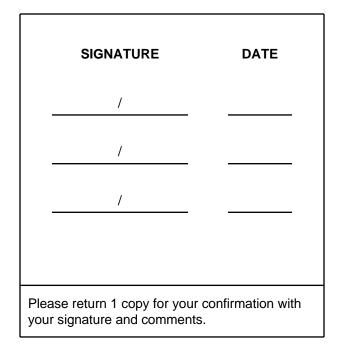
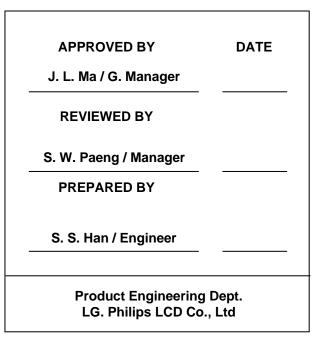


SPECIFICATION FOR APPROVAL

- () Preliminary Specification
- (•) Final Specification


Title


15.4" WXGA+ TFT LCD

BUYER	Dell
MODEL	-

SUPPLIER	LG.Philips LCD Co., Ltd.
*MODEL	LP154WP2
Suffix	TLC2

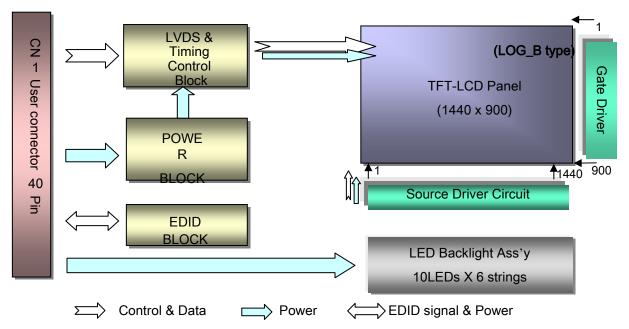
*When you obtain standard approval, please use the above model name without suffix

Contents

No	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	
3-1	ELECTRICAL CHARACTREISTICS	6
3-2	INTERFACE CONNECTIONS	7
3-3	LVDS SIGNAL TIMING SPECIFICATIONS	9
3-4	SIGNAL TIMING SPECIFICATIONS	12
3-5	SIGNAL TIMING WAVEFORMS	12
3-6	COLOR INPUT DATA REFERNECE	13
3-7	POWER SEQUENCE	14
4	OPTICAL SFECIFICATIONS	15
5	MECHANICAL CHARACTERISTICS	22
6	RELIABLITY	26
7	INTERNATIONAL STANDARDS	
7-1	SAFETY	27
7-2	EMC	27
8	PACKING	
8-1	DESIGNATION OF LOT MARK	28
8-2	PACKING FORM	28
9	PRECAUTIONS	29
A	APPENDIX A. Enhanced Extended Display Identification Data	31

RECORD OF REVISIONS

Revision No	Revision Date	Page	Description	EDID ver
0.0	14. Nov. 2007.	-	First Draft	-
0.1	26. Feb. 2008.	17~19	Add Mechanical drawing, update label information	-
0.2	3. Mar. 2008.	18~19	Change label information & Size	-
0.3	31. Mar. 2008.	4, 6	Update the Power Consumption	0.4
		9~11	Add the LVDS signal timing spec.	0.4
		12, 14	Update the signal timing spec. and Power sequence	0.4
		15, 16	Update the optical spec. and gamma scale spec.	0.4
		19~21	Add the appendix – LPL proposal for system cover design	0.4
		31~33	Add the EDID Data (Check sum : F1)	0.4
		[
		• • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	



1. General Description

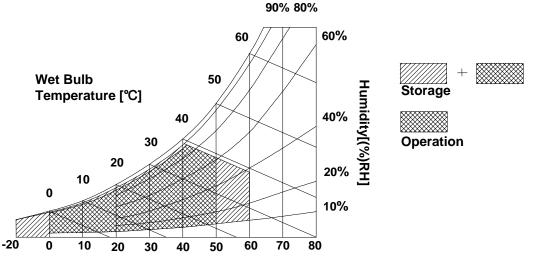
The LP154WP2 is a Color Active Matrix Liquid Crystal Display with an integral LED backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 15.4 inches diagonally measured active display area with WXGA resolution(1440 horizontal by 900 vertical pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors.

The LP154WP2 has been designed to apply the interface method that enables low power, high speed, low EMI.

The LP154WP2 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP154WP2 characteristics provide an excellent flat display for office automation products such as Notebook PC.

General Features

Active Screen Size	15.4 inches diagonal
Outline Dimension	344.0 (H, typ.) × 222.0 (V, typ.) × 6.1(D, max.) mm
Pixel Pitch	0.2301 mm × 0.2301 mm
Pixel Format	1440 horiz. by 900 vert. Pixels RGB strip arrangement
Color Depth	6-bit, 262,144 colors
Luminance, White	300 cd/m²(Typ.) , 5 point
Power Consumption	Total 4.6 Watt(Typ.) @ LCM circuit 1.0Watt(Typ.), B/L 3.6Watt(Typ.)
Weight	460g (Max.)
Display Operating Mode	Transmissive mode, normally white
Surface Treatment	Hard coating(3H) Glare treatment of the front Polarizer


2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Parameter	Symbol	Val	ues	Units	Notes	
Falametei	Symbol	Min	Min Max		NOLES	
Power Input Voltage	VCC	-0.3	4.0	Vdc	at 25 \pm 5°C	
Operating Temperature	Тор	0	50	°C	1	
Storage Temperature	Нѕт	-20	60	°C	1	
Operating Ambient Humidity	Нор	10	90	%RH	1	
Storage Humidity	Нѕт	10	90	%RH	1	

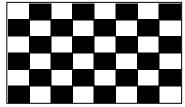
Table 1. ABSOLUTE MAXIMUM RATINGS

Note : 1. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39°C Max, and no condensation of water.

