SPECIFICATION FOR APPROVAL

Preliminary Specification

Title | 14.1” WXGA TFT LCD

<table>
<thead>
<tr>
<th>Customer</th>
<th>LENOVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODEL</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUPPLIER</th>
<th>LG Display Co., Ltd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODEL</td>
<td>LP141WX5</td>
</tr>
<tr>
<td>Suffix</td>
<td>TLC1</td>
</tr>
</tbody>
</table>

*When you obtain standard approval, please use the above model name without suffix

APPROVED BY	SIGNATURE
/ |
/ |
/ |

Please return 1 copy for your confirmation with your signature and comments.

APPROVED BY	SIGNATURE
J. L. Ma / G. Manager | |
REVIEWED BY | |
Wyatt Park / Manager | |
PREPARED BY | |
S. S. Han / Engineer
K. M. Lee / Engineer | |
Products Engineering Dept.
LG Display Co., Ltd | |

Ver. 1.0 Aug. 15, 2008
Contents

<table>
<thead>
<tr>
<th>No</th>
<th>ITEM</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COVER</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>CONTENTS</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>RECORD OF REVISIONS</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>GENERAL DESCRIPTION</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>ABSOLUTE MAXIMUM RATINGS</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>ELECTRICAL SPECIFICATIONS</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>INTERFACE CONNECTIONS</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>LVDS SIGNAL TIMING SPECIFICATIONS</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>SIGNAL TIMING SPECIFICATIONS</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>SIGNAL TIMING WAVEFORMS</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>COLOR INPUT DATA REFERNECE</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>POWER SEQUENCE</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>OPTICAL SPECIFICATIONS</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>MECHANICAL CHARACTERISTICS</td>
<td>18</td>
</tr>
<tr>
<td>15</td>
<td>RELIABILITY</td>
<td>25</td>
</tr>
<tr>
<td>16</td>
<td>INTERNATIONAL STANDARDS</td>
<td>26</td>
</tr>
<tr>
<td>17</td>
<td>SAFETY</td>
<td>26</td>
</tr>
<tr>
<td>18</td>
<td>EMC</td>
<td>26</td>
</tr>
<tr>
<td>19</td>
<td>PACKING</td>
<td>27</td>
</tr>
<tr>
<td>20</td>
<td>DESIGNATION OF LOT MARK</td>
<td>27</td>
</tr>
<tr>
<td>21</td>
<td>PACKING FORM</td>
<td>27</td>
</tr>
<tr>
<td>22</td>
<td>PRECAUTIONS</td>
<td>28</td>
</tr>
<tr>
<td>23</td>
<td>APPENDIX. Enhanced Extended Display Identification Data</td>
<td>30</td>
</tr>
</tbody>
</table>

Ver. 1.0 Aug. 15, 2008 2 / 32
RECORD OF REVISIONS

<table>
<thead>
<tr>
<th>Revision No</th>
<th>Revision Date</th>
<th>Page</th>
<th>Description</th>
<th>EDID ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>Apr. 16, 2008</td>
<td>-</td>
<td>First Draft (Preliminary Specification)</td>
<td>-</td>
</tr>
<tr>
<td>0.1</td>
<td>May. 6, 2008</td>
<td>8</td>
<td>Change the Pin Configuration (9pin → 12pin)</td>
<td>-</td>
</tr>
<tr>
<td>0.2</td>
<td>May 27, 2008</td>
<td>8</td>
<td>Change the Order of the Pin Configuration</td>
<td>-</td>
</tr>
<tr>
<td>0.3</td>
<td>Jul. 16, 2008</td>
<td>4, 6</td>
<td>Update the Power Consumption</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>Update the Gray Scale</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30~32</td>
<td>Update the EDID Data (Check sum : DA)</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>Jul. 29, 2008</td>
<td>4, 6</td>
<td>Change the Power Consumption (B/L Power : 3.1W → 3.0W typ.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>Update the Color Coordinates (R, G, B Color)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19~20</td>
<td>Change the Label location in the mechanical drawing</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>Change the EDID Data (Check sum : DA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- update the Color information (panel color coordinates part)</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>Aug. 15, 2008</td>
<td>-</td>
<td>Final Specification</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Ver. 1.0 Aug. 15, 2008 3 / 32
1. General Description

The LP141WX5 is a Color Active Matrix Liquid Crystal Display with an integral backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 14.1 inches diagonally measured active display area with WXGA resolution (800 vertical by 1280 horizontal pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors.

The LP141WX5 has been designed to apply the interface method that enables low power, high speed, low EMI.

The LP141WX5 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP141WX5 characteristics provide an excellent flat display for office automation products such as Notebook PC.

General Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Screen Size</td>
<td>14.1 inches diagonal</td>
</tr>
<tr>
<td>Outline Dimension</td>
<td>319.5(H,Typ.) × 205.5(V,Typ.) × 5.5(D,Max.) [mm]</td>
</tr>
<tr>
<td>Pixel Pitch</td>
<td>0.2373mm × 0.2373 mm</td>
</tr>
<tr>
<td>Color Depth</td>
<td>6-bit, 262,144 colors</td>
</tr>
<tr>
<td>Luminance, White</td>
<td>220 cd/m²(Typ.5 point)</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>Total 4.2 Watt(Typ.) @ LCM circuit 1.2 Watt (Typ._Mosaic), B/L 3.0Watt(Typ.)</td>
</tr>
<tr>
<td>Weight</td>
<td>360g(Max.)</td>
</tr>
<tr>
<td>Display Operating Mode</td>
<td>Transmissive mode, normally white</td>
</tr>
<tr>
<td>Surface Treatment</td>
<td>Anti-Glare treatment of the front polarizer</td>
</tr>
<tr>
<td>RoHS Comply</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Ver. 1.0 Aug. 15, 2008
2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Input Voltage</td>
<td>VCC</td>
<td>-0.3</td>
<td>4.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>TOP</td>
<td>0</td>
<td>50</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>HST</td>
<td>-20</td>
<td>60</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Ambient Humidity</td>
<td>HOP</td>
<td>10</td>
<td>90</td>
<td>%RH</td>
</tr>
<tr>
<td>Storage Humidity</td>
<td>HST</td>
<td>10</td>
<td>90</td>
<td>%RH</td>
</tr>
</tbody>
</table>

Note: 1. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39°C Max, and no condensation of water.
3. Electrical Specifications

3-1. Electrical Characteristics

The LP141WX5 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the LED, is typically generated by an inverter. The inverter is an external unit to the LCD.

Table 2. ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>MODULE:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply Input Voltage</td>
<td>Vcc</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>Pc</td>
<td>Mosaic</td>
<td>360</td>
<td>415</td>
</tr>
<tr>
<td>Differential Impedance</td>
<td>Zm</td>
<td>90</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>LED:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Current</td>
<td>Ire</td>
<td>5.0</td>
<td>20.0</td>
<td>21.0</td>
</tr>
<tr>
<td>Operating Voltage per string</td>
<td>VLED</td>
<td></td>
<td>25.0</td>
<td>27.0</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>Pm</td>
<td>3.0</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>Life Time</td>
<td></td>
<td>10,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note

1. The specified current, voltage and power consumption are under the Vcc = 3.3V, 25°C, fν = 60Hz condition whereas Mosaic pattern is displayed and fν is the frame frequency.

2. This impedance value is needed to proper display and measured form LVDS Tx to the mating connector.

3. The variance of the voltage is ± 10%.

4. The typical operating current is for the typical surface luminance (L_{WH}) in optical characteristics. I_{LED} is the current of each LEDs' string, LED backlight has 6 strings on it.

5. The LED power consumption shown above does not include power of external LED driver circuit for typical current condition.

6. The life time is determined as the time at which brightness of LED is 50% compare to that of minimum value specified in table 7.
3-2. Interface Connections
This LCD employs two interface connections, a 30 pin connector is used for the module electronics interface and the other connector is used for the integral backlight system.
The electronics interface connector is a model GT101-30S-HR11 manufactured by LSC.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>VCC</td>
<td>Power Supply, 3.3V Typ.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>V EEDID</td>
<td>Power Supply, 3.3V Typ.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td>Reserved for supplier test point</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Clk EEDID</td>
<td>DDC Clock</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>DATA EEDID</td>
<td>DDC Data</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>R<sub>n</sub> 0-</td>
<td>Negative LVDS differential data input</td>
<td>1. Interface chips</td>
</tr>
<tr>
<td>9</td>
<td>R<sub>n</sub> 0+</td>
<td>Positive LVDS differential data input</td>
<td>1.1 LCD : SW, SW0612B (LCD Controller) including LVDS Receiver</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>Ground</td>
<td>1.2 System : TH63LV823A or equivalent ** Pin to Pin compatible with LVDS</td>
</tr>
<tr>
<td>11</td>
<td>R<sub>n</sub> 1-</td>
<td>Negative LVDS differential data input</td>
<td>2. Connector</td>
</tr>
<tr>
<td>12</td>
<td>R<sub>n</sub> 1+</td>
<td>Positive LVDS differential data input</td>
<td>2.1 LCD : GT101-30S-HR11, LSC it's compatible.</td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
<td>Ground</td>
<td>2.2 Mating : FI-X30M or equivalent.</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td>Ground</td>
<td>2.3 Connector pin arrangement</td>
</tr>
<tr>
<td>15</td>
<td>R<sub>n</sub> 2-</td>
<td>Negative LVDS differential data input</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>CLKIN-</td>
<td>Negative LVDS differential clock input</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>CLKIN+</td>
<td>Positive LVDS differential clock input</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>NC</td>
<td>No Connect</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>NC</td>
<td>No Connect</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>NC</td>
<td>No Connect</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>NC</td>
<td>No Connect</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>NC</td>
<td>No Connect</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>NC</td>
<td>No Connect</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>NC</td>
<td>No Connect</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>NC</td>
<td>No Connect</td>
<td></td>
</tr>
</tbody>
</table>

| 30 | 1 | LCD Module Rear View |

Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1)
Table 4. LED FPC Connector PIN Configuration

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FB1</td>
<td>LED Channel 1 Cathode</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FB2</td>
<td>LED Channel 2 Cathode</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FB3</td>
<td>LED Channel 3 Cathode</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>FB4</td>
<td>LED Channel 4 Cathode</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>FB5</td>
<td>LED Channel 5 Cathode</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FB6</td>
<td>LED Channel 6 Cathode</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
<td>No Connect</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
<td>No Connect</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>NC</td>
<td>No Connect</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Vin</td>
<td>LED Power (LED Anode)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Vin</td>
<td>LED Power (LED Anode)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Vin</td>
<td>LED Power (LED Anode)</td>
<td></td>
</tr>
</tbody>
</table>

Connector: FH33-12S-0.5SH, Hirose it's compatible.

