SPECIFICATION FOR APPROVAL

- **Model**: 15.4" WXGA TFT LCD

<table>
<thead>
<tr>
<th>Title</th>
<th>15.4" WXGA TFT LCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUYER</td>
<td>DELL</td>
</tr>
<tr>
<td>MODEL</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUPPLIER</th>
<th>LG.Philips LCD Co., Ltd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>*MODEL</td>
<td>LP154W01</td>
</tr>
<tr>
<td>Suffix</td>
<td>TLF2</td>
</tr>
</tbody>
</table>

*When you obtain standard approval, please use the above model name without suffix

<table>
<thead>
<tr>
<th>APPROVED BY</th>
<th>SIGNATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td></td>
</tr>
<tr>
<td>/</td>
<td></td>
</tr>
<tr>
<td>/</td>
<td></td>
</tr>
</tbody>
</table>

Please return 1 copy for your confirmation with your signature and comments.

<table>
<thead>
<tr>
<th>APPROVED BY</th>
<th>SIGNATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. H. Lee / S.Manager</td>
<td></td>
</tr>
<tr>
<td>REVIEWED BY</td>
<td></td>
</tr>
<tr>
<td>S.R.Kim / Manager</td>
<td></td>
</tr>
<tr>
<td>PREPARED BY</td>
<td></td>
</tr>
<tr>
<td>B.H.Kim / Engineer</td>
<td></td>
</tr>
</tbody>
</table>

Product Engineering Dept.
LG. Philips LCD Co., Ltd
Contents

<table>
<thead>
<tr>
<th>No</th>
<th>ITEM</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COVER</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>CONTENTS</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>RECORD OF REVISIONS</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>GENERAL DESCRIPTION</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>ABSOLUTE MAXIMUM RATINGS</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>ELECTRICAL SPECIFICATIONS</td>
<td>6</td>
</tr>
<tr>
<td>3-1</td>
<td>ELECTRICAL CHARACTERISTICS</td>
<td>6</td>
</tr>
<tr>
<td>3-2</td>
<td>INTERFACE CONNECTIONS</td>
<td>8</td>
</tr>
<tr>
<td>3-3</td>
<td>SIGNAL TIMING SPECIFICATIONS</td>
<td>9</td>
</tr>
<tr>
<td>3-4</td>
<td>SIGNAL TIMING WAVEFORMS</td>
<td>9</td>
</tr>
<tr>
<td>3-5</td>
<td>COLOR INPUT DATA REFERENCE</td>
<td>10</td>
</tr>
<tr>
<td>3-6</td>
<td>POWER SEQUENCE</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>OPTICAL SPECIFICATIONS</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>MECHANICAL CHARACTERISTICS</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>RELIABILITY</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>INTERNATIONAL STANDARDS</td>
<td>21</td>
</tr>
<tr>
<td>7-1</td>
<td>SAFETY</td>
<td>21</td>
</tr>
<tr>
<td>7-2</td>
<td>EMC</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>PACKING</td>
<td>22</td>
</tr>
<tr>
<td>8-1</td>
<td>DESIGNATION OF LOT MARK</td>
<td>22</td>
</tr>
<tr>
<td>8-2</td>
<td>PACKING FORM</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>PRECAUTIONS</td>
<td>23</td>
</tr>
<tr>
<td>A</td>
<td>APPENDIX. Enhanced Extended Display Identification Data</td>
<td>25</td>
</tr>
</tbody>
</table>
RECORD OF REVISIONS

<table>
<thead>
<tr>
<th>Revision No</th>
<th>Revision Date</th>
<th>Page</th>
<th>Description</th>
<th>EDID ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>Jun. 26, 2006</td>
<td>-</td>
<td>First Draft</td>
<td>0.0</td>
</tr>
<tr>
<td>0.1</td>
<td>Oct. 02, 2006</td>
<td>18</td>
<td>Revision Explanation Added</td>
<td>0.0</td>
</tr>
<tr>
<td>0.2</td>
<td>Jan. 26, 2007</td>
<td>8,9,12,22,25~27</td>
<td>Update BACKLIGHT CONNECTOR PIN CONFIGURATION, Timing, Color Coordinates, Packing, EDID</td>
<td>0.0</td>
</tr>
</tbody>
</table>
1. General Description

The LP154W01 is a Color Active Matrix Liquid Crystal Display with an integral Cold Cathode Fluorescent Lamp (CCFL) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 15.4 inches diagonally measured active display area with WXGA resolution (1280 horizontal by 800 vertical pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors.

The LP154W01 has been designed to apply the interface method that enables low power, high speed, low EMI.

The LP154W01 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP154W01(TLF2) characteristics provide an excellent flat display for office automation products such as Notebook PC.

General Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Screen Size</td>
<td>15.4 inches diagonal</td>
</tr>
<tr>
<td>Outline Dimension</td>
<td>344.0 (H) × 222.0 (V) × 6.5 (D, max) mm</td>
</tr>
<tr>
<td>Pixel Pitch</td>
<td>0.25875 mm × 0.25875 mm</td>
</tr>
<tr>
<td>Pixel Format</td>
<td>1280 horiz. by 800 vert. Pixels RGB strip arrangement</td>
</tr>
<tr>
<td>Color Depth</td>
<td>6-bit, 262,144 colors</td>
</tr>
<tr>
<td>Luminance, White</td>
<td>200 cd/m²(Min.), 5 point</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>Total 5.82 Watt(Typ.) @ LCM circuit 1.4 Watt(Typ.), B/L input 4.42 Watt(Typ.)</td>
</tr>
<tr>
<td>Weight</td>
<td>550g (Typ.) w/o inverter</td>
</tr>
<tr>
<td>Display Operating Mode</td>
<td>Transmissive mode, normally white</td>
</tr>
<tr>
<td>Surface Treatment</td>
<td>Glare(2H)</td>
</tr>
</tbody>
</table>