Dry Bulb Temperature [°C]

3. Electrical Specifications

3-1. Electrical Characteristics


The LP154WP2 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the LED BL, is typically generated by an LED array.

Devenueter	Quarter al		Linit	Natas			
Parameter	Symbol	Min	Тур	Max	Unit	Notes	
MODULE :							
Power Supply Input Voltage	VCC	3.0	3.3	3.6	V _{DC}	3	
Power Supply Input Current	I _{cc}	255	300	345	mA	1	
Power Consumption	Pc	-	0.99	1.14	Watt	1	
Differential Impedance	Zm	90	100	110	Ohm	2	
LED BL:							
Operating Current per String	I _{LED}	5.0	19.0	20.0	mA	4	
Power Consumption	P _{LED}		3.60	3.90	Watt	5	
Life Time		10,000	-	-	Hrs	6	

Table 2. ELECTRICAL CHARACTERISTICS

Note)

1. The specified current and power consumption are under the Vcc = 3.3V , 25°C, fv = 60Hz condition whereas Mosaic pattern is displayed and fv is the frame frequency.

- 2. This impedance value is needed to proper display and measured form LVDS Tx to the mating connector.
- 3. The variance of the voltage is \pm 10%.
- 4. The typical operating current is for the typical surface luminance (L_{WH}) in optical characteristics. I_{LED} is the current of each LEDs' string, LED backlight has 6 strings on it.
- 5. The LED power consumption shown above does not include power of external LED driver circuit for typical current condition.
- 6. The life time is determined as the time at which brightness of LED is 50% compare to that of minimum value specified in table 7.

3-2. Interface Connections

This LCD employs two interface connections, a 50 pin connector is used for the module electronics interface and the other connector is used for the integral backlight system.

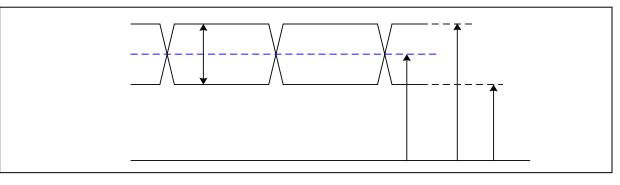
The electronics interface connector is a model FI-VHP50S-A-HF11manufactured by JAE.

Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1)

Pin	Signal	Description
1	Test Loop	Test Loop (only to pin 30)
2	VEEDID	EDID 3.3V power
3	VSS	Ground (Panel logic, BL logic)
4	CLK EEDID	EDID clock
5	DATA EEDID	EDID data
6	VSS	Ground (Panel logic, BL logic)
7	Odd_Rin0-	- LVDS differential data input (R0-R5, G0)
8	Odd_Rin0+	+ LVDS differential data input (R0-R5, G0)
9	VSS1	Ground – Shield LVDS Ch1
10	Odd_Rin1-	- LVDS differential data input (G1-G5, B0-B1) (odd pixels)
11	Odd_Rin1+	+ LVDS differential data input (G1-G5, B0-B1) (odd pixels)
12	VSS2	Ground – Shield LVDS Ch2
13	Odd_Rin2-	- LVDS differential data input (B2-B5, HS, VS, DE) (odd pixels)
14	Odd_Rin2+	+ LVDS differential data input (B2-B5, HS, VS, DE) (odd pixels)
15	VSS3	Ground – Shield LVDS Ch3
16	Odd_ClkIN-	- LVDS differential clock input (odd pixels)
17	Odd_ClkIN+	+ LVDS differential clock input (odd pixels)
18	VSS4	Ground – Shield LVDS Ch4
19	Even_Rin0-	- LVDS differential data input (R0-R5, G0) (even pixels)
20	Even_Rin0+	+ LVDS differential data input (R0-R5, G0) (even pixels)
21	VSS5	Ground – Shield LVDS Ch5
22	Even_Rin1-	- LVDS differential data input (G1-G5, B0-B1) (even pixels)
23	Even_Rin1+	+ LVDS differential data input (G1-G5, B0-B1) (even pixels)
24	VSS6	Ground – Shield LVDS Ch6
25	Even_Rin2-	- LVDS differential data input (B2-B5, HS, VS, DE) (even pixels)
26	Even_Rin2+	+ LVDS differential data input (B2-B5, HS, VS, DE) (even pixels)
27	VSS7	Ground – Shield LVDS Ch7
28	Even_ClkIN-	- LVDS differential clock input (even pixels)
29	Even_ClkIN+	+ LVDS differential clock input (even pixels)
30	Test Loop	Test Loop (only to pin 1)

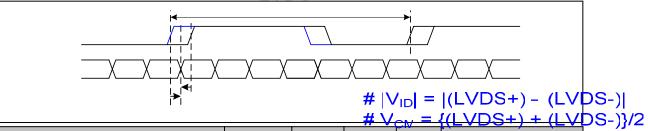
Pin No. 31~50

Pin	Signal	Description
31	CONNTEST	connector test (this pin is connected to pin 20 only) See note 1.
32	VDD	Logic Power 3.3V (Panal logic, BL logic)
33	VDD	Logic Power 3.3V (Panal logic, BL logic)
34	TEST (BIST EN)	Panel Self Test
35	+5V_ALW	SMBUS 5V power
36	VSS	Ground (Panal logic, BL logic)
37	VSS	Ground (Panal logic, BL logic)
38	PWM_BL	PWM brightness control
39	VBL_	Ground (LED logic)
40	VBL	Ground (LED logic)
41	VBL	Ground (LED logic)
42	VBL	Ground (LED logic)
43	NC	no connect
44	VBL+	7V ~ 20V LED power
45	VBL+	7V ~ 20V LED power
46	VBL+	7V ~ 20V LED power
47	VBL+	7V ~ 20V LED power
48	SMB_DATA	SMBus Data
49	SMB_CLK	SMBus Clock
50	CONNTEST	connector test (this pin is connected to pin 1 only) See note 1.