[LCD Module Front View]
3-3. LVDS Signal Timing Specifications

3-3-1. DC Specification

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVDS Differential Voltage</td>
<td>$|V_{\text{LE}}|$</td>
<td>100</td>
<td>600</td>
<td>mV</td>
<td>-</td>
</tr>
<tr>
<td>LVDS Common mode Voltage</td>
<td>V_{CM}</td>
<td>0.6</td>
<td>1.8</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>LVDS Input Voltage Range</td>
<td>V_{IN}</td>
<td>0.3</td>
<td>2.1</td>
<td>V</td>
<td>-</td>
</tr>
</tbody>
</table>

3-3-2. AC Specification

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVDS Clock to Data Skew Margin</td>
<td>t_{SKW}</td>
<td>-400</td>
<td>+400</td>
<td>ps</td>
<td>85MHz > Fclk ≥ 65MHz</td>
</tr>
<tr>
<td>LVDS Clock to Clock Skew Margin (Even to Odd)</td>
<td>$t_{\text{SKW}_{\text{EO}}}$</td>
<td>-1/7</td>
<td>+1/7</td>
<td>T_{clk}</td>
<td>-</td>
</tr>
<tr>
<td>Maximum deviation of input clock frequency during SSC</td>
<td>F_{DEV}</td>
<td>-</td>
<td>±3</td>
<td>%</td>
<td>-</td>
</tr>
<tr>
<td>Maximum modulation frequency of input clock during SSC</td>
<td>F_{MOD}</td>
<td>-</td>
<td>200</td>
<td>KHz</td>
<td>-</td>
</tr>
</tbody>
</table>
3-3-3. Data Format
1) LVDS 1 Port

< LVDS Data Format >
3-4. Signal Timing Specifications

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCLK</td>
<td>Frequency</td>
<td>fCLK</td>
<td>-</td>
<td>69.3</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Hsync</td>
<td>Period</td>
<td>Thp</td>
<td>1360</td>
<td>1406</td>
<td>1480</td>
<td>tCLK</td>
</tr>
<tr>
<td></td>
<td>Width</td>
<td>tWH</td>
<td>16</td>
<td>32</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Width-Active</td>
<td>tWHA</td>
<td>1280</td>
<td>1280</td>
<td>1280</td>
<td></td>
</tr>
<tr>
<td>Vsync</td>
<td>Period</td>
<td>tP</td>
<td>809</td>
<td>822</td>
<td>860</td>
<td>thP</td>
</tr>
<tr>
<td></td>
<td>Width</td>
<td>tWV</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Width-Active</td>
<td>tWVA</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>Data Enable</td>
<td>Horizontal back porch</td>
<td>tHBP</td>
<td>40</td>
<td>46</td>
<td>96</td>
<td>tCLK</td>
</tr>
<tr>
<td></td>
<td>Horizontal front porch</td>
<td>tHP</td>
<td>24</td>
<td>48</td>
<td>56</td>
<td>thP</td>
</tr>
<tr>
<td></td>
<td>Vertical back porch</td>
<td>tVBP</td>
<td>6</td>
<td>13</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vertical front porch</td>
<td>tVFP</td>
<td>1</td>
<td>3</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

3-5. Signal Timing Waveforms

Condition: VCC = 3.3V

Data Enable, Hsync, Vsync

![Signal Timing Waveforms Diagram](image-url)
3-6. Color Input Data Reference

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

<table>
<thead>
<tr>
<th>Color</th>
<th>RED</th>
<th>GREEN</th>
<th>BLUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSB</td>
<td>LSBS</td>
<td>MSB</td>
</tr>
<tr>
<td></td>
<td>R5</td>
<td>R4 R3</td>
<td>R2 R1</td>
</tr>
<tr>
<td>Black</td>
<td>0000</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>Red</td>
<td>0001</td>
<td>1</td>
<td>0000</td>
</tr>
<tr>
<td>Green</td>
<td>0000</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>Cyan</td>
<td>0000</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>Blue</td>
<td>0000</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>Magenta</td>
<td>0000</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>Yellow</td>
<td>1111</td>
<td>1</td>
<td>1111</td>
</tr>
<tr>
<td>White</td>
<td>1111</td>
<td>1</td>
<td>1111</td>
</tr>
<tr>
<td>RED</td>
<td>0000</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>RED (01)</td>
<td>0000</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>RED (62)</td>
<td>1111</td>
<td>1</td>
<td>1111</td>
</tr>
<tr>
<td>RED (63)</td>
<td>1111</td>
<td>1</td>
<td>1111</td>
</tr>
<tr>
<td>GREEN</td>
<td>0000</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>GREEN (00)</td>
<td>0000</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>GREEN (01)</td>
<td>0000</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>GREEN (62)</td>
<td>0000</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>GREEN (63)</td>
<td>0000</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>BLUE</td>
<td>0000</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>BLUE (00)</td>
<td>0000</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>BLUE (01)</td>
<td>0000</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>BLUE (62)</td>
<td>0000</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>BLUE (63)</td>
<td>0000</td>
<td>0</td>
<td>0000</td>
</tr>
</tbody>
</table>
3-7. Power Sequence

