Horizontal Blanking(4) (upper)</td>
<td>768 Lines</td>
<td>BC</td>
<td>01111011</td>
</tr>
<tr>
<td>Vertical Blanking (Tvp-HA)</td>
<td>22 Lines</td>
<td>16</td>
<td>00000100</td>
</tr>
<tr>
<td>Horizontal Sync Offset (Thip)</td>
<td>48 Pixels</td>
<td>30</td>
<td>00011000</td>
</tr>
<tr>
<td>Horizontal Sync Pulse Width (HSPW)</td>
<td>32 Pixels</td>
<td>30</td>
<td>01101000</td>
</tr>
<tr>
<td>Vertical Sync Offset (VSPW)</td>
<td>3 Lines - 5 Lines</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>Vertical Image Size (mm)</td>
<td>224 mm</td>
<td>E0</td>
<td>11000000</td>
</tr>
<tr>
<td>Vertical Image Size</td>
<td>126 mm</td>
<td>7E</td>
<td>01111110</td>
</tr>
<tr>
<td>Horizontal Image Size / Vertical Image Size</td>
<td>126 mm</td>
<td>7E</td>
<td>01111110</td>
</tr>
<tr>
<td>Horizontal Blanking(2)</td>
<td>22 Lines</td>
<td>16</td>
<td>00000100</td>
</tr>
<tr>
<td>Vertical Border = 0 (Zero for Notebook LCD)</td>
<td>00</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>Vertical Border = 0 (Zero for Notebook LCD)</td>
<td>00</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>Vertical Active</td>
<td>768 Lines</td>
<td>16</td>
<td>00000100</td>
</tr>
<tr>
<td>Vertical Active</td>
<td>768 Lines</td>
<td>16</td>
<td>00000100</td>
</tr>
</tbody>
</table>

Field Name and Comments

- **Pixel Clock**
 - \(10,000\) (LSB)
 - \(71\) MHz @ 60Hz

- **Horizontal Active**
 - \(8\) bits
 - 1366 Pixels

- **Horizontal Blanking**
 - \(8\) bits
 - 132 Pixels

- **Vertical Blanking**
 - \(Tvp-HA\)
 - 768 Lines

- **Vertical Active**
 - \(Tvp-HA\)
 - 22 Lines

- **Horizontal Sync Offset**
 - \(Thip\)
 - 48 Pixels

- **Horizontal Sync Pulse Width**
 - \(HSPW\)
 - 32 Pixels

- **Vertical Sync Offset**
 - \(VSPW\)
 - 3 Lines - 5 Lines

- **Vertical Image Size**
 - \(mm\)
 - 224 mm

- **Horizontal Image Size**
 - \(mm\)
 - 126 mm

- **Pixel Clock**
 - \(10,000\) (LSB)
 - \(71\) MHz @ 60Hz

- **Horizontal Active**
 - \(8\) bits
 - 1366 Pixels

- **Horizontal Blanking**
 - \(8\) bits
 - 132 Pixels

- **Vertical Blanking**
 - \(Tvp-HA\)
 - 768 Lines

- **Vertical Active**
 - \(Tvp-HA\)
 - 22 Lines

- **Horizontal Sync Offset**
 - \(Thip\)
 - 48 Pixels

- **Horizontal Sync Pulse Width**
 - \(HSPW\)
 - 32 Pixels

- **Vertical Sync Offset**
 - \(VSPW\)
 - 3 Lines - 5 Lines

- **Vertical Image Size**
 - \(mm\)
 - 224 mm

- **Horizontal Image Size**
 - \(mm\)
 - 126 mm
<table>
<thead>
<tr>
<th>Byte (Dec)</th>
<th>Byte (Hex)</th>
<th>Field Name and Comments</th>
<th>Value (Hex)</th>
<th>Value (Bin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>6C</td>
<td>Flag</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>109</td>
<td>6D</td>
<td>Flag</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>110</td>
<td>6E</td>
<td>Flag</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>111</td>
<td>6F</td>
<td>Data Type Tag : Descriptor Defined by manufacturer</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>112</td>
<td>70</td>
<td>Flag</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>113</td>
<td>71</td>
<td>SMBUS Value(Step #1) = 10 nits</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>114</td>
<td>72</td>
<td>SMBUS Value(Step #2) = 17 nits</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>115</td>
<td>73</td>
<td>SMBUS Value(Step #3) = 24 nits</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>116</td>
<td>74</td>
<td>SMBUS Value(Step #4) = 30 nits</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>117</td>
<td>75</td>
<td>SMBUS Value(Step #5) = 60 nits</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>118</td>
<td>76</td>
<td>SMBUS Value(Step #6) = 100 nits</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>119</td>
<td>77</td>
<td>SMBUS Value(Step #7) = 160 nits</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>120</td>
<td>78</td>
<td>SMBUS Value(Step #8) = 220 nits (Typically = FFh, Max nits)</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>121</td>
<td>79</td>
<td>Single channel LVDS, No RTC support</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>122</td>
<td>7A</td>
<td>IBST support</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>123</td>
<td>7B</td>
<td>(If<13 char--> 0Ah, then terminate with ASCII code 0Ah, set remaining char = 20h)</td>
<td>0A</td>
<td>00001010</td>
</tr>
<tr>
<td>124</td>
<td>7C</td>
<td>(If<13 char--> 0Ah, then terminate with ASCII code 0Ah, set remaining char = 20h)</td>
<td>20</td>
<td>00100000</td>
</tr>
<tr>
<td>125</td>
<td>7D</td>
<td>(If<13 char--> 0Ah, then terminate with ASCII code 0Ah, set remaining char = 20h)</td>
<td>20</td>
<td>00100000</td>
</tr>
<tr>
<td>126</td>
<td>7E</td>
<td>Extension flag (# of optional 128 panel ID extension block to follow, Typ = 0)</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>127</td>
<td>7F</td>
<td>Check Sum (The 1-byte sum of all 128 bytes in this panel ID block shall = 0)</td>
<td>0B</td>
<td>00001011</td>
</tr>
</tbody>
</table>

Ver. 1.0 Feb. 06, 2009 27 / 27