

SPECIFICATION FOR APPROVAL

Title		15.4" WXGA TFT	LCD
BUYER		SUPPLIER	LG.Philips LCD Co., Ltd
MODEL		*MODEL	LP154W01
		Suffix	TLE1
		*When you obtain sta please use the above	andard approval, e model name without suffix
APPROVED BY	SIGNATURE	APPROVED	BY SIGNATURE
		J. H. Lee / S.M	lanager
		REVIEWED	ВҮ
/		REVIEWED S.R.Kim / Ma	
/ /			anager

LG. Philips LCD Co., Ltd

Please return 1 copy for your confirmation with

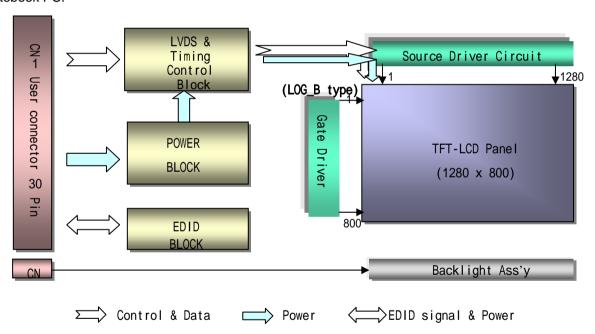
your signature and comments.

Contents

No	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	
3-1	ELECTRICAL CHARACTREISTICS	6
3-2	INTERFACE CONNECTIONS	8
3-3	SIGNAL TIMING SPECIFICATIONS	9
3-4	SIGNAL TIMING WAVEFORMS	9
3-5	COLOR INPUT DATA REFERNECE	10
3-6	POWER SEQUENCE	11
4	OPTICAL SFECIFICATIONS	12
5	MECHANICAL CHARACTERISTICS	16
6	RELIABLITY	20
7	INTERNATIONAL STANDARDS	
7-1	SAFETY	21
7-2	EMC	21
8	PACKING	
8-1	DESIGNATION OF LOT MARK	22
8-2	PACKING FORM	22
9	PRECAUTIONS	23
Α	APPENDIX. Enhanced Extended Display Identification Data	25

RECORD OF REVISIONS

Revision No	Revision Date	Page	Description	EDID ver
0.0	Apr.28., 2006	-	First Draft	0.0
 				
 				



1. General Description

The LP154W01 is a Color Active Matrix Liquid Crystal Display with an integral Cold Cathode Fluorescent Lamp (CCFL) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 15.4 inches diagonally measured active display area with WXGA resolution(1280 horizontal by 800 vertical pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors.

The LP154W01 has been designed to apply the interface method that enables low power, high speed, low EMI.

The LP154W01 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP154W01(TLE1) characteristics provide an excellent flat display for office automation products such as Notebook PC.

General Features

Active Screen Size	15.4 inches diagonal
Outline Dimension	344.0 (H) × 222.0 (V) × 6.5(D, max) mm
Pixel Pitch	0.25875 mm × 0.25875 mm
Pixel Format	1280 horiz. by 800 vert. Pixels RGB strip arrangement
Color Depth	6-bit, 262,144 colors
Luminance, White	200 cd/m ² (Typ.) , 5 point
Power Consumption	Total 5.52 Watt(Typ.) @ LCM circuit 1.32Watt(Typ.), B/L input 4.2 Watt(Typ.)
Weight	560 g (Typ)
Display Operating Mode	Transmissive mode, normally white
Surface Treatment	Anti-Glare &Hard coating(3H)

2. Absolute Maximum Ratings

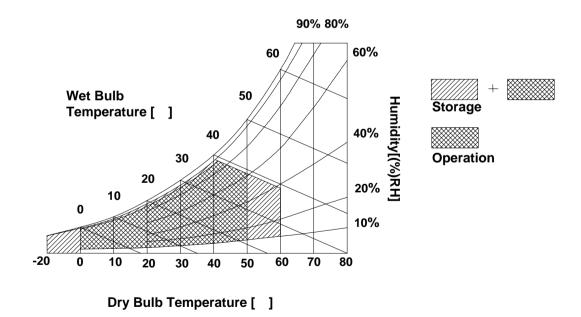

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Val	ues	Units	Notes	
Parameter	Symbol	Min	Min Max		Notes	
Power Input Voltage	VCC	-0.3	4.0	Vdc	at 25 ± 5°C	
Operating Temperature	Тор	0	50	°C	1	
Storage Temperature	Нѕт	-20	60	°C	1	
Operating Ambient Humidity	Нор	10	90	%RH	1	
Storage Humidity	Hst	10	90	%RH	1	

Note: 1. Temperature and relative humidity range are shown in the figure below.

Wet bulb temperature should be 39°C Max, and no condensation of water.

1170

1400

 V_{RMS}

 V_{RMS}

Product Specification

3. Electrical Specifications

3-1. Electrical Characteristics

The LP154W01(TLE1)requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the CCFL, is typically generated by an inverter. The inverter is an external unit to the LCD.

