TFT COLOR LCD MODULE

NL2432HC22-42B
8.9cm (3.5 Type)
QVGA

DATA SHEET
DOD-PP-0309 (2nd edition)

RoHS Compliant

This DATA SHEET is updated document from DATA SHEET DOD-PP-0211(1).

All information is subject to change without notice. Please confirm the sales representative before starting to design your system.
INTRODUCTION

The Copyright to this document belongs to NEC LCD Technologies, Ltd. (hereinafter called "NEC"). No part of this document will be used, reproduced or copied without prior written consent of NEC.

NEC does and will not assume any liability for infringement of patents, copyrights or other intellectual property rights of any third party arising out of or in connection with application of the products described herein except for that directly attributable to mechanisms and workmanship thereof. No license, express or implied, is granted under any patent, copyright or other intellectual property right of NEC.

Some electronic parts/components would fail or malfunction at a certain rate. In spite of every effort to enhance reliability of products by NEC, the possibility of failures and malfunction might not be avoided entirely. To prevent the risks of damage to death, human bodily injury or other property arising out thereof or in connection therewith, each customer is required to take sufficient measures in its safety designs and plans including, but not limited to, redundant system, fire-containment and anti-failure.

The products are classified into three quality grades: "Standard", "Special", and "Specific" of the highest grade of a quality assurance program at the choice of a customer. Each quality grade is designed for applications described below. Any customer who intends to use a product for application other than that of Standard quality grade is required to contact an NEC sales representative in advance.

The Standard quality grade applies to the products developed, designed and manufactured in accordance with the NEC standard quality assurance program, which are designed for such application as any failure or malfunction of the products (sets) or parts/components incorporated therein a customer uses are, directly or indirectly, free of any damage to death, human bodily injury or other property, like general electronic devices.

Examples: Computers, office automation equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment, industrial robots, etc.

The Special quality grade applies to the products developed, designed and manufactured in accordance with an NEC quality assurance program stricter than the standard one, which are designed for such application as any failure or malfunction of the products (sets) or parts/components incorporated therein a customer uses might directly cause any damage to death, human bodily injury or other property, or such application under more severe condition than that defined in the Standard quality grade without such direct damage.

Examples: Control systems for transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, medical equipment not specifically designed for life support, safety equipment, etc.

The Specific quality grade applies to the products developed, designed and manufactured in accordance with the standards or quality assurance program designated by a customer who requires an extremely higher level of reliability and quality for such products.

Examples: Military systems, aircraft control equipment, aerospace equipment, nuclear reactor control systems, medical equipment/devices/systems for life support, etc.

The quality grade of this product is the "Standard" unless otherwise specified in this document.
CONTENTS

INTRODUCTION .. 2

1. OUTLINE .. 4
 1.1 STRUCTURE AND PRINCIPLE .. 4
 1.2 APPLICATION .. 4
 1.3 FEATURES .. 4

2. GENERAL SPECIFICATIONS ... 5

3. BLOCK DIAGRAM .. 6

4. DETAILED SPECIFICATIONS .. 8
 4.1 MECHANICAL SPECIFICATIONS ... 8
 4.2 ABSOLUTE MAXIMUM RATINGS .. 8
 4.3 ELECTRICAL CHARACTERISTICS .. 9
 4.4 SETTING OF THE INTERNAL RESISTER ... 11
 4.5 INTERFACE PIN CONNECTIONS ... 14
 4.6 DISPLAY COLORS AND INPUT DATA SIGNALS .. 16
 4.7 DISPLAY POSITIONS ... 17
 4.8 SCANNING DIRECTIONS ... 17
 4.9 INPUT SIGNAL TIMINGS ... 18
 4.9.1 RGB interface (Ta= 25°C, VCC= 3.0V) .. 18
 4.9.2 Serial interface (Ta= 25°C, VCC= 3.0V) ... 21
 4.10 OPTICAL CHARACTERISTICS ... 22

5. RELIABILITY TESTS ... 25

6. PRECAUTIONS ... 26
 6.1 MEANING OF CAUTION SIGNS .. 26
 6.2 CAUTIONS .. 26
 6.3 ATTENTIONS .. 26
 6.3.1 Handling of the product .. 26
 6.3.2 Environment .. 27
 6.3.3 Characteristics ... 27
 6.3.4 Other ... 27

7. OUTLINE DRAWINGS .. 28

8. RECOMMENDED DESIGN OF FRONT BEZEL .. 29
1. OUTLINE

1.1 STRUCTURE AND PRINCIPLE

Color LCD module NL2432HC22-42B is composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array, touch panel (T/P) and a backlight.

