

1. General Description

The LG.Philips LCD Co.,Ltd. LP121S4 LCD is a Color Active Matrix Liquid Crystal Display with an integral Cold Cathode Fluorescent Tube(CCFT) back light system. The matrix employs aSi Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has a 12.1 inch diagonally measured active display area with SVGA resolution(600 vertical by 800 horizontal pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6bit gray scale signal for each dot, thus, presenting a pallet of more than 262,144 colors.

The LP121S4 LCD is intended to support applications where low power consumption, weight and thickness are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP121S4 characteristics provide an excellent flat panel display for office automation products such as portable computers.

General Display Characteristics

The following are general feature of the model LP121S4 LCD;

Active display area

Outsize dimensions

Pixel pitch

Pixel format

Color depth

Display operating mode

Surface treatment

12.1 inches(30.75cm) diagonal

261 W x 199 H x 6.0 D mm Typ.

0.3075 mm x 0.3075 mm

800 horiz. By 600 vert. pixels

RGB stripe arrangement

6-bit

Transmissive mode, normally white

Hard coating(3H),

Anti-glare treatment of the front polarizer

2. Electrical Specifications

2-1. Electrical Characteristics

The LP121S4 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the CCFL, is typically generated by an inverter. The inverter is an external unit to the LCD.

Table 1 ELECTRICAL CHARACTERISTICS:

Parameter	Symbol	Values			Units	Notes
		Min.	Тур.	Max.		
MODULE:						
Power Supply Input Voltage	V_{DD}	3.0	3.3	3.6	Vdc	
Power Supply Input Current	l _{DD}	215	235	265	m A	1
Ripple/Noise	-	-	50	-	m V	
Logic Input Level, High	V_{IH}	$0.6V_{DD}$	-	V_{DD}	Vdc	
Logic Input Level, Low	V _{IL} P _c	-	-	$0.3V_{DD}$	Vdc	
Power Consumption	P _c	0.71	0.77	0.88	W	1
LAMP						
Operating Voltage	V_L	595(6mA)	630(5mA)	715(3mA)	Vrms	2
Operating Current	I _L	3.0	5.0	6.0	mΑ	
Established Starting Voltage	Vs					3
at 25.		-	-	960	Vrms	
at 0.		-	-	1280	Vrms	
Operating Frequency	F∟	45	55	80	kHz	4
Discharge Stabilization Time	Ts			3	Minutes	5
Power Consumption	P_L	2.15	3.15	3.57	W	6
Life Time			-		Hours	7
		10,000		-		I∟=6mA rms

Note)The design of the inverter must have specifications for the lamp in LCD Assembly.

The performance of the Lamp in LCM, for example life time or brightness is extremely influenced by the characteristics of the DC-AC Inverter. So all the parameters of an inverter should be carefully designed so as not to produce too much leakage current from high-voltage output of the inverter.

When you design or order the inverter, please make sure unwanted lighting caused by the mismatch of the lamp and the inverter(no lighting,flicker,etc) never occurs. When you confirm it,the LCD Assembly should be operated in the same condition as installed in your instrument.

Notes: 1. The current draw and power consumption specified is for 3.3 Vdc at 25 and 38.5MHz (at 64 Gray pattern displayed).

- 2. The variance of the voltage is ±10%.
- 3. The voltage above $V_{\rm s}$ should be applied to the lamps for more than 1 second for start-up. Otherwise, the lamps may not be turned on.
- 4. The output of the inverter must have symmetrical (negative and positive) voltage waveform and symmetrical current waveform. (Unsymmetrical ratio is less than 10%) Please do not use the inverter which has unsymmetrical voltage and unsymmetrical current and spike wave. Lamp frequency may produce interference with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away as possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.
- 5. Let's define the brightness of the lamp after being lighted for 5 minutes as 100%.
- T_s is the time required for the brightness of the center of the lamp to be not less than 95%.
- The lamp power consumption shown above does not include loss of external inverter.
- 7. The life time is determined as the time at which brightness of lamp is 50% compared to that of initial value at the typical lamp current on condition of continuous operating at 25 ± 2 .

2-2. Interface Connections

Ver. 1.2 APR.12,2000 Page 2/6

This LCD employs two interface connections, a 30 pin connector is used for the module electronics and a two pin connector is used for the integral backlight system.

The electronics interface connector is a model 55177-3091, manufactured by MOLEX.

The pin configuration for the connector is shown in the table below.