Values Symbol Unit Parameter Notes Min Тур Max MODULE: Power Supply Input Voltage VCC 3.0 3.3 3.6 V_{DC} Power Supply Input Current 340 400 460 mΑ I_{CC} **Power Consumption** Pc 1.32 1.52 Watt 1 Differential Impedance Zm 90 100 110 Ohm 2 LAMP: 670 695 835 Operating Voltage V_{BL} V_{RMS} 3 (6.8mA) (6.0mA)(3.0mA)3.0 **Operating Current** 6.0 6.5 4 mA_{RMS} I_{BL} **Power Consumption** 4.2 4.5 9 P_{BL} **Operating Frequency** 7 f_{BL} 45 60 80 kHz Discharge Stabilization Time 3 Min Ts 5 Life Time 12,000 Hrs 6 Established Starting Voltage 8

Table 2. ELECTRICAL CHARACTERISTICS

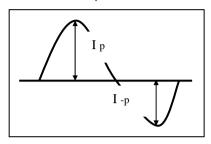
Note)

1. The specified current and power consumption are under the Vcc = 3.3V, 25 , fv = 60Hz condition whereas full black pattern is displayed and fv is the frame frequency.

Vs

- 2. This impedance value is needed to proper display and measured form LVDS Tx to the mating connector.
- 3. The variance of the voltage is \pm 10%.

at 25


at 0

- 4. The typical operating current is for the typical surface luminance (L_{WH}) in optical characteristics.
- 5. Define the brightness of the lamp after being lighted for 5 minutes as 100%, Ts is the time required for the brightness of the center of the lamp to be not less than 95%.
- 6. The life time is determined as the time at which brightness of lamp is 50% compare to that of initial value at the typical lamp current.
- 7. The output of the inverter must have symmetrical(negative and positive) voltage waveform and symmetrical current waveform.(Asymmetrical ratio is less than 10%) Please do not use the inverter which has asymmetrical voltage and asymmetrical current and spike wave.
 Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.
- 8. The voltage above VS should be applied to the lamps for more than 1 second for start-up. Otherwise, the lamps may not be turned on. The used lamp current is the lamp typical current.
- 9. The lamp power consumption shown above does not include loss of external inverter. The applied lamp current is a typical one.

Note)

- Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp, are following.
 It shall help increase the lamp lifetime and reduce leakage current.
 - a. The asymmetry rate of the inverter waveform should be less than 10%.
 - b. The distortion rate of the waveform should be within $2 \pm 10\%$.
 - * Inverter output waveform had better be more similar to ideal sine wave.

Do not attach a conducting tape to lamp connecting wire.

If the lamp wire attach to a conducting tape, TFT-LCD Module has a low luminance and the inverter has abnormal action. Because leakage current is occurred between lamp wire and conducting tape.

3-2. Interface Connections

This LCD employs two interface connections, a 30 pin connector is used for the module electronics interface and the other connector is used for the integral backlight system.

The electronics interface connector is a model GT101-30S-HR11 manufactured by LSC.

Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1)

Pin	Symbol	Description	Notes
1	GND	Ground	
2	vcc	Power Supply, 3.3V Typ.	
3	vcc	Power Supply, 3.3V Typ.	
4	V EEDID	DDC 3.3V power	1, Interface chips
5	NC NC	Reserved for supplier test point	1.1 LCD: KE5M5U2518(LCD Controller) including LVDS Receiver
6	CIK EEDID	DDC Clock	1.2 System : THC63LVD63A or equivalent
7	DATA EEDID	DDC Data	* Pin to Pin compatible with S/W LVDS
8	R _{IN} 0-	Negative LVDS differential data input	2. Connector
9	R _{IN} 0+	Positive LVDS differential data input	2.1 LCD : IS100-C30R-C15,UJU or
10	GND	Ground	GT101-30S-HR11, LS cable or
11	R _{IN} 1-	Negative LVDS differential data input	FI-XB30Sx-HFxx, JAE or Equivalent
12	R _{IN} 1+	Positive LVDS differential data input	2.2 Mating : FI-X30M or equivalent.
13	GND	Ground	2.3 Connector pin arrangement
14	R _{IN} 2-	Negative LVDS differential data input	30 1
15	R _{IN} 2+	Positive LVDS differential data input	
16	GND	Ground	
17	CLKIN-	Negative LVDS differential clock input	
18	CLKIN+	Negative LVDS differential clock input	[LCD Module Rear View]
19	GND	Ground	
20	NC	No connect	
21	NC	No connect	
22	NC	No connect	
23	NC	No connect	
24	NC	No connect	
25	NC	No connect	
26	NC	No connect	
27	NC	No connect	
28	NC	No connect	
29	NC	No connect	
30	NC	No connect	

The backlight interface connector is a model BHSR-02VS-1, manufactured by JST or Compatible. The mating connector part number is SM02B-BHSS-1 or equivalent.