The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a color-filter glass substrate.

Color (Red, Green, Blue) data signals from a host system (e.g. signal generator, etc.) are modulated into best form for active matrix system by a controller, and sent to the driver LSIs which drive the individual TFT arrays.

The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Color images are created by regulating the amount of transmitted light through the TFT array of red, green and blue dots.

1.2 APPLICATION

- PDAs

1.3 FEATURES

- Adoption of SR-NLT (Super-Reflective Natural Light TFT) (Transflective type)
- Backlight and touch panel attached
- High luminance
- High contrast
- Including LCD controller and power supply
- 6-bit digital RGB signals
- Compliance with the European RoHS directive (2002/95/EC)
2. GENERAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Spec</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display area</td>
<td>53.64 (W) × 71.52 (H) mm</td>
</tr>
<tr>
<td>Diagonal size of display</td>
<td>8.9 cm (3.5 inches)</td>
</tr>
<tr>
<td>Drive system</td>
<td>a-Si TFT active matrix</td>
</tr>
<tr>
<td>Display color</td>
<td>262,144 colors</td>
</tr>
<tr>
<td>Pixel</td>
<td>240 (H) × 320 (V) pixels</td>
</tr>
<tr>
<td>Pixel arrangement</td>
<td>RGB (Red dot, Green dot, Blue dot) vertical stripe</td>
</tr>
<tr>
<td>Dot pitch</td>
<td>0.0745 (H) × 0.2235 (V) mm</td>
</tr>
<tr>
<td>Pixel pitch</td>
<td>0.2235 (H) × 0.2235 (V) mm</td>
</tr>
<tr>
<td>Module size</td>
<td>63.5 (H) × 85.0 (V) × 4.2 (D) mm (typ.)</td>
</tr>
<tr>
<td>Weight</td>
<td>43g (typ.)</td>
</tr>
<tr>
<td>Touch panel surface</td>
<td>Antiglare</td>
</tr>
<tr>
<td>Touch panel pencil-hardness</td>
<td>3H (min.) [by JIS K5400]</td>
</tr>
<tr>
<td>Luminance</td>
<td>At IL = 20mA, with Touch panel 200cd/m² (typ.)</td>
</tr>
<tr>
<td>Reflection ratio</td>
<td>With Touch panel 15% (typ.)</td>
</tr>
<tr>
<td>Contrast ratio</td>
<td>At transmissive mode, IL = 20mA, with Touch panel 130:1 (typ.)</td>
</tr>
<tr>
<td>Response time</td>
<td>Ton + Toff (10%↔90%) 30 ms (typ., at transmissive mode) 16 ms (typ., at reflective mode)</td>
</tr>
<tr>
<td>Signal system</td>
<td>6-bit digital signals for data of RGB colors, Dot clock (CLK), Horizontal synchronous signal (HSYNC), Vertical synchronous signal (VSYNC) Serial interface (SPI correspondence) (/CS, SCL, SI)</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>VCC: 3.0V (typ.)</td>
</tr>
<tr>
<td>Power consumption</td>
<td>LCD panel: 50 mW (typ.) Backlight: 384mW (typ., at IL=20mA)</td>
</tr>
</tbody>
</table>
3. BLOCK DIAGRAM

Product (LCD panel + Driver + Backlight + Touch panel (T/P))

- COM circuit diagram
- Input
- CPU
 - /RESET
 - /CS
 - SCL
 - SI
- (Example of connection)
- Power supply
 - VCC
- Touch panel
- Backlight