Ver. 0.0 Jan, 26, 2007 4 / 27
2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Input Voltage</td>
<td>VCC</td>
<td>Min</td>
<td>Max</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>TOP</td>
<td>0</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>HST</td>
<td>-20</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Operating Ambient Humidity</td>
<td>HOP</td>
<td>10</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Storage Humidity</td>
<td>HST</td>
<td>10</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

Note 1. Temperature and relative humidity range are shown in the figure below.
Wet bulb temperature should be 39°C Max, and no condensation of water.
3. Electrical Specifications

3-1. Electrical Characteristics

The LP154W01(TLF2) requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the CCFL, is typically generated by an inverter. The inverter is an external unit to the LCD.

Table 2. ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>MODULE :</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply Input Voltage</td>
<td>VCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply Input Current</td>
<td>Icc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Impedance</td>
<td>Zm</td>
<td>90</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>LAMP :</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>VBL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Current</td>
<td>IBL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Consumption</td>
<td>Pbl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Frequency</td>
<td>fbl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge Stabilization Time</td>
<td>Ts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Established Starting Voltage</td>
<td>Vs</td>
<td>15,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at 25°C</td>
<td></td>
<td>1170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at 0°C</td>
<td></td>
<td>1400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. The specified current and power consumption are under the Vcc = 3.3V, 25°C, fv = 60Hz condition whereas full black pattern is displayed and fv is the frame frequency.
2. This impedance value is needed to proper display and measured form LVDS Tx to the mating connector.
3. The variance of the voltage is ± 10%.
4. The typical operating current is for the typical surface luminance (LWH) in optical characteristics.
5. Define the brightness of the lamp after being lighted for 5 minutes as 100%, Ts is the time required for the brightness of the center of the lamp to be not less than 95%.
6. The life time is determined as the time at which brightness of lamp is 50% compare to that of initial value at the typical lamp current.
7. The output of the inverter must have symmetrical(negative and positive) voltage waveform and symmetrical current waveform.(Asymmetrical ratio is less than 10%) Please do not use the inverter which has asymmetrical voltage and asymmetrical current and spike wave.
Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.
8. The voltage above VS should be applied to the lamps for more than 1 second for start-up. Otherwise, the lamps may not be turned on. The used lamp current is the lamp typical current.
9. The lamp power consumption shown above does not include loss of external inverter. The applied lamp current is a typical one.
Note)

9. Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp, are following.

It shall help increase the lamp lifetime and reduce leakage current.

a. The asymmetry rate of the inverter waveform should be less than 10%.

b. The distortion rate of the waveform should be within $\sqrt{2} \pm 10\%$.

* Inverter output waveform had better be more similar to ideal sine wave.

![Diagram](image)

* Asymmetry rate:

$$\frac{|I_p - I_{-p}|}{I_{rms}} \times 100\%$$

* Distortion rate

$$\frac{I_p (or I_{-p})}{I_{rms}}$$

※ Do not attach a conducting tape to lamp connecting wire.

If the lamp wire attach to a conducting tape, TFT-LCD Module has a low luminance and the inverter has abnormal action. Because leakage current is occurred between lamp wire and conducting tape.
3-2. Interface Connections

This LCD employs two interface connections, a 30 pin connector is used for the module electronics interface and the other connector is used for the integral backlight system.

The electronics interface connector is a model MDF76LBRW-30S-1H manufactured by Hirose.

Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>VCC</td>
<td>Power Supply, 3.3V Typ.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>VCC</td>
<td>Power Supply, 3.3V Typ.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>V EED1</td>
<td>DDC 3.3V power</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td>Reserved for supplier test point</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CLK EED1</td>
<td>DDC Clock</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>DATA EED1</td>
<td>DDC Data</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>R0-</td>
<td>Negative LVDS differential data input</td>
<td>1. Interface chips</td>
</tr>
<tr>
<td>9</td>
<td>R0+</td>
<td>Positive LVDS differential data input</td>
<td>1.1 LCD : KE5M5U2518 (LCD Controller) including LVDS Receiver</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>Ground</td>
<td>1.2 System : THC63LVD63A or equivalent</td>
</tr>
<tr>
<td>11</td>
<td>R1-</td>
<td>Negative LVDS differential data input</td>
<td>* Pin to Pin compatible with S/W LVDS</td>
</tr>
<tr>
<td>12</td>
<td>R1+</td>
<td>Positive LVDS differential data input</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>R2-</td>
<td>Negative LVDS differential data input</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>R2+</td>
<td>Positive LVDS differential data input</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>CLKIN-</td>
<td>Negative LVDS differential clock input</td>
<td>2. Connector</td>
</tr>
<tr>
<td>18</td>
<td>CLKIN+</td>
<td>Positive LVDS differential clock input</td>
<td>2.1 LCD : MDF76LBRW-30S-1H, Hirose or FI-X30SRL-HF11, JAE equivalent. Locking design</td>
</tr>
<tr>
<td>19</td>
<td>GND</td>
<td>Ground</td>
<td>2.2 Mating : FI-X30M or equivalent.</td>
</tr>
<tr>
<td>20</td>
<td>NC</td>
<td>No connect</td>
<td>2.3 Connector pin arrangement</td>
</tr>
<tr>
<td>21</td>
<td>NC</td>
<td>No connect</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>NC</td>
<td>No connect</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>NC</td>
<td>No connect</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>NC</td>
<td>No connect</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>NC</td>
<td>No connect</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>NC</td>
<td>No connect</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>NC</td>
<td>No connect</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>NC</td>
<td>No connect</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>NC</td>
<td>No connect</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>NC</td>
<td>No connect</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. BACKLIGHT CONNECTOR PIN CONFIGURATION (J3)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HV</td>
<td>Power supply for lamp (High voltage side)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>LV</td>
<td>Power supply for lamp (Low voltage side)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. The high voltage side terminal is colored Dark Gray and the low voltage side terminal is yellow.