Table 5. BACKLIGHT CONNECTOR PIN CONFIGURATION (J3)

Pin	Symbol	Description	Notes
1	HV	Power supply for lamp (High voltage side)	1
2	LV	Power supply for lamp (Low voltage side)	1

Notes: 1. The high voltage side terminal is colored Sky blue and the low voltage side terminal is Black.

3-3. Signal Timing Specifications

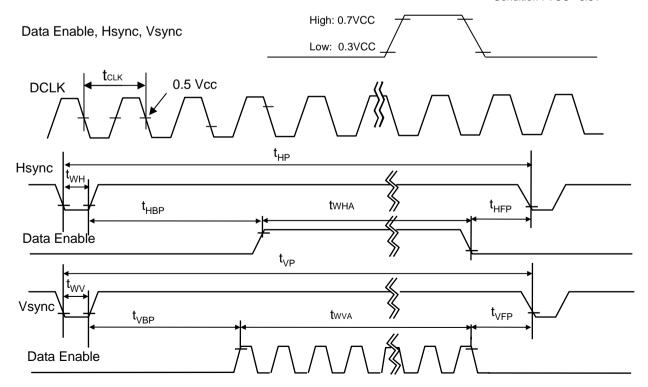

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation.

Table 6. TIMING TABLE

ITEM	Symbol		Min	Тур	Max	Unit	Note
DCLK	Frequency	fclk	68.9	68.9	68.9	MHz	
	Period	tHP	1408	1408	1408		
Hsync	Width	twn	32	32	32	tCLK	
	Active		1280	1280	1280		
	Period	tVP	816	816	816		
Vsync	Vsync Width		4	4	4	tHP	
	Active	twva	800	800	800		
	Horizontal back porch	tHBP	72	72	72	tour	
Data	Data Horizontal front porch		24	24	24	tCLK	
Enable	Vertical back porch	tvbp	8	8	8	tHP	
	Vertical front porch	tvfp	4	4	4	INP	

3-4. Signal Timing Waveforms

Condition: VCC =3.3V

3-5. Color Input Data Reference

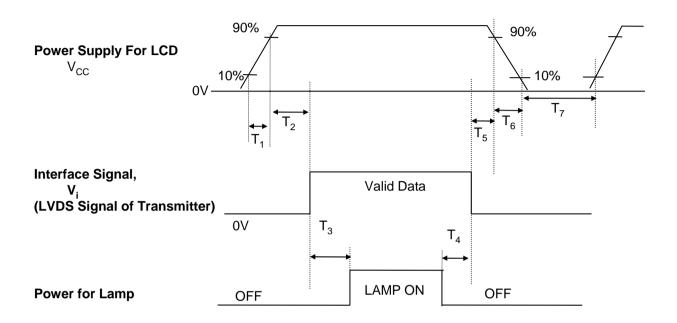

The brightness of each primary color (red,green and blue) is based on the 6-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 7. COLOR DATA REFERENCE

									Inp	out Co	olor D	ata							
	Color			RE	D					GRE	EN					BL	UE		
		MSE		_	_		LSB						LSB						LSB
	I	R 5	R 4	R 3	R 2	R 1	R 0	G 5	G 4	G 3	G 2	G 1	G 0	B 5	B 4	В3	B 2	B 1	В 0
	Black	0	0			0	0	0	0		0	0	0	0		0	0	0	0
	Red	1 	1	1	1	1	1	0 	0		0	0		0		0		0	0
	Green	0	0				0	1 	1			1	1	0		0		0	0
Basic	Blue	0	0	0	0	0	0	0	0		0	0	0	1	. 1 			1	1
Color	Cyan	0	0	0		0	0	1	1	. 1	1	1	1	1		. 1	. 1	1	1
	Magenta	1	1	1	. 1	1		0	0	0	0	0	0	1	1	1	. 1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (01)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
RED		l																	
	RED (62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (01)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
GREEN		ļ																	
	GREEN (62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	GREEN (63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	BLUE (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (01)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE																			
	BLUE (62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	BLUE (63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

3-6. Power Sequence

Table 8. POWER SEQUENCE TABLE

Parameter		Value	Units	
	Min.	Тур.	Max.	
T ₁	0.5	-	10	(ms)
T ₂	0	-	50	(ms)
T ₃	200	-	-	(ms)
T ₄	200	-	-	(ms)
T ₅	0	-	50	(ms)
T ₆	0	-	10	(ms)
T ₇	400	-	-	(ms)

Note)

- 1. Please avoid floating state of interface signal at invalid period.
- 2. When the interface signal is invalid, be sure to pull down the power supply for LCD VCC to 0V.
- 3. Lamp power must be turn on after power supply for LCD and interface signal are valid.

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and Θ equal to 0° .

FIG. 1 presents additional information concerning the measurement equipment and method.