Touch panel
- XL
- YD
- XR
- YU

LCD panel

Backlight
- Anode
- Cathode
<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 to 18</td>
<td>D00 to D05</td>
</tr>
<tr>
<td>19 to 24</td>
<td>D10 to D15</td>
</tr>
<tr>
<td>25 to 30</td>
<td>D20 to D25</td>
</tr>
<tr>
<td>10</td>
<td>VSYNC</td>
</tr>
<tr>
<td>9</td>
<td>HSYNC</td>
</tr>
<tr>
<td>11</td>
<td>CLK</td>
</tr>
<tr>
<td>8</td>
<td>/RESET</td>
</tr>
<tr>
<td>35</td>
<td>/CS</td>
</tr>
<tr>
<td>32</td>
<td>SCL</td>
</tr>
<tr>
<td>33</td>
<td>SI</td>
</tr>
<tr>
<td>36</td>
<td>VCOMIN</td>
</tr>
<tr>
<td>3, 4, 5, 6</td>
<td>VCC</td>
</tr>
<tr>
<td>1, 2, 7, 12, 31, 38, 43</td>
<td>GND</td>
</tr>
<tr>
<td>39, 40, 41, 42</td>
<td>XL, YD</td>
</tr>
<tr>
<td>44</td>
<td>ANODE</td>
</tr>
<tr>
<td>45</td>
<td>CATHODE</td>
</tr>
</tbody>
</table>

Reference design of COM circuit
4. DETAILED SPECIFICATIONS

4.1 MECHANICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module size</td>
<td>63.5 ± 0.3 (W) × 85.0 ± 0.3 (H) × 4.2 ± 0.2 (D)</td>
<td>Note2 mm</td>
</tr>
<tr>
<td>Display area</td>
<td>53.64 (H) × 71.52 (V)</td>
<td>Note2 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>43 (typ.), 45 (max.)</td>
<td>g</td>
</tr>
</tbody>
</table>

Note1: Excluding FPC
Note2: See "7. OUTLINE DRAWINGS".

4.2 ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>VCC</td>
<td>-0.5 to +6.0</td>
<td>V</td>
<td>Ta= 25°C</td>
</tr>
<tr>
<td>Logic input voltage</td>
<td>VI</td>
<td>-0.5 to VCC+0.5</td>
<td>V</td>
<td>Logic signals</td>
</tr>
<tr>
<td>Reverse voltage</td>
<td>VR</td>
<td>≤ 30</td>
<td>V</td>
<td>Ta= 25°C</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>PD</td>
<td>≤ 738</td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td>Forward current</td>
<td>IL</td>
<td>Note1 mA</td>
<td>mA</td>
<td>Ta= 25°C</td>
</tr>
<tr>
<td>Pulse forward current</td>
<td>IFP</td>
<td>100</td>
<td>mA</td>
<td>Pulse width ≤ 10ms,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duty ≤ 1/10</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>Tst</td>
<td>-30 to +80</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>Top</td>
<td>-20 to +70</td>
<td>°C</td>
<td>Ta≤ 40°C, 40°C <Ta≤ 50°C, 50°C <Ta≤ 55°C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>RH</td>
<td>≤ 95</td>
<td>%</td>
<td>Ta= 25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ 85</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ 70</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Absolute humidity</td>
<td>AH</td>
<td>≤ 73</td>
<td>g/m³</td>
<td>Ta> 55°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage altitude</td>
<td></td>
<td>≤ 13,600</td>
<td>m</td>
<td>-30°C ≤ Ta ≤ 80°C</td>
</tr>
<tr>
<td>Operating altitude</td>
<td></td>
<td>≤ 4,850</td>
<td>m</td>
<td>-20°C ≤ Ta ≤ 70°C</td>
</tr>
</tbody>
</table>

Note1: Allowable forward current
Note2: Measured at display area
Note3: No condensation
Note4: Water amount at Ta= 55°C and RH= 70%
4.3 ELECTRICAL CHARACTERISTICS