Table 3 MODULE CONNECTOR PIN CONFIGURATION

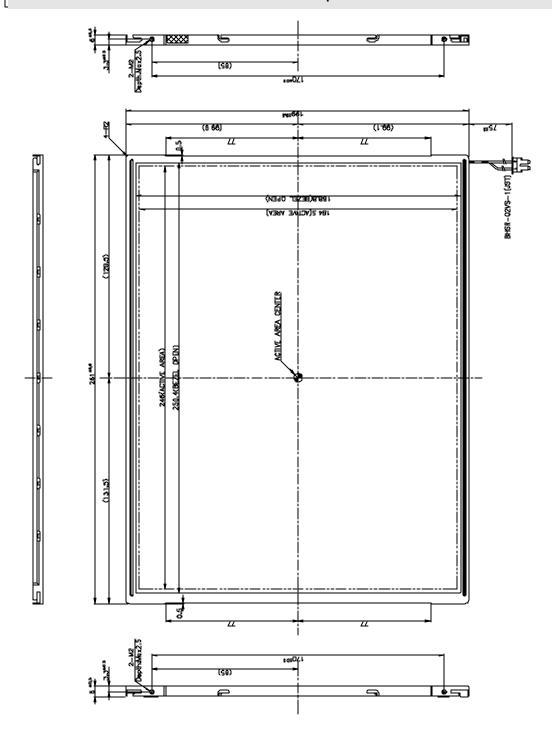
_	Table 3 MODULE CONNECTOR FIN CONFIGURATION							
Pin	Symbol	Description	Notes					
1	GND	Ground	see Note 1					
2	DCLK	Main clock						
3	GND	Ground	LCD SIDE CONNECTOR: 55177-3091(MOLEX)					
4	Hsync	Horizontal sync.						
5	Vsync	Vertical sync.	SYSTEM SIDE CONNECTOR:					
6	DTMG	Data timing signal	1) Wire type :51146-3000(MOLEX)					
7	GND	Ground	2) FPC type: 54281-3010(MOLEX)					
8	R0	Red data						
9	R1	Red data						
10	R2	Red data	130					
11	R3	Red data						
12	R4	Red data	User Con.					
13	R5	Red data						
14	GND	Ground						
15	G 0	Green data						
16	Gl	Green data	LCM bottom					
17	$^{\odot}$	Green data	LCM bottom					
18	Œ	Green data						
19	G4	Green data						
20	C5	Green data						
21	GND	Ground	, DEAD VIEW,					
22	В0	Blue data	< REAR VIEW >					
23	B1	Blue data						
24	B2	Blue data						
25	В3	Blue data						
26	B4	Blue data						
27	B5	Blue data						
28	GND	Ground						
29	$V_{ m DD}$	Power input	+3.3Vdc power supply input, see Note 2					
30	$V_{ m DD}$	Power input	+3.3Vdc power supply input, see Note 2					

Notes: 1. All GND(ground) pins should be connected together which should also be connected to the LCD's metal frame.

2. All V_{DD} (power input) pins should be connected together.

The backlight interface connector is a model BHSR-02VS-1, manufactured by JST. The mating connector part number is SM02B-BHSS-1-TB or equivalent. The pin configuration for the connector is shown in the table below.

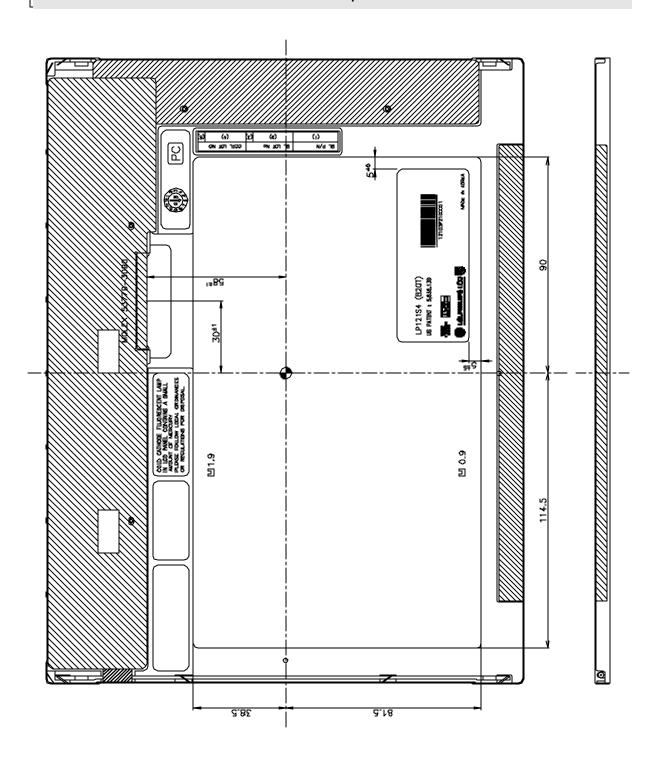
Table 5 BACKLIGHT CONNECTOR PIN CONFIGURATION


Pin	Symbol	Description	Notes
1	HV	Lamp power input	1
2	LV	Ground	

Notes: 1. The input power terminal is colored pink. Ground pin color is black.

< LCM FRONT SIDE >

Ver. 1.2 APR.12,2000 Page 3/6


Notes 1. Unspecified dimensional tolerance are ± 0.5 mm

2. Screw Torque: 1.3-1.5kgf.

< LCM BACK SIDE >

Ver. 1.2 APR.12,2000 Page 4/6

3.PRECAUTIONS

The LCD Products listed on this documents are not suitable for use of Military, Industry, Medical etc. system.

If customers intend to use these LCD products for above application, Please contact ours sales people in advance.