Connector Typ

JAE, FI-VHP50S-A-HF11 (50pin)

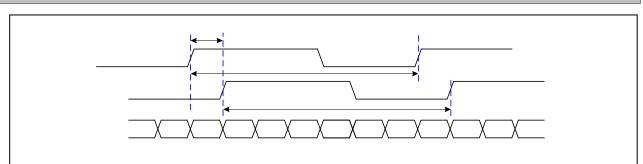
3-3. LVDS Signal Timing Specifications


3-3-1. DC Specification

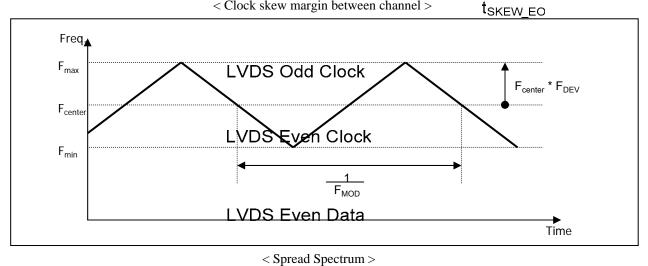
Description	Symb ol	Min	Max	Unit	Notes
LVDS Differential Voltage		D_{5}^{100}	600	mV	-
LVDS Common mode Voltage	V _{CM}	0.6	1.8	V	-
LVDS Input Voltage Range	V _{IN}	0.3	2.1	V	

3-3-2. AC Specification

LVDS +

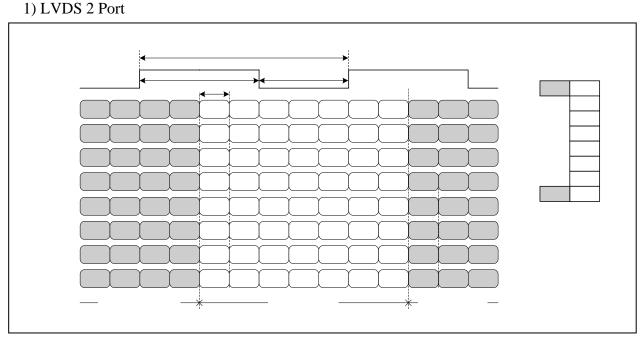


			<u># V</u>		<u> </u>
Description	Symbol	ov ^{Min}	Max	Unit	Notes
LVDS Clock to Data Skew Margin	t _{SKEW}	- 400	+ 400	ps	85MHz > Fclk ≥ 65MHz
	t _{SKEW}	- 600	+ 600	ps	65MHz > Fclk ≥ 25MHz
LVDS Clock to Clock Skew Margin (Even to Odd)	t _{SKEW_EO}	- 1/7	+ 1/7	T _{clk}	-
Maximum deviation of input clock frequency during SSC	F _{DEV}	-	± 3	%	-
Maximum modulation frequency of input clock during SSC	F _{MOD}	-	200	KHz	-



 $\mathsf{T}_{\mathsf{clk}}$

Product Specification



< Clock skew margin between channel >

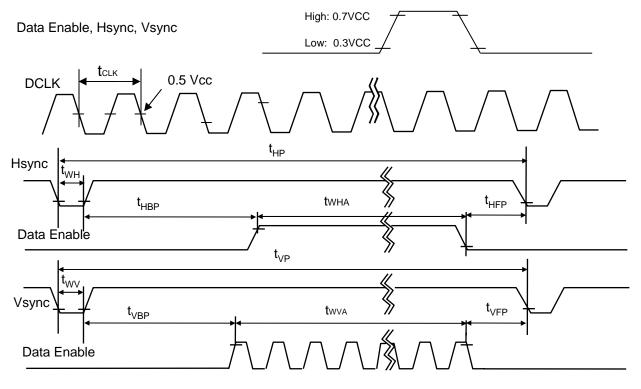
3-3-3. Data Format

< LVDS Data Format >

2) LVDS 1 Port

RCLK+													
RA+/-	R3 R2	R1	RO	<u> </u>	R5	R4	R3	R2	RI	RO	G0	R5	R4
RB+/-	G4 G3	G2	Gl	Bl	BO	Gð	G4	GB	G2	Gl	BI	B0	G5
RC+/-	B5 B4	B3	B2	DE	VSYNC	HSYNC	B5	B4	В	B2	DE	VSYNC	HSYNC
RD+/-	G7 G6	R7	R6	x	B7	B6	G7	<u> </u>	R7	R6	x	B7	B6
	Previous (N	-1)th Cyc	le —>	<u> </u>		—Currer	t (Nth)	Cycle —		>	←Next	(N+1)th	Cycle —

3-4. Signal Timing Specifications


This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation.