(1) Logic/ LCD driving

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic supply voltage</td>
<td>VCC</td>
<td>2.85</td>
<td>3.0</td>
<td>3.15</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>Logic input high voltage</td>
<td>VIH</td>
<td>0.8VCC</td>
<td>-</td>
<td>VCC</td>
<td>V</td>
<td>Logic signal</td>
</tr>
<tr>
<td>Logic input low voltage</td>
<td>VIL</td>
<td>0</td>
<td>-</td>
<td>0.2VCC</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>COM/H voltage</td>
<td>COM/H</td>
<td>-</td>
<td>1.8</td>
<td>-</td>
<td>V</td>
<td>at VCC= 3.0V Note1</td>
</tr>
<tr>
<td>VCC supply current</td>
<td>ICC</td>
<td>-</td>
<td>16.5</td>
<td>26</td>
<td>mA</td>
<td>Normal mode at VCC= 3.0V Note2</td>
</tr>
<tr>
<td></td>
<td>ICCs</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>Stand-by mode at VCC= 3.0V Note2</td>
</tr>
</tbody>
</table>

Note1: The optimum value for COM/H is in the range of 1.3 V to 2.3 V.

Recommended adjustment display for COM/H

![Half tone display (32/63 gray scale)
Full black display (0/63 gray scale)
Half tone display (32/63 gray scale)
Full black display (0/63 gray scale)
Half tone display (32/63 gray scale)](image)

Note2: PPCLK = 5.0MHz, PPHSYNC = 19.53kHz, PPVSYNC = 60Hz,
Checkered flag pattern (by EIAJ ED-2522)

(2) Backlight

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Current</td>
<td>IL</td>
<td>-</td>
<td>20</td>
<td>22</td>
<td>mA</td>
<td>-</td>
</tr>
<tr>
<td>Forward Voltage</td>
<td>VL</td>
<td>-</td>
<td>19.2</td>
<td>21.0</td>
<td>V</td>
<td>at IL= 20mA</td>
</tr>
</tbody>
</table>

(Ta= 25°C)
(3) Touch panel

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Touch panel input voltage</td>
<td>Vtp</td>
<td>-</td>
<td>-</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Resistor between pins(XL-XR)</td>
<td>Rx</td>
<td>190</td>
<td>-</td>
<td>500</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>Resistor between pins(YU-YD)</td>
<td>Ry</td>
<td>140</td>
<td>-</td>
<td>540</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>Line linearity (X direction)</td>
<td>Xlin</td>
<td>-</td>
<td>-</td>
<td>1.5</td>
<td>%</td>
<td>Note1</td>
</tr>
<tr>
<td>Line linearity (Y direction)</td>
<td>Ylin</td>
<td>-</td>
<td>-</td>
<td>1.5</td>
<td>%</td>
<td>Note1</td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>Rins</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>MΩ</td>
<td>at DC 25V</td>
</tr>
<tr>
<td>Static Capacitance</td>
<td>Ctp</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>nF</td>
<td></td>
</tr>
<tr>
<td>Chattering</td>
<td>Chat</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>ms</td>
<td>Note1</td>
</tr>
<tr>
<td>Operation starting force</td>
<td>Ost</td>
<td>-</td>
<td>-</td>
<td>0.78</td>
<td>N</td>
<td>Note1, Note2</td>
</tr>
<tr>
<td>Surface hardness</td>
<td>Hs</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>H</td>
<td>Pencil hardness</td>
</tr>
<tr>
<td>Point hitting life</td>
<td>Lhp</td>
<td>1,000,000</td>
<td>-</td>
<td>-</td>
<td>times</td>
<td>Polycetal stylus pen: R0.8mm Load: 2.45N(250gf)</td>
</tr>
<tr>
<td></td>
<td>Lhr</td>
<td>1,000,000</td>
<td>-</td>
<td>-</td>
<td>times</td>
<td>Silicon rubber: R8mm, Hardness 60° Load: 2.94N(300gf)</td>
</tr>
<tr>
<td>Line writing life</td>
<td>Lwl</td>
<td>50,000</td>
<td>-</td>
<td>-</td>
<td>times</td>
<td>Polycetal stylus pen: R0.8mm Load: 2.45N(250gf), 35mm</td>
</tr>
</tbody>
</table>

Note1: Input methods are a Finger or R0.8mm Polycetal Stylus Pen
Note2: Test condition

Resistance between X and Y axis must be 2kΩ or less, and the test voltage is 5V DC.
4.4 SETTING OF THE INTERNAL RESISTER

Initial setting of the internal Resister is undefined data. So the Resister Data must be written in the Resister, after initialization by the /RESET pin. The Resister Data can be written from serial interface pins (/CS, SCL and SI). The setting method is as follows.