Power Supply For LCD VCC

Interface Signal, \(V_i \) (LVDS Signal of Transmitter)

LED Power

Table 7. POWER SEQUENCE TABLE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
</tr>
<tr>
<td>(T_1)</td>
<td>0.5</td>
<td>10 (ms)</td>
</tr>
<tr>
<td>(T_2)</td>
<td>0</td>
<td>50 (ms)</td>
</tr>
<tr>
<td>(T_3)</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>(T_4)</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>(T_5)</td>
<td>0</td>
<td>50 (ms)</td>
</tr>
<tr>
<td>(T_6)</td>
<td>0</td>
<td>10 (ms)</td>
</tr>
<tr>
<td>(T_7)</td>
<td>400</td>
<td>-</td>
</tr>
</tbody>
</table>

Note:
1. Valid Data is Data to meet “3-3. LVDS Signal Timing Specifications”
2. Please avoid floating state of interface signal at invalid period.
3. When the interface signal is invalid, be sure to pull down the power supply for LCD VCC to 0V.
4. LED power must be turn on after power supply for LCD and interface signal are valid.
4. Optical Specification

Optical characteristics are determined after the unit has been ‘ON’ and stable for approximately 30 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of φ and θ equal to 0°.

FIG. 1 presents additional information concerning the measurement equipment and method.

![Diagram of optical characteristic measurement equipment and method]

Table 8. OPTICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Contrast Ratio</td>
<td>CR</td>
<td>400</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Surface Luminance Variation</td>
<td>Φ_inf</td>
<td>-</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Response Time</td>
<td>Tr + Td</td>
<td>16</td>
<td>16</td>
<td>ms</td>
</tr>
<tr>
<td>Color Coordinates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RED</td>
<td>RX</td>
<td>0.544</td>
<td>0.574</td>
<td>0.604</td>
</tr>
<tr>
<td>GREEN</td>
<td>GX</td>
<td>0.305</td>
<td>0.335</td>
<td>0.365</td>
</tr>
<tr>
<td>BLUE</td>
<td>GX</td>
<td>0.512</td>
<td>0.542</td>
<td>0.572</td>
</tr>
<tr>
<td>WHITE</td>
<td>WX</td>
<td>0.283</td>
<td>0.313</td>
<td>0.343</td>
</tr>
<tr>
<td></td>
<td>WY</td>
<td>0.299</td>
<td>0.329</td>
<td>0.359</td>
</tr>
<tr>
<td>Viewing Angle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x axis, right (φ=0°)</td>
<td>dφ</td>
<td>60</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>x axis, left (φ=180°)</td>
<td>dφ</td>
<td>40</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>y axis, up (φ=90°)</td>
<td>dθ</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>y axis, down (φ=270°)</td>
<td>dθ</td>
<td>30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gray Scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ta=25°C, VCC=3.3V, fV=60Hz, fCLK = 69.3MHz, ILED = 20 mA

www.panelook.com
LG Display

LP141WX5
Liquid Crystal Display

Product Specification

Note:
1. Contrast Ratio (CR) is defined mathematically as
 \[
 \text{Contrast Ratio} = \frac{\text{Surface Luminance with all white pixels}}{\text{Surface Luminance with all black pixels}}
 \]

2. Surface luminance is the average of 5 point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 1.
 \[
 L_{WH} = \text{Average}(L_1, L_2, \ldots L_5)
 \]

3. The variation in surface luminance, The panel total variation (δ\text{WHITE}) is determined by measuring \(L_N\) at each test position 1 through 13 and then defined as followed numerical formula. For more information see FIG 2.
 \[
 \delta_{\text{WHITE}} = \frac{\text{Maximum}(L_1, L_2, \ldots L_{13})}{\text{Minimum}(L_1, L_2, \ldots L_{13})}
 \]

4. Response time is the time required for the display to transition from white to black (rise time, \(T_{R}\)) and from black to white (Decay Time, \(T_{D}\)). For additional information see FIG 3.

5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.

6. Gray scale specification

<table>
<thead>
<tr>
<th>Gray Level</th>
<th>Luminance [%] (Typ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0</td>
<td>0.19</td>
</tr>
<tr>
<td>L7</td>
<td>1.36</td>
</tr>
<tr>
<td>L15</td>
<td>4.20</td>
</tr>
<tr>
<td>L23</td>
<td>8.30</td>
</tr>
<tr>
<td>L31</td>
<td>14.0</td>
</tr>
<tr>
<td>L39</td>
<td>25.0</td>
</tr>
<tr>
<td>L47</td>
<td>43.0</td>
</tr>
<tr>
<td>L55</td>
<td>69.0</td>
</tr>
<tr>
<td>L63</td>
<td>100</td>
</tr>
</tbody>
</table>

* \(f_V = 60\text{Hz}\)

Ver. 1.0 Aug. 15, 2008 15 / 32
FIG. 2 Luminance

<measuring point for surface luminance & measuring point for luminance variation>

FIG. 3 Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for “black” and “white”.

% 100 90 80 70 60 50 40 30 20 10 0

Optical Response

white black white

TrR TrD
FIG. 4 Viewing angle

<Dimension of viewing angle range>

φ = 180°, Left
φ = 270°, Down
φ = 0°, Right
φ = 90°, Up

LG Display
Product Specification

LP141WX5
Liquid Crystal Display

Ver. 1.0 Aug. 15, 2008 17 / 32
5. Mechanical Characteristics
The contents provide general mechanical characteristics for the model LP141WX5. In addition the figures in the next page are detailed mechanical drawing of the LCD.