FIG. 1 Optical Characteristic Measurement Equipment and Method

Table 9. OPTICAL CHARACTERISTICS

50cm

Ta=25°C, VCC=3.3V, f_{V} =60Hz, f_{CLK} = 68.9MHz, lout = 6.0mA

			Values		, 10dt = 0.0111/1		
Parameter	Symbol	Min Typ		MAx	Units	Notes	
Contrast Ratio	CR	300	400			1	
Surface Luminance, white	L _{WH}	170	200	-	cd/m ²	2	
Luminance Variation	δ _{WHITE}	-	1.4	1.6		3	
Response Time	<u>.</u>					4	
Rise Time+Decay Time	Tr _{R+} Tr _D	<u> </u>	16	25	ms		
Color Coordinates	.					±0.03	
RED	RX	0.570	0.600	0.630]]		
	RY	0.321	0.351	0.381	<u>.</u>		
GREEN	GX	0.295	0.325	0.355]		
	GY	0.524	0.554	0.584]		
BLUE	BX	0.124	0.154	0.184]		
	BY	0.110	0.140	0.170]		
WHITE	WX	0.283	0.313	0.343			
	WY	0.299	0.329	0.359			
Viewing Angle	I					5	
x axis, right(Φ=0°)	Θr	40	45	-	degree		
x axis, left (Φ=180°)	ΘΙ	40	45		degree		
y axis, up (Φ=90°)	Θu	10	15	-	degree		
y axis, down (Φ=270°)	Θd	30	35	-	degree		
Gray Scale						6	

Note)

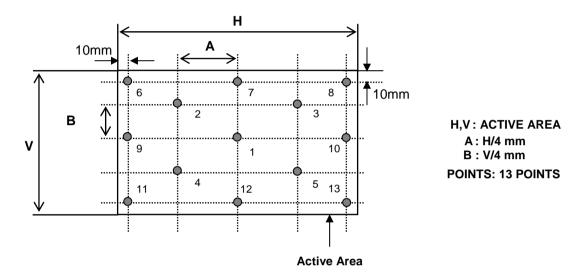
1. Contrast Ratio(CR) is defined mathematically as

Surface Luminance with all white pixels

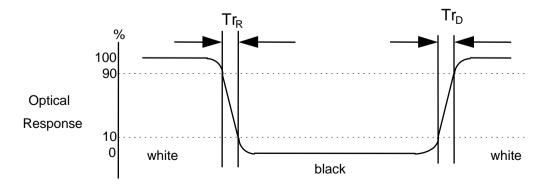
Contrast Ratio =

Surface Luminance with all black pixels

- Surface luminance is the 5point (1~5) average across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 2.
 When I_{RI} = 6.0mA, L_{WH=}200cd/m²(typ.)
- 3. Luminance % uniformity is measured for 13 point For more information see FIG 2. WHITE = Maximum(LN1,LN2, LN13) ÷ Minimum(LN1,LN2, LN13)
- 4. Response time is the time required for the display to transition from white to black (rise time, Tr_R) and from black to white(Decay Time, Tr_D). For additional information see FIG 3.
- 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.
- 6. Gray scale specification


* f_{\/}=60Hz

Gray Level	Luminance [%] (Typ)				
LO	0.1				
L7	1.66				
L15	6.16				
L23	13.2				
L31	22.3				
L39	35.6				
L47	53.1				
L55	74.4				
L63	100				


FIG. 2 Luminance

<measuring point for surface luminance & measuring point for luminance variation>

FIG. 3 Response Time

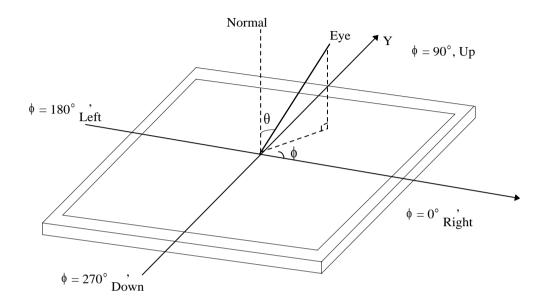
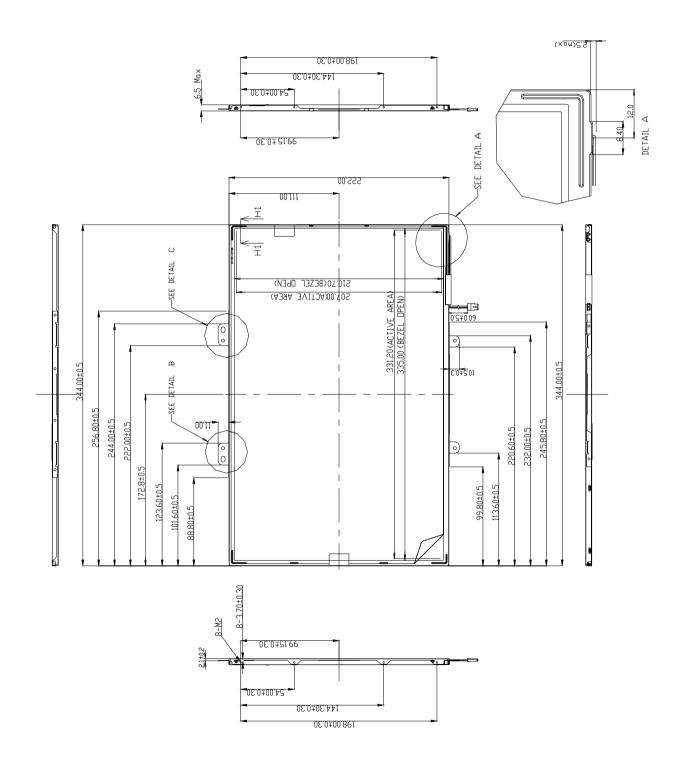