(1) Command Byte Function

<table>
<thead>
<tr>
<th>Bits</th>
<th>Functions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A5</td>
<td>Read / Write</td>
<td>0:Write 1:Read</td>
</tr>
<tr>
<td>A4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A0</td>
<td>Register Number / Data</td>
<td>0:Register Number 1:Register Data</td>
</tr>
</tbody>
</table>

(2) Timing chart

Note1: During 32-bit transfer of the Resister Data, /CS pin (Pin No.35) must be maintained active.
Note2: "X" is set in accordance with the usage conditions.

Ex) When data 55h is written to Register R26 (R1Ah)

1st byte

2nd byte

MSB LSB

Ex) When data 55h is written to Register R26 (R1Ah)

MSB LSB

3rd byte

4th byte

Note1: During 32-bit transfer of the Resister Data, /CS pin (Pin No.35) must be maintained active.
Note2: "X" is set in accordance with the usage conditions.
(3) Command sequence

Power On

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Register Number</th>
<th>Data</th>
<th>Comment</th>
<th>Sequence</th>
<th>Register Number</th>
<th>Data</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power On</td>
<td></td>
<td></td>
<td>26</td>
<td>R76</td>
<td>01h</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1ms min. wait.</td>
<td></td>
<td></td>
<td>27</td>
<td>R77</td>
<td>01h</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Reset by the /RESET pin (Pin No. 8).</td>
<td></td>
<td></td>
<td>28</td>
<td>R80</td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1ms min. wait after /RESET↑.</td>
<td></td>
<td></td>
<td>29</td>
<td>R81</td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>R3</td>
<td>01h</td>
<td></td>
<td>30</td>
<td>R82</td>
<td>2Eh</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R1</td>
<td>00h</td>
<td></td>
<td>31</td>
<td>R83</td>
<td>C4h</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>R100</td>
<td>0Fh</td>
<td></td>
<td>32</td>
<td>R86</td>
<td>15h</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>R101</td>
<td>3Fh</td>
<td></td>
<td>33</td>
<td>R87</td>
<td>EDh</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>R102</td>
<td>3Fh</td>
<td></td>
<td>34</td>
<td>R95</td>
<td>3Fh</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>R103</td>
<td>00h</td>
<td></td>
<td>35</td>
<td>R96</td>
<td>22h</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>R104</td>
<td>00h</td>
<td></td>
<td>36</td>
<td>R25</td>
<td>76h</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>R105</td>
<td>30h</td>
<td></td>
<td>37</td>
<td>R26</td>
<td>54h</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>R106</td>
<td>04h</td>
<td></td>
<td>38</td>
<td>R27</td>
<td>67h</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>R107</td>
<td>37h</td>
<td></td>
<td>39</td>
<td>R28</td>
<td>60h</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>R108</td>
<td>17h</td>
<td></td>
<td>40</td>
<td>R29</td>
<td>04h</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>R109</td>
<td>00h</td>
<td></td>
<td>41</td>
<td>R30</td>
<td>1Ch</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>R110</td>
<td>40h</td>
<td></td>
<td>42</td>
<td>R31</td>
<td>A9h</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>R111</td>
<td>30h</td>
<td></td>
<td>43</td>
<td>R32</td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>R112</td>
<td>04h</td>
<td></td>
<td>44</td>
<td>R33</td>
<td>20h</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>R113</td>
<td>37h</td>
<td></td>
<td>45</td>
<td>R24</td>
<td>77h</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>R114</td>
<td>17h</td>
<td></td>
<td>46</td>
<td></td>
<td></td>
<td>30 µs min. wait.</td>
</tr>
<tr>
<td>22</td>
<td>R115</td>
<td>00h</td>
<td></td>
<td>47</td>
<td></td>
<td></td>
<td>Data input start</td>
</tr>
<tr>
<td>23</td>
<td>R116</td>
<td>40h</td>
<td></td>
<td>48</td>
<td>R59</td>
<td>01h</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>R2</td>
<td>40h</td>
<td></td>
<td>49</td>
<td></td>
<td></td>
<td>20 ms min. wait.</td>
</tr>
<tr>
<td>25</td>
<td>R75</td>
<td>04h</td>
<td></td>
<td>50</td>
<td>R0</td>
<td>00h</td>
<td></td>
</tr>
</tbody>
</table>