<table>
<thead>
<tr>
<th></th>
<th>Outline Dimension</th>
<th>Bezel Area</th>
<th>Active Display Area</th>
<th>Weight</th>
<th>Surface Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Horizontal</td>
<td>Horizontal</td>
<td>Horizontal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>319.5 ± 0.5mm</td>
<td>306.76 ± 0.5mm</td>
<td>303.74 mm</td>
<td>360(Max)</td>
<td>Anti-Glare treatment of the front polarizer</td>
</tr>
<tr>
<td></td>
<td>Vertical</td>
<td>Vertical</td>
<td>Vertical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>205.5 ± 0.5mm</td>
<td>193.00 ± 0.5mm</td>
<td>189.84 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickness</td>
<td>Thickness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.5mm (max)</td>
<td>Thickness</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LG Display

Product Specification

<REAR VIEW>

Note) Unit:[mm], General tolerance: ± 0.5mm

FPC Pin Assignment

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Vin</td>
<td>LED Power</td>
</tr>
<tr>
<td>11</td>
<td>Vin</td>
<td>LED Power</td>
</tr>
<tr>
<td>10</td>
<td>Vin</td>
<td>LED Power</td>
</tr>
<tr>
<td>9</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>6</td>
<td>FB6</td>
<td>6th LED String FB</td>
</tr>
<tr>
<td>5</td>
<td>FB5</td>
<td>5th LED String FB</td>
</tr>
<tr>
<td>4</td>
<td>FB4</td>
<td>4th LED String FB</td>
</tr>
<tr>
<td>3</td>
<td>FB3</td>
<td>3th LED String FB</td>
</tr>
<tr>
<td>2</td>
<td>FB2</td>
<td>2nd LED String FB</td>
</tr>
<tr>
<td>1</td>
<td>FB1</td>
<td>1st LED String FB</td>
</tr>
</tbody>
</table>

Ver. 1.0 Aug. 15, 2008 20 / 32
[DETAIL DESCRIPTION OF SIDE MOUNTING SCREW]

- Screw Length(A) : Max : 2.5, Min : 2.0
- Screw Depth(B) : Min 2.5
- Screw Torque : Max 2.5kgf.cm (Measurement Gauge: Torque Meter)

Notes : 1. Screw plated through the method of non-electrolytic nickel plating is preferred to reduce possibility that results in vertical and/or horizontal line defect due to the conductive particles from screw surface.
LPL Proposal for system cover design (Appendix)

<table>
<thead>
<tr>
<th></th>
<th>Gap check for securing the enough gap between LCM and System cover.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max thickness</td>
</tr>
<tr>
<td></td>
<td>LCM reflector side</td>
</tr>
<tr>
<td></td>
<td>Sponge</td>
</tr>
<tr>
<td></td>
<td>A boundary line</td>
</tr>
<tr>
<td></td>
<td>System cover</td>
</tr>
</tbody>
</table>

Define

1. Rear side of LCM is sensitive against external stress, and previous check about interference is highly needed.
2. In case there is something from system cover comes into the boundary above, mechanical interference may cause the FOS defects. (Eg: Ripple, White spot..)

<table>
<thead>
<tr>
<th></th>
<th>Check if antenna cable is sufficiently apart from T-CON of LCD Module.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO GOOD</td>
</tr>
<tr>
<td></td>
<td>GOOD</td>
</tr>
</tbody>
</table>

Define

1. If system antenna is overlapped with T-CON, it might be cause the noise.
LPL Proposal for system cover design.

3

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| Gap check for securing the enough gap between LCM and System hinge. | ![Diagram](image)

Define

1. At least 2.0mm of gap needs to be secured to prevent the shock related defects.

2. "L" type of hinge is recommended than "I" type under shock test.

4

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| Checking the path of the System wire. | ![Diagram](image)

Define

1. COF area needs to be handled with care.

2. GOOD ➔ Wire path design to system side.
 - OK ➔ Wire path is located between COFs.
 - BAD ➔ Wire path overlapped with COF area.
LPL Proposal for system cover design.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Using a bracket on the top of LCM is not recommended.</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>With bracket</td>
<td>Without bracket</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Define</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Condition without bracket is good for mechanical noise, and can minimize the light leakage from deformation of bracket.</td>
<td></td>
</tr>
<tr>
<td>2. The results shows that there is no difference between the condition with or without bracket.</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Securing additional gap on CNT area.</td>
</tr>
</tbody>
</table>

Define

1. CNT area is specially sensitive against external stress, and additional gap by cutting on system cover will be helpful on removing the Ripple.
2. Using a thinner CNT will be better. (eg: FPC type)