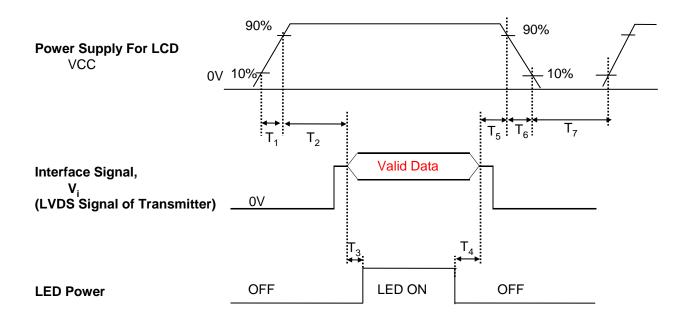
	I						
ITEM	Symbol		Min	Тур	Max	Unit	Note
DCLK	Frequency	fclk	-	96.35	-	MHz	
	Period	tHP	1674	1734	1794		
Hsync	Width	twн	24	32	40	t CLK	
	Active	tWHA	-	1440	-		
	Period	t∨₽	911	926	938		
Vsync	Width	tw∨	2	6	9	tHP	
	Active	twva	-	900	-		
	Horizontal back porch	thbp	202	214	258	tour	
Data	Horizontal front porch	tHFP	8	48	56	tCLK	
Enable	Vertical back porch	tvbp	7	17	23	tup	
	Vertical front porch	tVFP	2	3	6	tHP	

Table 4. TIMING TABLE

3-5. Signal Timing Waveforms

Condition : VCC = 3.3V

3-6. Color Input Data Reference


The brightness of each primary color (red,green and blue) is based on the 6-bit gray scale data input for the color ; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

									Inp	out Co	olor D	ata							
	Color			RE	Ð					GRE	EEN					BL	UE		
		MSE					LSB						LSB						LSB
		R 5	R 4	R 3	R 2	R 1	R 0		G 4	G 3	G 2		G 0	B 5	B 4	B 3	B 2	B 1	B 0
	Black	0	0		0	0	0	0 	0		0	0	0	0 	0	0	0	0	0
	Red	1 	1	1 	1 	1 1	1 1	0 	0	0	0	0	0	0 	0	0	0	0	0
	Green	0	.0	. 0	0	0	0	1	1		1	1	1	0		0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (01)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
RED																			
	RED (62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (01)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
GREEN										·····							 		
	GREEN (62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	GREEN (63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	BLUE (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (01)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE				•••••	•••••					· · · · ·						· · · · · ·	•••••		
BLUE	BLUE (62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	BLUE (63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Table 5. COLOR DATA REFERENCE

3-7. Power Sequence

Parameter		Value	Units	
	Min.	Тур.	Max.	
T ₁	0	-	10	(ms)
T ₂	0	-	50	(ms)
T ₃	200	-	-	(ms)
T ₄	200	-	-	(ms)
T ₅	0	-	50	(ms)
T ₆	0	-	10	(ms)
T ₇	400	-	-	(ms)

Note)

- 1. Valid Data is Data to meet "3-3. LVDS Signal Timing Specifications"
- 2. Please avoid floating state of interface signal at invalid period.
- 3. When the interface signal is invalid, be sure to pull down the power supply for LCD VCC to 0V.
- 4. LED power must be turn on after power supply for LCD and interface signal are valid.

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and Θ equal to 0°.

FIG. 1 presents additional information concerning the measurement equipment and method.

Optical Stage(x,y)

Table 7. OPTICAL CHARACTERISTICS

Ta=25°C, VCC=3.3V, fv=60Hz, f_{CLK}= 96.35MHz, I_{LED} = 19mA

		,	,	00112, 1 _{CLK} -		, LLD -
Parameter	Symbol		Values	_	Units	Notes
Falameter	Symbol	Min	Тур	Max	Units	NOLES
Contrast Ratio	CR	500	600			1
Surface Luminance, white	L _{WH}	270	300		cd/m ²	2
Luminance Variation	δ_{WHITE}	-	-	1.6		3
Response Time					[4
Rise Time+Decay Time	Tr _{R +} Tr _D	-	16	25	ms	
Color Coordinates						
RED	RX	0.557	0.587	0.617		
	RY	0.314	0.344	0.374		
GREEN	GX	0.307	0.337	0.367		
	GY	0.531	0.561	0.591		
BLUE	BX	0.123	0.153	0.183		
	BY	0.092	0.122	0.152		
WHITE	WX	0.283	0.313	0.343		
	WY	0.299	0.329	0.359		
Viewing Angle					[5
x axis, right(Φ =0°)	Θr		70	-	degree	
x axis, left (Φ =180°)	ΘΙ		70		degree	
y axis, up (Φ=90°)	Θu		55	-	degree	
y axis, down (Φ=270°)	Θd		65	-	degree	
Gray Scale						6

FIG. 1 Optical Characteristic Measurement Equipment and Method

Note)

1. Contrast Ratio(CR) is defined mathematically as

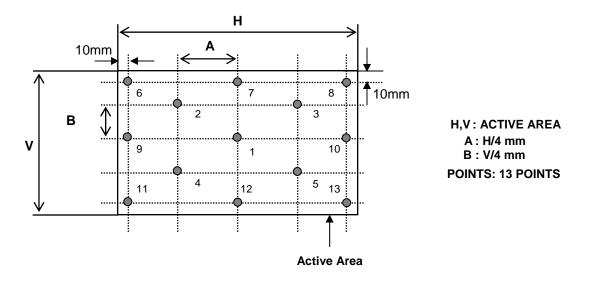
Surface Luminance with all white pixels

Contrast Ratio =

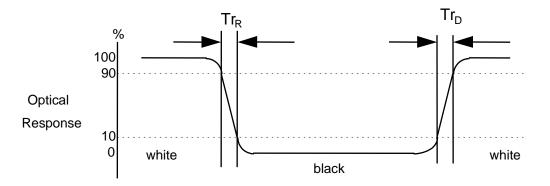
Surface Luminance with all black pixels

- 2. Surface luminance is the 5point (1~5)average across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 2.
- 3. Luminance % uniformity is measured for 13 point For more information see FIG 2. δ WHITE = Maximum(LN1,LN2,, LN13) ÷ Minimum(LN1,LN2,, LN13)
- 4. Response time is the time required for the display to transition from white to black (rise time, Tr_R) and from black to white(Decay Time, Tr_D). For additional information see FIG 3.
- 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.