The backlight interface connector is a model BHSR-02VS-1, manufactured by JST or Compatible.

The mating connector part number is SM02B-BHSS-1 or equivalent.
3-3. Signal Timing Specifications

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCLK</td>
<td>fCLK</td>
<td>66.9</td>
<td>72.25</td>
<td>75.4</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Hsync</td>
<td>tHP</td>
<td>1380</td>
<td>1440</td>
<td>1496</td>
<td>tCLK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tWH</td>
<td>16</td>
<td>32</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tWHA</td>
<td>1280</td>
<td>1280</td>
<td>1280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vsync</td>
<td>tvP</td>
<td>808</td>
<td>823</td>
<td>840</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tvV</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tvWV</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>tHP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tVBP</td>
<td>5</td>
<td>15</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tvFP</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>twVA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>twV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>twH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3-4. Signal Timing Waveforms

Condition: VCC = 3.3V

Data Enable, Hsync, Vsync

DCLK

Hsync

Data Enable

Vsync

Data Enable

Ver. 0.0 Jan, 26, 2007
3-5. Color Input Data Reference

The brightness of each primary color (red, green, and blue) is based on the 6-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

<table>
<thead>
<tr>
<th>Color</th>
<th>Input Color Data</th>
<th>RED</th>
<th>GREEN</th>
<th>BLUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSB</td>
<td>LSB</td>
<td>MSB</td>
<td>LSB</td>
</tr>
<tr>
<td>Black</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>Red</td>
<td>1 1 1 1 1 1</td>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>Green</td>
<td>0 0 0 0 0 0</td>
<td>1 1 1 1 1 1</td>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>Cyan</td>
<td>0 0 0 0 0 0</td>
<td>1 1 1 1 1 1</td>
<td>1 1 1 1 1 1</td>
<td>1 1 1 1 1 1</td>
</tr>
<tr>
<td>Blue</td>
<td>1 1 1 1 1 1</td>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>Yellow</td>
<td>1 1 1 1 1 1</td>
<td>1 1 1 1 1 1</td>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>White</td>
<td>1 1 1 1 1 1</td>
</tr>
<tr>
<td>RED</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>RED (01)</td>
<td>0 0 0 0 0 1</td>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>RED (62)</td>
<td>1 1 1 1 1 0</td>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>RED (63)</td>
<td>1 1 1 1 1 1</td>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>GREEN</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>GREEN (01)</td>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td>1 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>GREEN (62)</td>
<td>0 0 0 0 0 0</td>
<td>1 1 1 1 1 0</td>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>GREEN (63)</td>
<td>0 0 0 0 0 0</td>
<td>1 1 1 1 1 1</td>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>BLUE</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>BLUE (01)</td>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td>1 0 0 0 0 0</td>
</tr>
<tr>
<td>BLUE (62)</td>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td>1 1 1 1 1 0</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>BLUE (63)</td>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td>1 1 1 1 1 1</td>
<td>0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

Basic Color

White

Yellow
3-6. Power Sequence

Note:
1. Please avoid floating state of interface signal at invalid period.
2. When the interface signal is invalid, be sure to pull down the power supply for LCD VCC to 0V.
3. Lamp power must be turn on after power supply for LCD and interface signal are valid.

Table 8. POWER SEQUENCE TABLE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>T<sub>1</sub></td>
<td>0.5 - 10</td>
<td>(ms)</td>
</tr>
<tr>
<td>T<sub>2</sub></td>
<td>0 - 50</td>
<td>(ms)</td>
</tr>
<tr>
<td>T<sub>3</sub></td>
<td>200 -</td>
<td>(ms)</td>
</tr>
<tr>
<td>T<sub>4</sub></td>
<td>200 -</td>
<td>(ms)</td>
</tr>
<tr>
<td>T<sub>5</sub></td>
<td>0 - 50</td>
<td>(ms)</td>
</tr>
<tr>
<td>T<sub>6</sub></td>
<td>0 - 10</td>
<td>(ms)</td>
</tr>
<tr>
<td>T<sub>7</sub></td>
<td>400 -</td>
<td>(ms)</td>
</tr>
</tbody>
</table>
4. Optical Specification

Optical characteristics are determined after the unit has been ‘ON’ and stable for approximately 30 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of \(\phi \) and \(\psi \) equal to 0°.

FIG. 1 presents additional information concerning the measurement equipment and method.

FIG. 1 Optical Characteristic Measurement Equipment and Method

![Figure 1](image)

Table 9. OPTICAL CHARACTERISTICS

Ta=25°C, VCC=3.3V, \(f_v=60.9\, \text{Hz}, f_{\text{CLK}}=72.25\, \text{MHz}, I_{\text{out}}=6.5\, \text{mA} \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast Ratio</td>
<td>CR</td>
<td>300 - -</td>
<td>cd/m²</td>
<td>1</td>
</tr>
<tr>
<td>Surface Luminance, white</td>
<td>(L_{\text{WH}})</td>
<td>200 - -</td>
<td>cd/m²</td>
<td>2</td>
</tr>
<tr>
<td>Luminance Variation</td>
<td>(\delta_{\text{WHITE}})</td>
<td>- 1.8 2.0</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Response Time</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Color Coordinates</td>
<td></td>
<td></td>
<td></td>
<td>±0.03</td>
</tr>
<tr>
<td>RED</td>
<td>RX</td>
<td>0.567 0.597 0.627</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLUE</td>
<td>BX</td>
<td>0.129 0.159 0.189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHITE</td>
<td>WX</td>
<td>0.283 0.313 0.343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>View Angle</td>
<td>(\theta_r)</td>
<td>40 - -</td>
<td>degree</td>
<td>5</td>
</tr>
<tr>
<td>x axis, right ((\psi=0^\circ))</td>
<td>(\theta_l)</td>
<td>40 - -</td>
<td>degree</td>
<td></td>
</tr>
<tr>
<td>y axis, up ((\psi=90^\circ))</td>
<td>(\theta_d)</td>
<td>30 -</td>
<td>degree</td>
<td></td>
</tr>
<tr>
<td>y axis, down ((\psi=270^\circ))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Note)