Ver. 1.0

Aug. 15, 2008
6. Reliability

Environment test condition

<table>
<thead>
<tr>
<th>No.</th>
<th>Test Item</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High temperature storage test</td>
<td>Ta = 60°C, 240h</td>
</tr>
<tr>
<td>2</td>
<td>Low temperature storage test</td>
<td>Ta = -20°C, 240h</td>
</tr>
<tr>
<td>3</td>
<td>High temperature operation test</td>
<td>Ta = 50°C, 50%RH, 240h</td>
</tr>
<tr>
<td>4</td>
<td>Low temperature operation test</td>
<td>Ta = 0°C, 240h</td>
</tr>
<tr>
<td>5</td>
<td>Vibration test (non-operating)</td>
<td>Sine wave, 10 ~ 500 ~ 10Hz, 1.5G, 0.37oct/min 3 axis, 1hour/axis</td>
</tr>
<tr>
<td>6</td>
<td>Shock test (non-operating)</td>
<td>Half sine wave, 180G, 2ms one shock of each six faces (i.e. run 180G, 2ms for all six faces)</td>
</tr>
<tr>
<td>7</td>
<td>Altitude operating storage / shipment</td>
<td>0 ~ 10,000 feet (3,048m) 24Hr 0 ~ 40,000 feet (12,192m) 24Hr</td>
</tr>
</tbody>
</table>

{ Result Evaluation Criteria }

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.
7. International Standards

7-1. Safety

c) EN 60950-1:2001, First Edition, European Committee for Electrotechnical Standardization(CENELEC)
European Standard for Safety of Information Technology Equipment.

7-2. EMC

 (Including A1:2000)
8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
</table>

A, B, C: SIZE (INCH)
D: YEAR
E: MONTH
F ~ M: SERIAL NO.

Note

1. YEAR

<table>
<thead>
<tr>
<th>Year</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

2. MONTH

<table>
<thead>
<tr>
<th>Month</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

a) Package quantity in one box: 30 pcs

b) Box Size: 484mm × 372mm × 288mm
9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

(1) You must mount a module using holes arranged in four corners or four sides.
(2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
(3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
(4) You should adopt radiation structure to satisfy the temperature specification.
(5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
(6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.
Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
(7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
(8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
(9) Do not open the case because inside circuits do not have sufficient strength.

9-2. OPERATING PRECAUTIONS

(1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage:
\[V = \pm 200mV \text{ (Over and under shoot voltage)} \]
(2) Response time depends on the temperature. (In lower temperature, it becomes longer.)
(3) Brightness depends on the temperature. (In lower temperature, it becomes lower.)
 And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
(4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
(5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
(6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
9-3. ELECTROSTATIC DISCHARGE CONTROL
Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don’t touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE
Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE
When storing modules as spares for a long time, the following precautions are necessary.

(1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
(2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM
(1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
(2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.
 Please carefully peel off the protection film without rubbing it against the polarizer.
(3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
(4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.
APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 1/3

EDID Data for LENOVO _ ver. 1.0

<table>
<thead>
<tr>
<th>Byte (Hex)</th>
<th>Field Name and Comments</th>
<th>Value (Hex)</th>
<th>Value (Dec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Header</td>
<td>00</td>
<td>000000000</td>
</tr>
<tr>
<td>1</td>
<td>Header</td>
<td>FF</td>
<td>11111111</td>
</tr>
<tr>
<td>2</td>
<td>Header</td>
<td>FF</td>
<td>11111111</td>
</tr>
<tr>
<td>3</td>
<td>Header</td>
<td>FF</td>
<td>11111111</td>
</tr>
<tr>
<td>4</td>
<td>Header</td>
<td>FF</td>
<td>11111111</td>
</tr>
<tr>
<td>5</td>
<td>Header</td>
<td>FF</td>
<td>11111111</td>
</tr>
<tr>
<td>6</td>
<td>Header</td>
<td>FF</td>
<td>11111111</td>
</tr>
<tr>
<td>7</td>
<td>Header</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>8</td>
<td>EISA manufacturer code (3 Character ID)</td>
<td>LGD</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>EISA manufacturer code (Compressed ASCII)</td>
<td>E</td>
<td>11100100</td>
</tr>
<tr>
<td>10</td>
<td>Panel Supplier Reserved - Product Code</td>
<td>0190h</td>
<td>90</td>
</tr>
<tr>
<td>11</td>
<td>LCM (Lunked Serial No)</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>12</td>
<td>LCM Module Serial No - Preferred but Optional</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>13</td>
<td>LCM Module Serial No - Preferred but Optional</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>14</td>
<td>LCM Module Serial No - Preferred but Optional</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>15</td>
<td>Year of Manufacture</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>16</td>
<td>Week of Manufacture</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>17</td>
<td>2008 years</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>18</td>
<td>EDID structure version</td>
<td>03</td>
<td>00000011</td>
</tr>
<tr>
<td>19</td>
<td>Video input Definition</td>
<td>80</td>
<td>10000000</td>
</tr>
<tr>
<td>20</td>
<td>Max V image size (Rounded cm)</td>
<td>19 cm</td>
<td>13</td>
</tr>
<tr>
<td>21</td>
<td>Display Gamma = (Gamma * 100 + 100) / 22 = 2.2 Gamma</td>
<td>78</td>
<td>01110000</td>
</tr>
<tr>
<td>22</td>
<td>Video timing format 8kHz@60Hz, VESA Active Off Very Low Power, VESA Color Display, Timing Mode:</td>
<td>0A</td>
<td>00010100</td>
</tr>
<tr>
<td>23</td>
<td>Red/Green Low Bits (RxBY/GxGy)</td>
<td>1F</td>
<td>00111111</td>
</tr>
<tr>
<td>24</td>
<td>Blue/White Low Bits (BxBW/WxWy)</td>
<td>35</td>
<td>00101010</td>
</tr>
<tr>
<td>25</td>
<td>Red X, Red Y</td>
<td>93</td>
<td>10010011</td>
</tr>
<tr>
<td>26</td>
<td>Green X, Green Y</td>
<td>55</td>
<td>01101101</td>
</tr>
<tr>
<td>27</td>
<td>Blue X, Blue Y</td>
<td>2A</td>
<td>00101010</td>
</tr>
<tr>
<td>28</td>
<td>White X, White Y</td>
<td>50</td>
<td>01100000</td>
</tr>
<tr>
<td>29</td>
<td>Established timing 1 (00h if not used)</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>30</td>
<td>Established timing 2 (00h if not used)</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>31</td>
<td>Established timing 3 (00h if not used)</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>32</td>
<td>Manufacturer's timings (00h if not used)</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>33</td>
<td>Standard timing ID1 (01h if not used)</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>34</td>
<td>Standard timing ID2 (01h if not used)</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>35</td>
<td>Standard timing ID3 (01h if not used)</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>36</td>
<td>Standard timing ID4 (01h if not used)</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>37</td>
<td>Standard timing ID5 (01h if not used)</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>38</td>
<td>Standard timing ID6 (01h if not used)</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>39</td>
<td>Standard timing ID7 (01h if not used)</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>40</td>
<td>Standard timing ID8 (01h if not used)</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>41</td>
<td>Standard timing ID9 (01h if not used)</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>42</td>
<td>Standard timing ID10 (01h if not used)</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>43</td>
<td>Standard timing ID11 (01h if not used)</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>44</td>
<td>Standard timing ID12 (01h if not used)</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>45</td>
<td>Standard timing ID13 (01h if not used)</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>46</td>
<td>Standard timing ID14 (01h if not used)</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>47</td>
<td>Standard timing ID15 (01h if not used)</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>48</td>
<td>Standard timing ID16 (01h if not used)</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>49</td>
<td>Standard timing ID17 (01h if not used)</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>50</td>
<td>Standard timing ID18 (01h if not used)</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>51</td>
<td>Standard timing ID19 (01h if not used)</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>52</td>
<td>Standard timing ID20 (01h if not used)</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>53</td>
<td>Standard timing ID21 (01h if not used)</td>
<td>01</td>
<td>00000001</td>
</tr>
</tbody>
</table>
APPENDIX A. Enhanced Extended Display Identification Data (EEDID™)