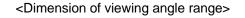
6. Gray scale specification

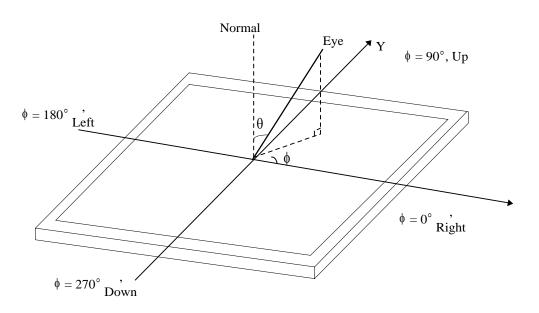

* f_v=60Hz

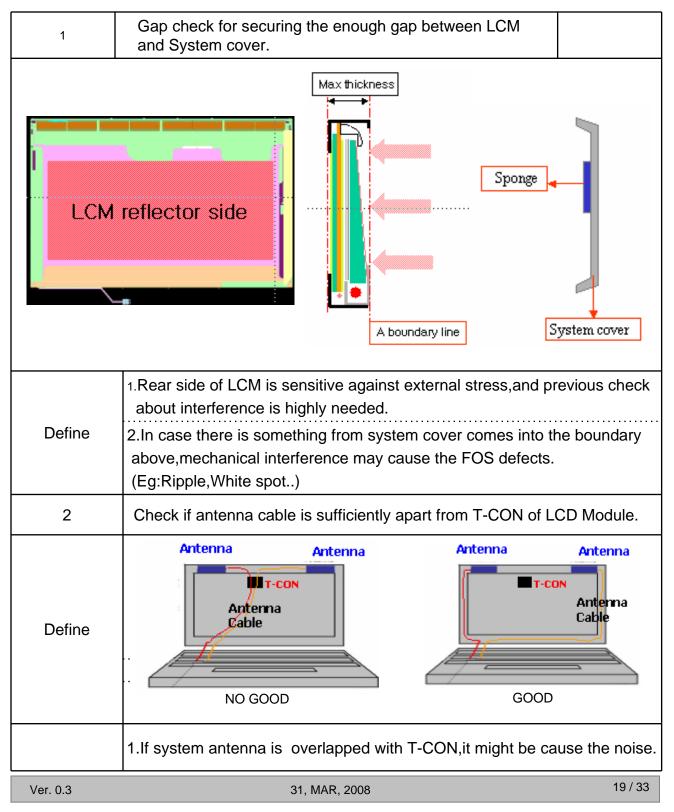
Gray Level	Luminance [%] (Typ)
LO	0.12
L7	1.18
L15	4.74
L23	10.5
L31	18.1
L39	32.1
L47	52.6
L55	77.7
L63	100

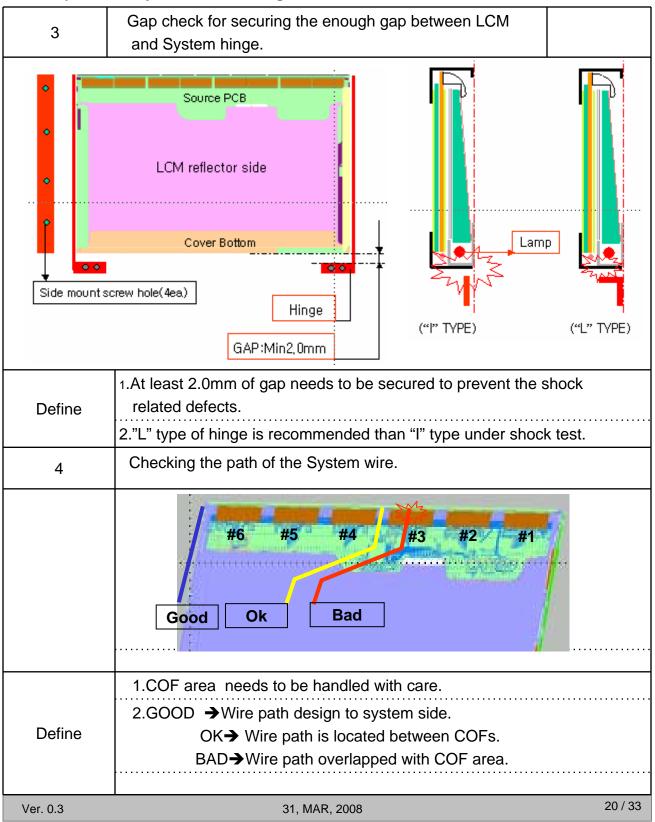

FIG. 2 Luminance

<measuring point for surface luminance & measuring point for luminance variation>