1. Contrast Ratio(CR) is defined mathematically as

\[
\text{Contrast Ratio} = \frac{\text{Surface Luminance with all white pixels}}{\text{Surface Luminance with all black pixels}}
\]

2. Surface luminance is the 5point (1~5)average across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 2. When \(I_{BL} = 6.5\text{mA} \), \(L_{WH} = 200\text{cd/m}^2 \) (min.)

3. Luminance % uniformity is measured for 13 point. For more information see FIG 2.

\[
\delta \text{ WHITE} = \frac{\text{Maximum}(LN1, LN2, \ldots, LN13)}{\text{Minimum}(LN1, LN2, \ldots, LN13)}
\]

4. Response time is the time required for the display to transition from white to black (rise time, \(T_{R} \)) and from black to white (Decay Time, \(T_{D} \)). For additional information see FIG 3.

5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.

6. Gray scale specification

* \(f_{V} = 60\text{Hz} \)

<table>
<thead>
<tr>
<th>Gray Level</th>
<th>Luminance [%] (Typ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0</td>
<td>0.1</td>
</tr>
<tr>
<td>L7</td>
<td>1.66</td>
</tr>
<tr>
<td>L15</td>
<td>6.16</td>
</tr>
<tr>
<td>L23</td>
<td>13.2</td>
</tr>
<tr>
<td>L31</td>
<td>22.3</td>
</tr>
<tr>
<td>L39</td>
<td>35.6</td>
</tr>
<tr>
<td>L47</td>
<td>53.1</td>
</tr>
<tr>
<td>L55</td>
<td>74.4</td>
</tr>
<tr>
<td>L63</td>
<td>100</td>
</tr>
</tbody>
</table>
FIG. 2 Luminance

<measuring point for surface luminance & measuring point for luminance variation>

FIG. 3 Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for “black” and “white”.

Optical Response

% 100 90 TrR TrD

white black white
FIG. 4 Viewing angle

<Dimension of viewing angle range>

\[\phi = 180^\circ, \text{Left} \]
\[\phi = 270^\circ, \text{Down} \]
\[\phi = 0^\circ, \text{Right} \]
\[\phi = 90^\circ, \text{Up} \]
5. Mechanical Characteristics

The contents provide general mechanical characteristics for the model LP154W01(TLF2). In addition, the figures in the next page are detailed mechanical drawing of the LCD.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outline Dimension</td>
<td></td>
</tr>
<tr>
<td>Horizontal</td>
<td>344.0 ± 0.5mm</td>
</tr>
<tr>
<td>Vertical</td>
<td>222.0 ± 0.5mm</td>
</tr>
<tr>
<td>Depth</td>
<td>6.2 ± 0.3mm</td>
</tr>
<tr>
<td>Bezel Area</td>
<td></td>
</tr>
<tr>
<td>Horizontal</td>
<td>335.0 ± 0.5mm</td>
</tr>
<tr>
<td>Vertical</td>
<td>210.7 ± 0.5mm</td>
</tr>
<tr>
<td>Active Display Area</td>
<td></td>
</tr>
<tr>
<td>Horizontal</td>
<td>331.2 mm</td>
</tr>
<tr>
<td>Vertical</td>
<td>207.0 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>550g (Typ), 565(Max) w/o inverter</td>
</tr>
<tr>
<td>Surface Treatment</td>
<td>Glare(2H)</td>
</tr>
</tbody>
</table>
<REAR VIEW>

Note) Unit:[mm], General tolerance: ± 0.5mm

<table>
<thead>
<tr>
<th>Classification</th>
<th>SSI</th>
<th>PT</th>
<th>ST</th>
<th>QT</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Change</td>
<td>X00</td>
<td>X10</td>
<td>X20</td>
<td>A00</td>
</tr>
<tr>
<td>1st Revision</td>
<td>X01</td>
<td>X11</td>
<td>X21</td>
<td>A01</td>
</tr>
<tr>
<td>2nd Revision</td>
<td>X02</td>
<td>X12</td>
<td>X22</td>
<td>A02</td>
</tr>
<tr>
<td>3rd Revision</td>
<td>X03</td>
<td>X13</td>
<td>X23</td>
<td>A03</td>
</tr>
</tbody>
</table>

*PPID Label revision:
It is subject to change with Dell event. Please refer to the below table for detail.
SECTION H1-H1

- *SCREW (8EA) TORQUE : 2.5kgf.cm max*
- *Screw Hole Depth : 2.5mm min*
- *Screw Length : max 2.5, min 2.0*