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

FIG. 4 Viewing angle

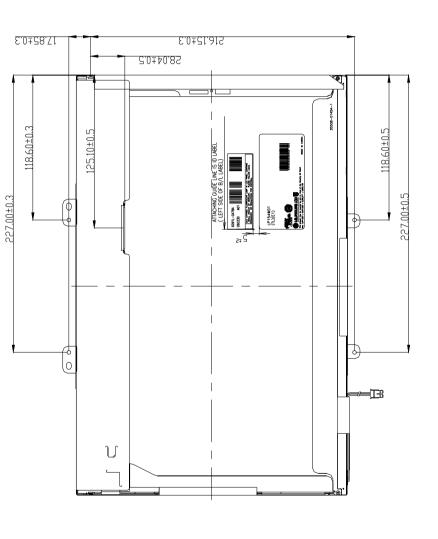
<Dimension of viewing angle range>

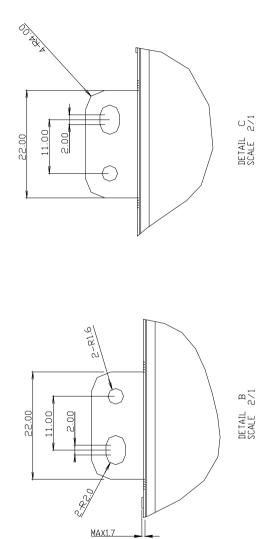
5. Mechanical Characteristics


The contents provide general mechanical characteristics for the model LP154W01(TLE1). In addition the figures in the next page are detailed mechanical drawing of the LCD.

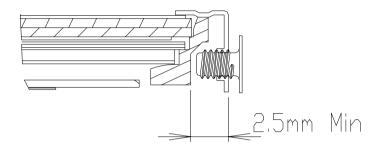
	Horizontal	344.0 ± 0.5mm			
Outline Dimension	Vertical	222.0 ± 0.5mm			
	Depth	6.2 ± 0.3mm			
Bezel Area	Horizontal	335.0 ± 0.5 mm			
Bezer Area	Vertical	210.7 ± 0.5mm			
Active Diapley Area	Horizontal	331.2 mm			
Active Display Area	Vertical	207.0 mm			
Weight	575g (MAX)				
Surface Treatment	Anti-Glare &Hard coating(3H)				

<FRONT VIEW>


Note) Unit:[mm], General tolerance: ± 0.5mm



<REAR VIEW>


Note) Unit:[mm], General tolerance: ± 0.5mm

[DETAIL DESCRIPTION OF SIDE MOUNTING SCREW]

SECTION H1-H1

*SCREW(8EA) TORQUE : 2.5kgf.cm max *Screw Hole Depth : 2.5mm min *Screw Length : max 2.5, min2.0

Ver. 0.0 Apr. 28, 2006 19 / 27

6. Reliability

Environment test condition

No.	Test Item	Conditions
1	High temperature storage test	Ta= 60°C, 240h
2	Low temperature storage test	Ta= -20°C, 240h
3	High temperature operation test	Ta= 50°C, 50%RH, 240h
4	Low temperature operation test	Ta= 0°C, 240h
5	Vibration test (non-operating)	Sine wave, 5 ~ 150Hz, 1.5G, 0.37oct/min 3 axis, 30min/axis
6	Shock test (non-operating)	 No functional or cosmetic defects following a shock to all 6 sides delivering at least 180 G in a half sine pulse no longer than 2 ms to the display module No functional defects following a shock delivering at least 200 g in a half sine pulse no longer than 2 ms to each of 6 sides. Each of the 6 sides will be shock tested with one each display, for a total of 6 displays
7	Altitude operating storage / shipment	0 ~ 10,000 feet (3,048m) 24Hr 0 ~ 40,000 feet (12,192m) 24Hr

[{] Result Evaluation Criteria }

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

7. International Standards

7-1. Safety

a) UL 60950-1:2003. First Edition. Underwriters Laboratories. Inc...

Standard for Safety of Information Technology Equipment.

b) CAN/CSA C22.2, No. 60950-1-03 1st Ed. April 1, 2003, Canadian Standards Association,

Standard for Safety of Information Technology Equipment.

c) EN 60950-1:2001. First Edition.