Field Name and Comments

<table>
<thead>
<tr>
<th>Byte (Dec)</th>
<th>Byte (Hex)</th>
<th>Value (Hex)</th>
<th>Value (Bin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>36</td>
<td>Pixel Clock/10,000 (LSB)</td>
<td>69.3 MHz @ 59.96fHz</td>
</tr>
<tr>
<td>55</td>
<td>37</td>
<td>Pixel Clock/10,000 (MSB)</td>
<td>1B 00011101</td>
</tr>
<tr>
<td>56</td>
<td>38</td>
<td>Horizontal Active (lower 8 bits)</td>
<td>1280 Pixels</td>
</tr>
<tr>
<td>57</td>
<td>39</td>
<td>Horizontal Blanking (Thp-HA) (lower 8 bits)</td>
<td>126 Pixels</td>
</tr>
<tr>
<td>58</td>
<td>3A</td>
<td>Horizontal Active / Horizontal Blanking (Thp-HA) (upper 4:4-bins)</td>
<td>50 01010000</td>
</tr>
<tr>
<td>59</td>
<td>3B</td>
<td>Vertical Active</td>
<td>800 Lines</td>
</tr>
<tr>
<td>60</td>
<td>3C</td>
<td>Vertical Blanking (Tvsp-HA) (DE Blanking typ. for DE only panels)</td>
<td>22 Lines</td>
</tr>
<tr>
<td>61</td>
<td>3D</td>
<td>Vertical Active : Vertical Blanking (Tvsp-HA) (upper 4:4-bins)</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>3E</td>
<td>Horizontal Sync Offset (Thp)</td>
<td>48 Pixels</td>
</tr>
<tr>
<td>63</td>
<td>3F</td>
<td>Horizontal Sync Pulse Width (HSPW)</td>
<td>32 Pixels</td>
</tr>
<tr>
<td>64</td>
<td>40</td>
<td>Vertical Sync Offset(Tvsp) : Sync Width (VSPW)</td>
<td>3 Lines : 6 Lines</td>
</tr>
<tr>
<td>65</td>
<td>41</td>
<td>Horizontal Vertical Sync Offset/Width (upper 2bits)</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>42</td>
<td>Horizontal Image Size (mm)</td>
<td>304 mm</td>
</tr>
<tr>
<td>67</td>
<td>43</td>
<td>Vertical Image Size (mm)</td>
<td>190 mm</td>
</tr>
<tr>
<td>68</td>
<td>44</td>
<td>Horizontal Image Size / Vertical Image Size</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>45</td>
<td>Horizontal Border = 0 (Zero for Notebook LCD)</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>46</td>
<td>Vertical Border = 0 (Zero for Notebook LCD)</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>47</td>
<td>Non-Interface, Normal display, no stereo, Digital Separate (Vsync_NEG, Hsync_NEG)</td>
<td></td>
</tr>
</tbody>
</table>