Note) Unit: [mm], General tolerance: ± 0.5mm
6. Reliability

Environment test condition

<table>
<thead>
<tr>
<th>No.</th>
<th>Test Item</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High temperature storage test</td>
<td>$T_a = 60^\circ C$, 240h</td>
</tr>
<tr>
<td>2</td>
<td>Low temperature storage test</td>
<td>$T_a = -20^\circ C$, 240h</td>
</tr>
<tr>
<td>3</td>
<td>High temperature operation test</td>
<td>$T_a = 50^\circ C$, 50%RH, 240h</td>
</tr>
<tr>
<td>4</td>
<td>Low temperature operation test</td>
<td>$T_a = 0^\circ C$, 240h</td>
</tr>
<tr>
<td>5</td>
<td>Vibration test (non-operating)</td>
<td>Sine wave, 5 ~ 150Hz, 1.5G, 0.37oct/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 axis, 30min/axis</td>
</tr>
</tbody>
</table>
| 6 | Shock test (non-operating) | - No functional or cosmetic defects following a shock to all 6 sides delivering at least 180 G in a half sine pulse no longer than 2 ms to the display module
| | | - No functional defects following a shock delivering at least 200 g in a half sine pulse no longer than 2 ms to each of 6 sides. Each of the 6 sides will be shock tested with one each display, for a total of 6 displays |
| 7 | Altitude | operating |
| | | storage / shipment |
| | | 0 ~ 10,000 feet (3,048m) 24Hr |
| | | 0 ~ 40,000 feet (12,192m) 24Hr |

{ Result Evaluation Criteria }
There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.
7. International Standards

7-1. Safety

7-2. EMC

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

A,B,C : SIZE(INCH) D : YEAR
E : MONTH F ~ M : SERIAL NO.

Note

1. YEAR

<table>
<thead>
<tr>
<th>Year</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

2. MONTH

<table>
<thead>
<tr>
<th>Month</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.
9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

(1) You must mount a module using holes arranged in four corners or four sides.
(2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
(3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to resist external force.
(4) You should adopt radiation structure to satisfy the temperature specification.
(5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
(6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
(7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
(8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
(9) Do not open the case because inside circuits do not have sufficient strength.

9-2. OPERATING PRECAUTIONS

(1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage:
 \[V = \pm 200\text{mV} \] (Over and under shoot voltage)

(2) Response time depends on the temperature. (In lower temperature, it becomes longer.)
(3) Brightness depends on the temperature. (In lower temperature, it becomes lower.)
 And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer.
(4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
(5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
(6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
9-3. ELECTROSTATIC DISCHARGE CONTROL
Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don’t touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE
Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE
When storing modules as spares for a long time, the following precautions are necessary.

(1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
(2) The polarizer surface should not come in contact with any other object.
 It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM
(1) When the protection film is peeled off, static electricity is generated between the film and polarizer.
 This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
(2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.
 Please carefully peel off the protection film without rubbing it against the polarizer.
(3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
(4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.
APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 1/3