European Committee for Electrotechnical Standardization(CENELEC)

European Standard for Safety of Information Technology Equipment.

7-2. EMC

- a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992
- b) C.I.S.P.R. "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference.
- c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization.(CENELEC), 1998 (Including A1: 2000)

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

A,B,C : SIZE(INCH) D : YEAR

E: MONTH F ~ M: SERIAL NO.

Note

1. YEAR

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Mark	1	2	3	4	5	6	7	8	9	0

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	A	В	С

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

a) Package quantity in one box: 20 pcs

b) Box Size: 441mm ×373mm × 348mm

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.
 - Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage: V=± 200mV(Over and under shoot voltage)
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.)

 And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object.

 It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.
 - Please carefully peel off the protection film without rubbing it against the polarizer.
- (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 1/3

Byte#	Byte#		Value	Value	
(decimal)	(HEX)	Field Name and Comments	(HEX)	(b inary)	
0	00	Header	0 0	0000 0000	
1	01		F F	1111 1111	
2	02		F F	1111 1111	
3	03		F F	1111 1111	Header
4	04		F F	1111 1111	
<u>5</u>	05 06		F F	1111 1111 1111 1111	
7	07		0 0	0000 0000	
8	08	ESA manufacturer code = LPL	3 2	0011 0010	
9	09	Compressed ASC	0 C	0000 1100	
10	OA	PanelSupplierReserved - Productcode	0 0	0000 0000	
11	OB	(Hex, LSB first)	B D	1011 1101	
12	OC	LCD M odule SerialNo. = O(Ifnotused)	0 0	0000 0000	Vender/
13	OD	LCD M odule SerialNo. = O(Ifnotused)	0 0	0000 0000	Product ID
14	0E	LCD M odule SerialNo. = O(Ifnotused)	0 0	0000 0000	
15	0F	LCD M odule Seria INo. = 0(Ifnot used)	0 0	0000 0000	
16	10	W eek of manufacture	0 0	0000 0000	
17	11	Year of manufacture = 2006	1 0	0001 0000	
18	12	ED D Structure version # = 1	0 1	0000 0001	EDID Version/
19		EDD Revision # = 3	0 3	0000 0011	Revision
20	14	Video input de finition = Digita I I/p, non TM DS CRGB	8 0	1000 0000	
21		Max H image size(cm) = 33.12cm(33)	2 1	0010 0001	D isp lay
22		Max V image size(cm) = 20.70cm(21)	1 5	0001 0101	Parameter
23	17	D isp by gamma = 2.2	7 8	0111 1000	
24		Feature support(DPM S) = Active off, RGB Cobr	0 A	0000 1010	
25 26	19 1A	Red/Green low Bits Blue/White Low Bits	B 3 7 0	1011 0011 0111 0000	
27	1B	Red X Rx =0.600	9 9	1001 1001	
28	1C	Red Y Ry = 0.351	5 9	0101 1001	
29	1D	G reen X G x = 0.325	5 3	0101 0011	Color
30	1E	G reen Y G y = 0.554	8 D	1000 1101	C haracteristic
31	1F	B lue X Bx =0.154	2 7	0010 0111	
32	20	B lue Y By =0.140	2 3	0010 0011	
33	21	W h ite X W x = 0.313	5 0	0101 0000	
34		White Y Wy = 0.329	5 4 0 0	0101 0100	Estab lished
35 36	23 24	Established Timing I Established Timing II	0 0	0000 0000	Tim ings
37		M anufacturer's Timings	0 0	0000 0000	i ili iliyə
38		Standard Timing Identification 1 was not used	0 1	0000 0000	
39	27	Standard Timing Identification Twas not used	0 1	0000 0001	
40	28	Standard Timing Identification 2 was not used	0 1	0000 0001	
41	29	Standard Timing Identification 2 was not used	0 1	0000 0001	
42		Standard Timing Identification 3 was not used	0 1	0000 0001	
43	2B	Standard Timing Identification 3 was not used	0 1	0000 0001	
44	2C	Standard Timing Identification 4 was not used	0 1	0000 0001	Standard
45	2D	Standard Timing Dentification 4 was not used	0 1	0000 0001	Tim ing ID
46	2E	Standard Timing Identification 5 was not used	0 1	0000 0001	1 mm m19 m2
47	2F	Standard Timing Identification 5 was not used	0 1	0000 0001	
48	30	Standard Timing Identification 6 was not used	0 1	0000 0001	
49	31	Standard Timing Dentification 6 was not used	0 1	0000 0001	
50	32	Standard Timing Dentification 7 was not used	0 1	0000 0001	
51	33	Standard Timing Identification 7 was not used	0 1	0000 0001	
52	34	Standard Timing Dentification 7 was not used	0 1	0000 0001	
53	35	Standard Timing Identification 8 was not used	0 1	0000 0001	
აა	JÜ	o anualu i iii ng uchuloa whi o w as notuseu	UI	0000 0001	

APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 2/3

	Byte#	Byte#	Find Name and Command	۷a	lue	Value	
55 37 1280 X 900 € 60Hz mode : p kel c bc k = 68.9Mz	(decimal)	(HEX)	Field Name and Comments	(HI	ΞX)	(b inary)	
55 37 1280 X 800 8 60Hz mode : p Ne I cock = 68.9Me	54	36	Detailed Timing Descriptor#1	Е	Α	1110 1010	
ST 33 Horizontal Binking = 128 pixels S 0 0000 0000	55	37		1	Α	0001 1010	
SS 3A Horizontal Active : Horizontal Banking = 1280 : 128 5 0 0101 0000	56	38	Horizon tall Active = 1280 pixe is	0		0000 0000	
59 38	57	39	Horizon ta IB lanking = 128 pixels		0	1000 0000	
60 3C Vertical B inking = 16 lines 1 0 0.0001 0.000 0.000 661 30 0.001 0.000 662 3E Horizonal Sync. 0 fiset = 24 p ke ls 1 8 0.001 1.000	58	3A	Horizon ta I A ctive: Horizon ta I B lanking = 1280: 128	5	0	0101 0000	
61 30 Vertical Active : Vertical Binking = 800 : 16 3 0 0.001 0.000	59	3B	Vertical Avtive = 800 lines	2	0	0010 0000	
Beautiful Beau	60	3C	Vertica IB lanking = 16 lines		0	0001 0000	Detailed
63 3F		3D		3		0011 0000	Tim ing
64							Description
65							#1
66		40					
67				SECRETARIA DE LA COMPONIO			
B88							•
689							
Property Property							
71							
72							
73				_	-		
74			Detailed Timing Descriptor#2				
75							
76							
77							
78							
Timing Secription Secript							
80 50							1
81							
82 52							1
83							#2
84 55							
85 55							
86 56 87 57 88 58 90 50 90 5A Detailed Timing Descriptor #3 0 90 5A Detailed Timing Descriptor #3 0 90 5A Detailed Timing Descriptor #3 0 0 0 92 5C 0 0 93 5D 94 5E 0 0 96 60 96 60 97 61 99 63 1 6 8 8 100 64 1 6 99 63 1 6 100 64 1 6 99 63 1 6 99 63 1 6 99 63 1 6 90 10 100 10 <							
87 57 0 0 0000 0000 88 58 0 0 0 0000 0000 89 59 0 0 0 0000 0000 90 5A Detailed Timing Descriptor#3 0 0 0 0000 0000 91 5B 0 0 0 0000 0000 92 5C 0 0 0 0000 0000 93 5D F E 1111 1110 94 5E 0 0 0 0000 0000 95 5F L 4 C 0100 1100 96 60 G 4 7 0100 0111 97 61 P 5 0 0101 0000 98 62 H 6 8 0110 1000 99 63 I 6 9 0110 1001 100 64 L 6 C 0110 1100 101 65 I 6 9 0110 1001 102 66 P 7 0 0111 0001 103 67 S 7 3 0111 0011 104 68 L 4 C 0100 1100 105 69 C 4 3 0100 0011 106 6A D 4 4 0100 0100 107 108 108 109 109 108 60 C 4 3 0100 0011 109 100 100 1000 100 100 6A D 4 4 0100 0100 100 100 1000 1000 1000 100 100 1000 1000 1000 100 100 1000 1000 1000 1000 100 100 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10							
88 58 89 59 90 5A Detailed Timing Descriptor #3 0 0 0000 0000 91 5B 0 0 0000 0000 92 5C 0 0 0000 0000 93 5D F E 1111 1110 94 5E 0 0 0000 0000 95 5F L 4 C 0100 1100 96 60 G 4 7 0100 0111 97 61 P 5 0 0101 0000 99 63 I 6 8 0110 1000 100 64 L 6 C 0110 1001 #3 102 66 P 7 0 0111 0001 #3 104 68 L 4 C 0100 1100 1001 1001 105 69 C 4 3 0100 0011 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
89 59				_			
90							
91 5B 0 0 00000 0000 92 5C 0 0 00000 0000 93 5D F E 1111 1110 94 5E 0 0 0000 0000 95 5F L 4 C 0100 1100 96 60 G 4 7 0100 0111 97 61 P 5 0 0101 0000 98 62 H 6 8 0110 1000 99 63 I 6 9 0110 1001 100 64 L 6 C 0110 1001 101 65 I 1 6 9 0110 1001 102 66 P 7 0 0111 0000 100 103 67 S 7 3 0111 0011 104 68 L 4 C 01000 1100			Detailed Timber December 110	_			