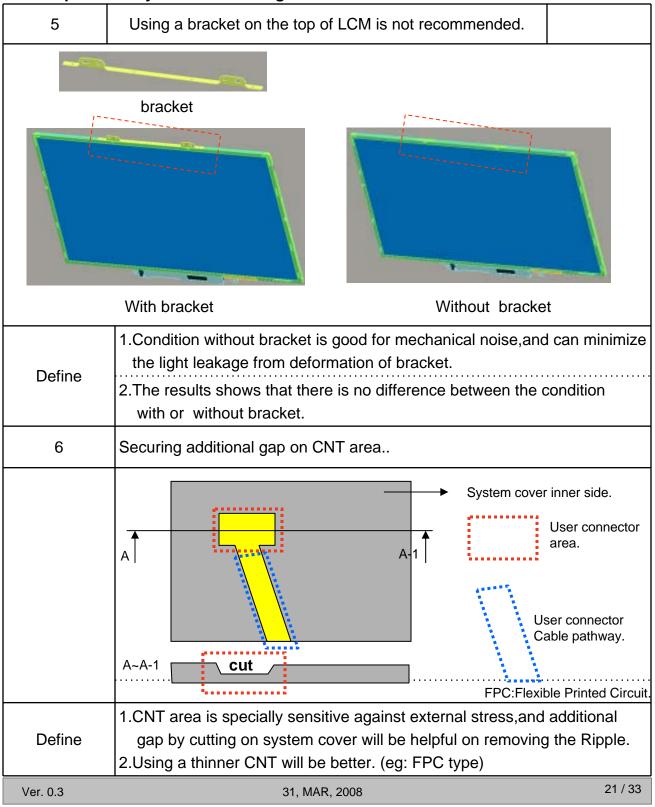

FIG. 3 Response Time


The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".


FIG. 4 Viewing angle



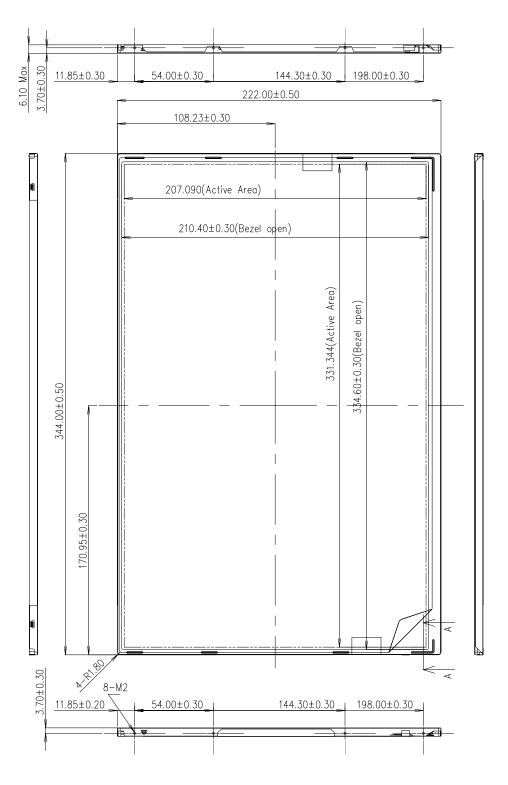
LPL Proposal for system cover design.(Appendix)



LPL Proposal for system cover design.

LPL Proposal for system cover design.

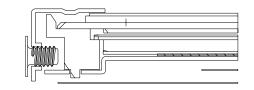
5. Mechanical Characteristics


The contents provide general mechanical characteristics for the model LP154WP2. In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal	$344.0\pm0.50 \text{mm}$
Outline Dimension	Vertical	$222.0\pm0.50\text{mm}$
	Depth	6.1mm(Max)
Denel Area	Horizontal	334.60 mm
Bezel Area	Vertical	210.40mm
Active Display Area	Horizontal	331.344mm
Active Display Area	Vertical	207.090 mm
Weight	460g (Max)	
Surface Treatment	Hard coating(3H) Glare treatment of	the front Polarizer

<FRONT VIEW>

Note) Unit:[mm], General tolerance: $\pm \ 0.5 \text{mm}$


<REAR VIEW>

Note) Unit:[mm], General tolerance: ± 0.5 mm

[DETAIL DESCRIPTION OF SIDE MOUNTING SCREW]

SECTION A-A *Screw(8EA) Torque : 2.0kgf.cm max *Screw Hole Depth : 2.5mm min *Screw Length : max 2.5, min2.0

[DETAIL INFORMATION OF PPID LABEL AND REVISION CODE]

CN-0FM041-56252-712-0001-XXX]		[Product Revision]
D/PN : 0FM041			Refer to 6-1.
LP154WP2 15.4" WXGA+ (TL)(C2)			
RoHS Verified Factory ID : LPLNJ			37 mm
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
This product may be covered by one or more of the following US Patent Nos. 5,041,823 ; 5,061,920 ; 5,280,371 ; 5,835,139	MADE IN CHINA	,	7
78 mm			

※PPID Label revision:

It is subject to change with Dell event. Please refer to the below table for detail.

Classification	No Change	1st Revision	2nd Revision	 9th Revision	
SST(WS)	X00	X01	X02	 A09	
PT(ES)	X10	X11	X12	 A19	
ST(CS)	X20	X21	X22	 A29	
XB(MP)	A00	A01	A02	 A09	

Ver. 0.3

6. Reliability

Environment test condition

No.	Test Item	Conditions					
1	High temperature storage test	Ta= 60°C, 240h					
2	Low temperature storage test	Ta= -20°C, 240h					
3	High temperature operation test	Ta= 50°C, 50%RH, 240h					
4	Low temperature operation test	Ta= 0°C, 240h					
5	Vibration test (non-operating)	Sine wave, 10 ~ 500 ~ 10Hz, 1.5G, 0.37oct/min 3 axis, 1hour/axis					
6	Shock test (non-operating)	Half sine wave, 180G, 2ms one shock of each six faces(I.e. run 180G 6ms for all six faces)					
7	Altitude operating storage / shipment	0 ~ 10,000 feet (3,048m) 24Hr 0 ~ 40,000 feet (12,192m) 24Hr					

{ Result Evaluation Criteria }

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

7. International Standards

7-1. Safety

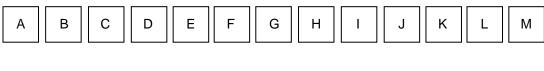
a) UL 1950 Third Edition, Underwriters Laboratories, Inc. Jan. 28, 1995.
Standard for Safety of Information Technology Equipment Including Electrical Business Equipment.
b) CAN/CSA C22.2 No. 950-95 Third Edition, Canadian Standards Association, Jan. 28, 1995.
Standard for Safety of Information Technology Equipment Including Electrical Business Equipment.
c) EN 60950 : 1992+A1: 1993+A2: 1993+A3: 1995+A1: 1997+A11: 1997
IEC 950 : 1991+A1: 1992+A2: 1993+A3: 1995+A1: 1996
European Committee for Electrotechnical Standardization(CENELEC)

EUROPEAN STANDARD for Safety of Information Technology Equipment Including Electrical Business Equipment.