LP154W01–TLF2 E–EDID DATA (ver0.0) 2006–09–19

<table>
<thead>
<tr>
<th>Byte#</th>
<th>Byte# (decimal)</th>
<th>Field Name and Comments</th>
<th>Value (HEX)</th>
<th>Value (Binary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>Header</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>Header</td>
<td>F F</td>
<td>1111 1111</td>
</tr>
<tr>
<td>2</td>
<td>02</td>
<td>Header</td>
<td>F F</td>
<td>1111 1111</td>
</tr>
<tr>
<td>3</td>
<td>03</td>
<td>Header</td>
<td>F F</td>
<td>1111 1111</td>
</tr>
<tr>
<td>4</td>
<td>04</td>
<td>Header</td>
<td>F F</td>
<td>1111 1111</td>
</tr>
<tr>
<td>5</td>
<td>05</td>
<td>Header</td>
<td>F F</td>
<td>1111 1111</td>
</tr>
<tr>
<td>6</td>
<td>06</td>
<td>Header</td>
<td>F F</td>
<td>1111 1111</td>
</tr>
<tr>
<td>7</td>
<td>07</td>
<td>Header</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>8</td>
<td>08</td>
<td>EISA manufacturer code3 Character ID = LPL</td>
<td>3 2 1</td>
<td>0011 0010</td>
</tr>
<tr>
<td>9</td>
<td>09</td>
<td>EISA manufacturer code (Compressed ASCII)</td>
<td>0 C</td>
<td>0000 1100</td>
</tr>
<tr>
<td>10</td>
<td>0A</td>
<td>Panel Supplier Reserved – Product code</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>11</td>
<td>0B</td>
<td>Panel Supplier Reserved – Product code</td>
<td>C C</td>
<td>1100 1100</td>
</tr>
<tr>
<td>12</td>
<td>0C</td>
<td>LCD Module Serial No. = 0 (if not used)</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>13</td>
<td>0D</td>
<td>LCD Module Serial No. = 0 (if not used)</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>14</td>
<td>0E</td>
<td>LCD Module Serial No. = 0 (if not used)</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>15</td>
<td>0F</td>
<td>LCD Module Serial No. = 0 (if not used)</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>Week of Manufacture = 00</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td>Year of Manufacture = 2006</td>
<td>1 0</td>
<td>0001 0000</td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td>EDID Structure version # = 1</td>
<td>0 1</td>
<td>0000 0001</td>
</tr>
<tr>
<td>19</td>
<td>13</td>
<td>EDID Revision # = 3</td>
<td>0 3</td>
<td>0000 0011</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>Video Input Definition = Digital I/P: non TMDS, CRGB</td>
<td>8 0</td>
<td>1000 0000</td>
</tr>
<tr>
<td>21</td>
<td>15</td>
<td>Max H image size (cm) = 33.12 cm (330)</td>
<td>2 1</td>
<td>0010 0001</td>
</tr>
<tr>
<td>22</td>
<td>16</td>
<td>Max V image size (cm) = 20.70 cm (21)</td>
<td>1 5</td>
<td>0001 0101</td>
</tr>
<tr>
<td>23</td>
<td>17</td>
<td>Display gamma >2.2</td>
<td>7 8</td>
<td>0111 1000</td>
</tr>
<tr>
<td>24</td>
<td>18</td>
<td>Feature support (DPMS) = Active off, RGB Color</td>
<td>0 A</td>
<td>0000 1010</td>
</tr>
<tr>
<td>25</td>
<td>19</td>
<td>Red/Green low bits</td>
<td>0 F</td>
<td>0000 1111</td>
</tr>
<tr>
<td>26</td>
<td>1A</td>
<td>Blue/White Low Bits</td>
<td>1 0</td>
<td>0001 0000</td>
</tr>
<tr>
<td>27</td>
<td>1B</td>
<td>Red X = 0.990</td>
<td>9 7</td>
<td>0101 0111</td>
</tr>
<tr>
<td>28</td>
<td>1C</td>
<td>Red Y = 0.344</td>
<td>5 8</td>
<td>0101 1000</td>
</tr>
<tr>
<td>29</td>
<td>1D</td>
<td>Green X = 0.334</td>
<td>5 2</td>
<td>0101 0010</td>
</tr>
<tr>
<td>30</td>
<td>1E</td>
<td>Green Y = 0.536</td>
<td>8 8</td>
<td>1000 1000</td>
</tr>
<tr>
<td>31</td>
<td>1F</td>
<td>Blue X = 0.157</td>
<td>2 8</td>
<td>0010 1000</td>
</tr>
<tr>
<td>32</td>
<td>20</td>
<td>Blue Y = 0.135</td>
<td>2 3</td>
<td>0010 0011</td>
</tr>
<tr>
<td>33</td>
<td>21</td>
<td>White X = 0.313</td>
<td>5 0</td>
<td>0101 0000</td>
</tr>
<tr>
<td>34</td>
<td>22</td>
<td>White Y = 0.329</td>
<td>5 4</td>
<td>0101 0100</td>
</tr>
<tr>
<td>35</td>
<td>23</td>
<td>Established timings 1 (00h if not used)</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>36</td>
<td>24</td>
<td>Established timings 2 (00h if not used)</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>37</td>
<td>25</td>
<td>Manufacturer’s timings (00h if not used)</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>38</td>
<td>26</td>
<td>Standard Timing Identification 1 was not used</td>
<td>0 1</td>
<td>0000 0001</td>
</tr>
<tr>
<td>39</td>
<td>27</td>
<td>Standard Timing Identification 1 was not used</td>
<td>0 1</td>
<td>0000 0001</td>
</tr>
<tr>
<td>40</td>
<td>28</td>
<td>Standard Timing Identification 2 was not used</td>
<td>0 1</td>
<td>0000 0001</td>
</tr>
<tr>
<td>41</td>
<td>29</td>
<td>Standard Timing Identification 2 was not used</td>
<td>0 1</td>
<td>0000 0001</td>
</tr>
<tr>
<td>42</td>
<td>2A</td>
<td>Standard Timing Identification 3 was not used</td>
<td>0 1</td>
<td>0000 0001</td>
</tr>
<tr>
<td>43</td>
<td>2B</td>
<td>Standard Timing Identification 3 was not used</td>
<td>0 1</td>
<td>0000 0001</td>
</tr>
<tr>
<td>44</td>
<td>2C</td>
<td>Standard Timing Identification 4 was not used</td>
<td>0 1</td>
<td>0000 0001</td>
</tr>
<tr>
<td>45</td>
<td>2D</td>
<td>Standard Timing Identification 4 was not used</td>
<td>0 1</td>
<td>0000 0001</td>
</tr>
<tr>
<td>46</td>
<td>2E</td>
<td>Standard Timing Identification 5 was not used</td>
<td>0 1</td>
<td>0000 0001</td>
</tr>
<tr>
<td>47</td>
<td>2F</td>
<td>Standard Timing Identification 5 was not used</td>
<td>0 1</td>
<td>0000 0001</td>
</tr>
<tr>
<td>48</td>
<td>30</td>
<td>Standard Timing Identification 6 was not used</td>
<td>0 1</td>
<td>0000 0001</td>
</tr>
<tr>
<td>49</td>
<td>31</td>
<td>Standard Timing Identification 6 was not used</td>
<td>0 1</td>
<td>0000 0001</td>
</tr>
<tr>
<td>50</td>
<td>32</td>
<td>Standard Timing Identification 7 was not used</td>
<td>0 1</td>
<td>0000 0001</td>
</tr>
<tr>
<td>51</td>
<td>33</td>
<td>Standard Timing Identification 7 was not used</td>
<td>0 1</td>
<td>0000 0001</td>
</tr>
<tr>
<td>52</td>
<td>34</td>
<td>Standard Timing Identification 8 was not used</td>
<td>0 1</td>
<td>0000 0001</td>
</tr>
<tr>
<td>53</td>
<td>35</td>
<td>Standard Timing Identification 8 was not used</td>
<td>0 1</td>
<td>0000 0001</td>
</tr>
</tbody>
</table>