Timing Descriptor #1

72	48	Flag	00 00000000	
73	49	Flag	00 00000000	
74	4A	Flag	00 00000000	
75	4B	Data Type Tag (Descriptor Defined by manufacturer)	00 00000000	
76	4C	Flag	00 00000000	
77	4D	Descriptor Defined by manufacturer	00 00000000	
78	4E	Descriptor Defined by manufacturer	00 00000000	
79	4F	Descriptor Defined by manufacturer	00 00000000	
80	50	Descriptor Defined by manufacturer	00 00000000	
81	51	Descriptor Defined by manufacturer	00 00000000	
82	52	Descriptor Defined by manufacturer	00 00000000	
83	53	Descriptor Defined by manufacturer	00 00000000	
84	54	Descriptor Defined by manufacturer	00 00000000	
85	55	Descriptor Defined by manufacturer	00 00000000	
86	56	Descriptor Defined by manufacturer	00 00000000	
87	57	Descriptor Defined by manufacturer	00 00000000	
88	58	Descriptor Defined by manufacturer	00 00000000	
89	59	Descriptor Defined by manufacturer	00 00000000	
90	5A	Flag	00 00000000	
91	5B	Flag	00 00000000	
92	5C	Flag	00 00000000	
93	5D	Data Type Tag (ASCII String)		FE 11111110
94	5E	Flag	00 00000000	
95	5F	ASCII String	L	4C 0001100
96	60	ASCII String	G	47 0100011
97	61	ASCII String	20 00100000	
98	62	ASCII String	D	44 00100100
99	63	ASCII String	i	69 01101001
100	64	ASCII String	s	73 01101101
101	65	ASCII String	p	70 01101000
102	66	ASCII String	l	6C 01101100
103	67	ASCII String	a	61 01100001
104	68	ASCII String	y	79 01111001
105	69	Manufacturer P/N(IF=13 char---: 0Ah, then terminate with ASCII code 0Ah, set remaining char = 20	0A 00010101	
106	6A	Manufacturer P/N(IF=13 char---: 0Ah, then terminate with ASCII code 0Ah, set remaining char = 20	20 00100000	
107	6B	Manufacturer P/N(IF=13 char---: 0Ah, then terminate with ASCII code 0Ah, set remaining char = 20	20 00100000	
APPENDIX A. Enhanced Extended Display Identification Data (EEDID™)

<table>
<thead>
<tr>
<th>Byte (Dec)</th>
<th>Byte (Hex)</th>
<th>Field Name and Comments</th>
<th>Value (Hex)</th>
<th>Value (Bin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>6C</td>
<td>Flag</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>109</td>
<td>6D</td>
<td>Flag</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>110</td>
<td>6E</td>
<td>Flag</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>111</td>
<td>6F</td>
<td>Data Type Tag (Monitor Name, stored as ASCII)</td>
<td>FC</td>
<td>11111100</td>
</tr>
<tr>
<td>112</td>
<td>70</td>
<td>Flag</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>113</td>
<td>71</td>
<td>Monitor Name, stored as ASCII</td>
<td>L</td>
<td>04001100</td>
</tr>
<tr>
<td>114</td>
<td>72</td>
<td>Monitor Name, stored as ASCII</td>
<td>P</td>
<td>05010000</td>
</tr>
<tr>
<td>115</td>
<td>73</td>
<td>Monitor Name, stored as ASCII</td>
<td>1</td>
<td>01001000</td>
</tr>
<tr>
<td>116</td>
<td>74</td>
<td>Monitor Name, stored as ASCII</td>
<td>4</td>
<td>01010100</td>
</tr>
<tr>
<td>117</td>
<td>75</td>
<td>Monitor Name, stored as ASCII</td>
<td>1</td>
<td>01001001</td>
</tr>
<tr>
<td>118</td>
<td>76</td>
<td>Monitor Name, stored as ASCII</td>
<td>W</td>
<td>01011111</td>
</tr>
<tr>
<td>119</td>
<td>77</td>
<td>Monitor Name, stored as ASCII</td>
<td>X</td>
<td>01010000</td>
</tr>
<tr>
<td>120</td>
<td>78</td>
<td>Monitor Name, stored as ASCII</td>
<td>5</td>
<td>01010101</td>
</tr>
<tr>
<td>121</td>
<td>79</td>
<td>Monitor Name, stored as ASCII</td>
<td>-</td>
<td>01010101</td>
</tr>
<tr>
<td>122</td>
<td>7A</td>
<td>Monitor Name, stored as ASCII</td>
<td>T</td>
<td>01011000</td>
</tr>
<tr>
<td>123</td>
<td>7B</td>
<td>Monitor Name, stored as ASCII</td>
<td>L</td>
<td>01001110</td>
</tr>
<tr>
<td>124</td>
<td>7C</td>
<td>Monitor Name, stored as ASCII</td>
<td>C</td>
<td>01000011</td>
</tr>
<tr>
<td>125</td>
<td>7D</td>
<td>Monitor Name, stored as ASCII</td>
<td>1</td>
<td>01001001</td>
</tr>
<tr>
<td>126</td>
<td>7E</td>
<td>Extension flag (# of optional 128 panel ID extension block to follow, Typ = 0)</td>
<td>00</td>
<td>00000000</td>
</tr>
<tr>
<td>127</td>
<td>7F</td>
<td>Check Sum (The 1-byte sum of all 128 bytes in this panel ID block shall = 0)</td>
<td>DA</td>
<td>11010100</td>
</tr>
</tbody>
</table>

Ver. 1.0 Aug. 15, 2008