7-2. EMC

a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992

b) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference.


c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization.(CENELEC), 1998

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

A,B,C : SIZE(INCH)
E : MONTH

D : YEAR F ~ M : SERIAL NO.

Note

1. YEAR

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Mark	1	2	3	4	5	6	7	8	9	0

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	А	В	С

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

- a) Package quantity in one box : 20 pcs
- b) Box Size : 515mm ×425mm × 321mm

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : V=± 200mV(Over and under shoot voltage)
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object.It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.

Please carefully peel off the protection film without rubbing it against the polarizer.

- (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

2008.4.3.

Product Specification

APPENDIX A. Enhanced Extended Display Identification Data (EEDIDTM) 1/3 EDID Data for $Dell_{-}$ ver. 1.0

Byte Byte Value Value **Field Name and Comments** (Dec) (Hex (Hex (Bin) 00 Header 01 Header FF FF 02 Header Header FF Header Header FF FF Header 06 Header FF 07 Header 08 EISA manufacture code (3 Character ID) LPL 09 EISA manufacture code (Compressed ASCII 0C 0AB8h **B8** 0A Panel Supplier Reserved - Product Code Vendor / Product 0 B (Hex.LSB first) 0A 0 C LCD Module Serial No - Preferred but Optional ("0" If not used) 0D LCD Module Serial No - Preferred but Optional ("0" If not used) 0E LCD Module Serial No - Preferred but Optional ("0" If not used) 0F LCD Module Serial No - Preferred but Optional ("0" If not used) 10 Week of Manufacture 00 weeks Year of Manufacture 2008 year EDID structure version # = 1 EDID revision # = 314 Video input Definition = Digital signal, 6 bit _ Dell only Max H image size (Rounded cm) = 33 cm Display 16 Max V image size (Rounded cm) = 21 cm 17 Display gamma = (gamma*100)-100 = Example:(2.2*100)-100=120 = 2.2 Gamma Feature Support (no_DPMS, no_Active Off/Very Low Power, RGB color display, Timing BLK 1,no_ GTF) 0A Red/Green Low Bits (RxRy/GxGy) 1A Blue/White Low Bits (BxBy/WxWy) Vendor / Product Rx = 0.5871B Red X Red Y Ry = 0.3441C 1D Green X Gx = 0.3371E Green Y Gy =0.561 8F 1F Blue X Bx = 0.153Blue Y By = 0.1221 F White X W x = 0.313 22 White Y Wy = 0.32923 Established timing 1 (00h if nt used) Establ ished 24 Established timing 2 (00h if nt used) 25 Manufacturer's timings (00h if nt used) 26 Standard timing ID1 (01h if not used) Standard timing ID1 (01h if not used) Standard timing ID2 (01h if not used) Standard timing ID2 (01h if not used) 2AStandard timing ID3 (01h if not used) Standard Timing ID 2B Standard timing ID3 (01h if not used) 2C Standard timing ID4 (01h if not used) 2D Standard timing ID4 (01h if not used) Standard timing ID5 (01h if not used) 2E 2FStandard timing ID5 (01h if not used) Standard timing ID6 (01h if not used) Standard timing ID6 (01h if not used) Standard timing ID7 (01h if not used) Standard timing ID7 (01h if not used) Standard timing ID8 (01h if not used) Standard timing ID8 (01h if not used)