Ver. 0.0 Jan, 26, 2007

25 / 27
APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 2/3

<table>
<thead>
<tr>
<th>Byte# (decimal)</th>
<th>Byte# (HEX)</th>
<th>Field Name and Comments</th>
<th>Value (HEX)</th>
<th>Value (binary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>3C</td>
<td>Pixel Clock/10,000 (LSB)</td>
<td>3 0</td>
<td>0011 0001</td>
</tr>
<tr>
<td>55</td>
<td>37</td>
<td>Pixel Clock/10,000 (MSB) / 1280 x 800 @60Hz, pixel clock = 7</td>
<td>1 C</td>
<td>0001 1100</td>
</tr>
<tr>
<td>56</td>
<td>3B</td>
<td>Horizontal Active = 1280 pixels</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>57</td>
<td>3D</td>
<td>Horizontal Blanking = 160 pixels</td>
<td>A 0</td>
<td>1010 0000</td>
</tr>
<tr>
<td>58</td>
<td>3A</td>
<td>Horizontal Active : Horizontal Blanking = 1280 : 160</td>
<td>5 0</td>
<td>0101 0000</td>
</tr>
<tr>
<td>59</td>
<td>3B</td>
<td>Vertical Active = 800 lines</td>
<td>2 0</td>
<td>0010 0000</td>
</tr>
<tr>
<td>60</td>
<td>3C</td>
<td>Vertical Blanking = 23 lines</td>
<td>1 7</td>
<td>0001 0111</td>
</tr>
<tr>
<td>61</td>
<td>3D</td>
<td>Vertical Active : Vertical Blanking = 800 : 23</td>
<td>3 0</td>
<td>0011 0000</td>
</tr>
<tr>
<td>62</td>
<td>3E</td>
<td>Horizontal Sync, Offset = 48 pixels</td>
<td>3 0</td>
<td>0011 0000</td>
</tr>
<tr>
<td>63</td>
<td>3F</td>
<td>Horizontal Sync Pulse Width = 32 pixels</td>
<td>2 0</td>
<td>0010 0000</td>
</tr>
<tr>
<td>64</td>
<td>40</td>
<td>Vertical Sync Offset = 2 lines : Sync Width = 6 lines</td>
<td>2 6</td>
<td>0110 0010</td>
</tr>
<tr>
<td>65</td>
<td>41</td>
<td>Horizontal Vertical Sync Offset/Width upper 2bits = 0</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>66</td>
<td>42</td>
<td>Horizontal Image Size = 331.2mm</td>
<td>4 B</td>
<td>0100 1011</td>
</tr>
<tr>
<td>67</td>
<td>43</td>
<td>Vertical Image Size = 207.0mm</td>
<td>C F</td>
<td>1100 1111</td>
</tr>
<tr>
<td>68</td>
<td>44</td>
<td>Horizontal & Vertical Image Size</td>
<td>1 0</td>
<td>0001 0000</td>
</tr>
<tr>
<td>69</td>
<td>45</td>
<td>Horizontal Border = 0</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>70</td>
<td>46</td>
<td>Vertical Border = 0</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>71</td>
<td>47</td>
<td>Non-interlaced, Normal display, no stereo, Digital separate sync, H/V pol neg</td>
<td>1 9</td>
<td>0001 1011</td>
</tr>
<tr>
<td>72</td>
<td>48</td>
<td>Pixel Clock/10,000 (LSB)</td>
<td>3 9</td>
<td>0011 1001</td>
</tr>
<tr>
<td>73</td>
<td>49</td>
<td>Pixel Clock/10,000 (MSB) / 1280 x 800 @60Hz, pixel clock = 7</td>
<td>1 C</td>
<td>0001 1100</td>
</tr>
<tr>
<td>74</td>
<td>4A</td>
<td>Horizontal Active = 1280 pixels</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>75</td>
<td>4B</td>
<td>Horizontal Blanking = 160 pixels</td>
<td>A 0</td>
<td>1010 0000</td>
</tr>
<tr>
<td>76</td>
<td>4C</td>
<td>Horizontal Active : Horizontal Blanking = 1280 : 160</td>
<td>5 0</td>
<td>0101 0000</td>
</tr>
<tr>
<td>77</td>
<td>4D</td>
<td>Vertical Active = 800 lines</td>
<td>2 0</td>
<td>0010 0000</td>
</tr>
<tr>
<td>78</td>
<td>4E</td>
<td>Vertical Blanking = 23 lines</td>
<td>1 7</td>
<td>0001 0111</td>
</tr>
<tr>
<td>79</td>
<td>4F</td>
<td>Vertical Active : Vertical Blanking = 800 : 23</td>
<td>3 0</td>
<td>0011 0000</td>
</tr>
<tr>
<td>80</td>
<td>50</td>
<td>Horizontal Sync, Offset = 48 pixels</td>
<td>3 0</td>
<td>0011 0000</td>
</tr>
<tr>
<td>81</td>
<td>51</td>
<td>Horizontal Sync Pulse Width = 32 pixels</td>
<td>2 0</td>
<td>0010 0000</td>
</tr>
<tr>
<td>82</td>
<td>52</td>
<td>Vertical Sync Offset = 2 lines : Sync Width = 6 lines</td>
<td>2 6</td>
<td>0110 0010</td>
</tr>
<tr>
<td>83</td>
<td>53</td>
<td>Horizontal Vertical Sync Offset/Width upper 2bits = 0</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>84</td>
<td>54</td>
<td>Horizontal Image Size = 331.2mm</td>
<td>4 B</td>
<td>0100 1011</td>
</tr>
<tr>
<td>85</td>
<td>55</td>
<td>Vertical Image Size = 207.0mm</td>
<td>C F</td>
<td>1100 1111</td>
</tr>
<tr>
<td>86</td>
<td>56</td>
<td>Horizontal & Vertical Image Size</td>
<td>1 0</td>
<td>0001 0000</td>
</tr>
<tr>
<td>87</td>
<td>57</td>
<td>Horizontal Border = 0</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>88</td>
<td>58</td>
<td>Vertical Border = 0</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>89</td>
<td>59</td>
<td>Module ‘A’ Revision = 00</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>90</td>
<td>5A</td>
<td>Flag</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>91</td>
<td>5B</td>
<td>Flag</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>92</td>
<td>5C</td>
<td>Flag</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>93</td>
<td>5D</td>
<td>Dummy Descriptor</td>
<td>F E</td>
<td>1111 1110</td>
</tr>
<tr>
<td>94</td>
<td>5E</td>
<td>Flag</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>95</td>
<td>5F</td>
<td>Dell P/N 1st Character = X</td>
<td>5 8</td>
<td>0101 1000</td>
</tr>
<tr>
<td>96</td>
<td>60</td>
<td>Dell P/N 2nd Character = U</td>
<td>5 5</td>
<td>0101 0101</td>
</tr>
<tr>
<td>97</td>
<td>61</td>
<td>Dell P/N 3rd Character = 2</td>
<td>3 2</td>
<td>0011 0010</td>
</tr>
<tr>
<td>98</td>
<td>62</td>
<td>Dell P/N 4th Character = 3</td>
<td>3 3</td>
<td>0011 0011</td>
</tr>
<tr>
<td>99</td>
<td>63</td>
<td>Dell P/N 5th Character = 5</td>
<td>3 5</td>
<td>0011 0101</td>
</tr>
<tr>
<td>100</td>
<td>64</td>
<td>LCD Supplier EEDID Revision # = 0</td>
<td>0 0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>101</td>
<td>65</td>
<td>Manufacturer P/N = 1</td>
<td>3 1</td>
<td>0011 0001</td>
</tr>
<tr>
<td>102</td>
<td>66</td>
<td>Manufacturer P/N = 5</td>
<td>3 5</td>
<td>0011 0101</td>
</tr>
<tr>
<td>103</td>
<td>67</td>
<td>Manufacturer P/N = 4</td>
<td>3 4</td>
<td>0011 0100</td>
</tr>
<tr>
<td>104</td>
<td>68</td>
<td>Manufacturer P/N = W</td>
<td>5 7</td>
<td>0101 0010</td>
</tr>
<tr>
<td>105</td>
<td>69</td>
<td>Manufacturer P/N = 0</td>
<td>3 0</td>
<td>0011 0000</td>
</tr>
<tr>
<td>106</td>
<td>6A</td>
<td>Manufacturer P/N = 1</td>
<td>3 1</td>
<td>0011 0001</td>
</tr>
<tr>
<td>107</td>
<td>6B</td>
<td>P/N if <13 char, then terminate with ASCII code 0Ah, set remr</td>
<td>0 A</td>
<td>0000 1010</td>
</tr>
</tbody>
</table>
APPENDIX A. Enhanced Extended Display Identification Data (EEDID™)