92 5C 0 0 0 0000 0000 93 5D F E 1111 1110 94 5E 0 0 0000 0000 95 5F L 4 C 0100 1100 96 60 G 4 7 0100 0111 Detailed 97 61 P 5 0 0101 0000 Tim ing 98 62 H 6 8 0110 1000 Description 99 63 I 6 9 0110 1001 #3 100 64 L 6 0 0110 1001 #3 101 65 I 6 9 0110 1001 #3 102 66 P 7 0 0111 0000 #3 103 67 S 7 3 0111 0011 4 C 0100 1100 104 68 L 4 C 0100 1100 4 3 0100 0011 105 69 C 4 3 0100 0011 4 4 0100 0100			Detailed iming Descriptor#3				
93 5D F E 1111 1110 94 5E 0 0 0000 0000 95 5F L 4 C 0100 1100 96 60 G 4 7 0100 0111 0000 97 61 P 5 0 0101 0000							
94 5E 0 0 00000 0000 95 5F L 4 C 0100 1100 96 60 G 4 7 0100 0111 97 61 P 5 0 0101 0000 98 62 H 6 8 0110 1000 99 63 I 6 9 0110 1001 #3 100 64 L 6 C 0110 1100 #3 101 65 I 6 9 0110 1001 #3 102 66 P 7 0 0111 0000 #3 103 67 S 7 3 0111 0011 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 10							
95 5F L 4 C 0100 1100 96 60 G 4 7 0100 0111 97 61 P 5 0 0101 0000 98 62 H 6 8 0110 1000 99 63 I 6 9 0110 1001 #3 100 64 L 6 C 0110 1100 #3 101 65 I 6 9 0110 1001 #3 102 66 P 7 0 0111 0000 #3 103 67 S 7 3 0111 0011 1001							
96 60 G 4 7 0100 0111 Detailed Timing 97 61 P 5 0 0101 0000 Timing Description 98 62 H 6 8 0110 1000 H 1001 1001 1001 1001 1001 1001 #3 101 65 I I 6 9 0110 1001 #3 102 66 P 7 0 0111 0000 1001 <t< td=""><td></td><td></td><td>I</td><td></td><td></td><td>0100 1100</td><td></td></t<>			I			0100 1100	
97 61 P 5 0 0101 0000 T in ing 98 62 H 6 8 0110 1000 4 1001 1001 1001 1001 1001 4 4 1001			L C				Datailed
98 62 H 6 8 0110 1000 100 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td>							4
99 63 I 6 9 0110 1001 100 64 L 6 C 0110 1100 101 65 I 6 9 0110 1001 102 66 P 7 0 0111 0000 103 67 S 7 3 0111 0011 104 68 L 4 C 0100 1100 105 69 C 4 3 0100 0011 106 6A D 4 4 0100 0100							
100 64 L 6 C 0110 1100 101 65 I 6 9 0110 1001 102 66 P 7 0 0111 0000 103 67 S 7 3 0111 0011 104 68 L 4 C 0100 1100 105 69 C 4 3 0100 0011 106 6A D 4 4 0100 0100							
101 65 I 6 9 0110 1001 102 66 P 7 0 0111 0000 103 67 S 7 3 0111 0011 104 68 L 4 C 0100 1100 105 69 C 4 3 0100 0011 106 6A D 4 4 0100 0100			·				#3
102 66 P 7 0 0111 0000 103 67 S 7 3 0111 0011 104 68 L 4 C 0100 1100 105 69 C 4 3 0100 0011 106 6A D 4 4 0100 0100			I I				
103 67 S 7 3 0111 0011 104 68 L 4 C 0100 1100 105 69 C 4 3 0100 0011 106 6A D 4 4 0100 0100			D				
104 68 L 4 C 0100 1100 105 69 C 4 3 0100 0011 106 6A D 4 4 0100 0100							
105 69 C 4 3 0100 0011 106 6A D 4 4 0100 0100							
106 6A D 4 4 0100 0100							
	107	6B	LF	0	A	0000 1010	

APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 3/3

Byte# (decimal)	Byte# (HEX)	Field Name and Comments	_	lue X)	Value (binary)	
108	6C	Detailed Timing Descriptor#4	Ò	0	0000 0000	
109	6D	3 1	0	0	0000 0000	
110	6E		0	0	0000 0000	
111	6F		F	Ε	1111 1110	
112	70		0	0	0000 0000	
113	71	L	4	С	0100 1100	
114	72	Р	5	0	0101 0000	Detailed
115	73	1	3	1	0011 0001	T im ing
116	74	5	3	5	0011 0101	Description
117	75	4	3	4	0011 0100	#4
118	76	W	5	7	0101 0111	
119	77	0	3	0	0011 0000	
120	78	1	3	1	0011 0001	
121	79	-	2	D	0010 1101	
122	7A	T	5	4	0101 0100	
123	7B	L	4	С	0100 1100	
124	7C	E	4	5	0100 0101	
125	7D	1	3	1	0011 0001	
126	7E	Extension flag = 00	0	0	0000 0000	Extension Flag
127	7F	Checksum	6	3	0110 0011	Checksum