APPENDIX A. Enhanced Extended Display Identification Data (EEDID[™]) 2/3

		Byte (Hex)	Field Name and Comments	Value (Hex)	Value (Bin)
	54	36	Pixel Clock/10,000 (LSB) 96.35 MHz @ 60.01Hz	A3	10100011
	55	37	Pixel Clock/10,000 (MSB)	25	00100101
	56	38	Horizontal Active (lower 8 bits) 1440 Pixels	AO	10100000
	57	39	Horizontal Blanking(Thp-HA) (lower 8 bits) 294 Pixels	26	00100110
	58	3A	Horizontal Active / Horizontal Blanking(Thp-HA) (upper 4:4bits)	51	01010001
1	59	3B	Vertical Avtive 900 Lines	84	10000100
#	60	3C	Vertical Blanking (Tvp-HA) (DE Blanking typ.for DE only panels) 26 Lines	1A	00011010
to	61	3D	Vertical Active : Vertical Blanking (Tvp-HA) (upper 4:4bits)	30	00110000
iri	62	3E	Horizontal Sync. Offset (Thfp) 48 Pixels	30	00110000
Timing Descriptor #1	63	3F	Horizontal Sync Pulse Width (HSPW) 32 Pixels	20	00100000
Q	64	40	Vertical Sync Offset(Tvfp) : Sync Width (VSPW) 3 Lines : 6 Lines	36	00110110
ing	65	41	Horizontal Vertical Sync Offset/Width (upper 2bits)	00	00000000
ïm	66	42	Horizontal Image Size (mm) 331 mm	4B	01001011
L	67	43	Vertical Image Size (mm) 207 mm	CF	11001111
	68	44	Horizontal Image Size / Vertical Image Size	10	00010000
	69	45	Horizontal Border = 0 (Zero for Notebook LCD)	00	00000000
	70	46	Vertical Border = 0 (Zero for Notebook LCD)	00	00000000
	71	47	Non-Interlace, Normal display, no stereo, Digital Separate (Vsync_NEG, Hsync_POS), DE only note : LSB is set to 'l' if panel is DE-timing only. H/V can be ignored.	1B	00011011
	72	48	Pixel Clock/10,000 (LSB) 96.35 MHz @ 60.01Hz	A3	10100011
	73	49	Pixel Clock/10,000 (MSB)	25	00100101
	74	4A	Horizontal Active (lower 8 bits) 1440 Pixels	A0	10100000
	75	4B	Horizontal Blanking(Thp-HA) (lower 8 bits) 294 Pixels	26	00100110
	76	4C	Horizontal Active / Horizontal Blanking(Thp-HA) (upper 4:4bits)	51	01010001
8	77	4D	Vertical Avtive 900 Lines	84	10000100
r#	78	4E	Vertical Blanking (Tvp-HA) (DE Blanking typ.for DE only panels) 26 Lines	1A	00011010
nto	79	4F	Vertical Active : Vertical Blanking (Tvp-HA) (upper 4:4bits)	30	00110000
riț	80	50	Horizontal Sync. Offset (Thfp) 48 Pixels	30	00110000
Timing Descriptor #2	81	51	Horizontal Sync Pulse Width (HSPW) 32 Pixels	20	00100000
Q	82	52	Vertical Sync Offset(Tvfp) : Sync Width (VSPW) 3 Lines : 6 Lines	36	00110110
ing	83	53	Horizontal Vertical Sync Offset/Width (upper 2bits)	00	00000000
ïm	84	54	Horizontal Image Size (mm) 331 mm	4B	01001011
L	85	55	Vertical Image Size (mm) 207 mm	CF	11001111
	86	56	Horizontal Image Size / Vertical Image Size	10	00010000
	87	57	Horizontal Border = 0 (Zero for Notebook LCD)	00	00000000
	88	58	Vertical Border = 0 (Zero for Notebook LCD)	00	00000000
	89	59	Non-Interlace, Normal display, no stereo, Digital Separate (Vsync_NEG, Hsync_POS), DE only note : LSB is set to 'l' if panel is DE-timing only. H/V can be ignored.	1B	00011011
	90	5A	Flag	00	00000000
	91	5B	Flag	00	00000000
	92	5C	Flag	00	00000000
	93	5D	Data Type Tag : Alphanumeric Data String (ASCII String)	FE	11111110
	94	5E	Flag	00	00000000
#3	95	5F	Dell P/N 1st Character = F	46	01000110
nr ‡	96	60	Dell P/N 2nd Character = M	4D	01001101
Timing Descriptor #3	97		Dell P/N 3rd Character = 0	30	00110000
cu	98	62	Dell P/N 4th Character = 4	34	00110100
Jes	99	63	Dell P/N 5th Character = 1	31	00110001
81	100	64	EDID Revision Build Name = MP(X-Build) , Revision # = A00	80	10000000
nin	101	65	Manufacturer P/N = 1	31	00110001
Tin	102	66	Manufacturer P/N = 5	35	00110101
. 1	103	67	Manufacturer P/N = 4	34	00110100
	104	68	Manufacturer P/N = W	57	01010111
	105	69	Manufacturer P/N = P	50	01010000
	106	6A	Manufacturer $P/N = 2$	32	00110010

APPENDIX A. Enhanced Extended Display Identification Data (EEDID[™]) 3/3

	Byte (Dec)	Byte (Hex)	Field Name and Comments	Value (Hex)	Value (Bin)	
	108	108 6C Flag				
	109	6D	Flag	00	00000000	
	110	6E	Flag	00	00000000	
	111	6F	Data Type Tag : Descriptor Defined by manufacturer	00	00000000	
	112	70	Flag	00	00000000	
#4	113	71	SMBUS Value(Step #1) = TBD nits	3 C	00111100	
Timing Descriptor #4	114	72	SMBUS Value(Step #2) = TBD nits	58	01011000	
ipt	115	73	SMBUS Value(Step #3) = TBD nits	74	01110100	
scr	116	74	SMBUS Value(Step #4) = TBD nits	90	10010000	
De	117	75	SMBUS Value(Step #5) = TBD nits	AC	10101100	
20	118	76	SMBUS Value(Step #6) = TBD nits	C8	11001000	
niı	119	77	SMBUS Value(Step #7) = TBD nits	E4	11100100	
Tü	120	78	SMBUS Value(Step #8) = 320 nits (Typically = FFh, Max nits)	FF	11111111	
	121	79	Dual channel LVDS, No RTC support	02	00000010	
	122	7A	BIST support	01	00000001	
	123	7B	(If<13 char> 0Ah, then terminate with ASC code 0Ah, set remaining char = 20h)	0 A	00001010	
	124	7C	(If <13 char> 0Ah, then terminate with ASC_{\parallel} code 0Ah, set remaining char = 20h)	20	00100000	
	125	7D	(If<13 char> 0Ah, then terminate with ASC _{II} code 0Ah, set remaining char = 20h)	20	00100000	
Chec.	126	7E	Extension flag (# of optional 128 panel ID extension block to follow, Typ = 0)	00	00000000	
Ch	127	7F	Check Sum (The 1-byte sum of all 128 bytes in this panel ID block shall $= 0$)	F1	11110001	