<table>
<thead>
<tr>
<th>Byte# (decimal)</th>
<th>Byte# (HEX)</th>
<th>Field Name and Comments</th>
<th>Value (HEX)</th>
<th>Value (binary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>6C</td>
<td>Flag</td>
<td>0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>109</td>
<td>6D</td>
<td>Flag</td>
<td>0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>110</td>
<td>6E</td>
<td>Flag</td>
<td>0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>111</td>
<td>6F</td>
<td>Data Type Tag: ASCII String</td>
<td>F E</td>
<td>1111 1110</td>
</tr>
<tr>
<td>112</td>
<td>70</td>
<td>Flag</td>
<td>0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>113</td>
<td>71</td>
<td>SMBUS Value = 10 nits</td>
<td>0</td>
<td>0001 1111</td>
</tr>
<tr>
<td>114</td>
<td>72</td>
<td>SMBUS Value = 17 nits</td>
<td>2</td>
<td>0010 1101</td>
</tr>
<tr>
<td>115</td>
<td>73</td>
<td>SMBUS Value = 24 nits</td>
<td>3</td>
<td>0011 1010</td>
</tr>
<tr>
<td>116</td>
<td>74</td>
<td>SMBUS Value = 30 nits</td>
<td>4</td>
<td>0100 0101</td>
</tr>
<tr>
<td>117</td>
<td>75</td>
<td>SMBUS Value = 60 nits</td>
<td>6</td>
<td>0110 0101</td>
</tr>
<tr>
<td>118</td>
<td>76</td>
<td>SMBUS Value = 110 nits</td>
<td>8</td>
<td>1000 1100</td>
</tr>
<tr>
<td>119</td>
<td>77</td>
<td>SMBUS Value = 150 nits</td>
<td>A</td>
<td>1010 1011</td>
</tr>
<tr>
<td>120</td>
<td>7B</td>
<td>SMBUS Value = Max (Typically = FFh)</td>
<td>F</td>
<td>1111 1111</td>
</tr>
<tr>
<td>121</td>
<td>79</td>
<td>Number of LVDS receiver chips = 1 or 2</td>
<td>0 1</td>
<td>0000 0001</td>
</tr>
<tr>
<td>122</td>
<td>7A</td>
<td>BIST Enable: Yes = '01', No = '00'</td>
<td>0 1</td>
<td>0000 0001</td>
</tr>
<tr>
<td>123</td>
<td>7B</td>
<td>char, then terminate with ASCII code 0Ah, set remaining char</td>
<td>0 A</td>
<td>0000 1010</td>
</tr>
<tr>
<td>124</td>
<td>7C</td>
<td>(If<13 char, then terminate with ASCII code 0Ah)</td>
<td>2 0</td>
<td>0010 0000</td>
</tr>
<tr>
<td>125</td>
<td>7D</td>
<td>(If<13 char, then terminate with ASCII code 0Ah)</td>
<td>2 0</td>
<td>0010 0000</td>
</tr>
<tr>
<td>126</td>
<td>7E</td>
<td>Extension flag = 00</td>
<td>0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>127</td>
<td>7F</td>
<td>Checksum</td>
<td>C</td>
<td>1100 0111</td>
</tr>
</tbody>
</table>

Detailed Timing Description #4

- **Extension Flag**: 00
- **Checksum**: 1100 0111