Power Off

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Register Number</th>
<th>Data</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R0</td>
<td>08h</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25 ms min. wait.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>R24</td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20 ms min. wait.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>R1</td>
<td>08h</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Data Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Power Off</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Standby

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Register Number</th>
<th>Data</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R0</td>
<td>08h</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>25 ms min. wait.</td>
</tr>
<tr>
<td>3</td>
<td>R24</td>
<td>00h</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>20 ms min. wait.</td>
</tr>
<tr>
<td>5</td>
<td>R1</td>
<td>08h</td>
<td>-</td>
</tr>
</tbody>
</table>

Wake Up

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Register Number</th>
<th>Data</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R1</td>
<td>00h</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>R24</td>
<td>FFh</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>30 μs min. wait.</td>
</tr>
<tr>
<td>4</td>
<td>R0</td>
<td>00h</td>
<td>-</td>
</tr>
</tbody>
</table>

Note1: Be sure to perform reset by the /RESET pin (Pin No. 8) every power-on
Note2: Write the Resister Data every power-on, because the data are not stored in the product.
Note3: Due to influence such as static electricity from the outside, data in the register may transform.
 Data is recommended to be written in the register regularly.
4.5 INTERFACE PIN CONNECTIONS

CN1 (FPC)
Adaptable socket: FH23-45S-0.3SHW(05) (Hirose Electric Co., Ltd.(HRS))

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbols</th>
<th>Functions</th>
<th>Pin No.</th>
<th>Symbols</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
<td>Note1</td>
<td>25</td>
<td>D20 Red data (LSB)</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
<td>Note1</td>
<td>26</td>
<td>D21 Red data</td>
</tr>
<tr>
<td>3</td>
<td>VCC</td>
<td>Power supply</td>
<td>Note1</td>
<td>27</td>
<td>D22 Red data</td>
</tr>
<tr>
<td>4</td>
<td>VCC</td>
<td></td>
<td></td>
<td>28</td>
<td>D23 Red data</td>
</tr>
<tr>
<td>5</td>
<td>VCC</td>
<td></td>
<td></td>
<td>29</td>
<td>D24 Red data</td>
</tr>
<tr>
<td>6</td>
<td>VCC</td>
<td></td>
<td></td>
<td>30</td>
<td>D25 Red data (MSB)</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>Ground</td>
<td>Note1</td>
<td>31</td>
<td>GND Ground</td>
</tr>
<tr>
<td>8</td>
<td>/RESET</td>
<td>Reset</td>
<td></td>
<td>32</td>
<td>SCL Serial clock</td>
</tr>
<tr>
<td>9</td>
<td>HSYNC</td>
<td>Horizontal synchronous signal</td>
<td></td>
<td>33</td>
<td>SI Serial input</td>
</tr>
<tr>
<td>10</td>
<td>VSYNC</td>
<td>Vertical synchronous signal</td>
<td></td>
<td>34</td>
<td>RSVD Keep this pin Open.</td>
</tr>
<tr>
<td>11</td>
<td>CLK</td>
<td>Dot clock</td>
<td></td>
<td>35</td>
<td>/CS Chip selection</td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
<td>Ground</td>
<td>Note1</td>
<td>36</td>
<td>VCOMIN COM high voltage input</td>
</tr>
<tr>
<td>13</td>
<td>D00</td>
<td>Blue data (LSB)</td>
<td></td>
<td>37</td>
<td>N.C. Keep this pin Open.</td>
</tr>
<tr>
<td>14</td>
<td>D01</td>
<td>Blue data</td>
<td></td>
<td>38</td>
<td>GND Ground</td>
</tr>
<tr>
<td>15</td>
<td>D02</td>
<td>Blue data</td>
<td></td>
<td>39</td>
<td>XL Horizontal terminal (Left side)</td>
</tr>
<tr>
<td>16</td>
<td>D03</td>
<td>Blue data</td>
<td></td>
<td>40</td>
<td>YD Vertical terminal (Down side)</td>
</tr>
<tr>
<td>17</td>
<td>D04</td>
<td>Blue data</td>
<td></td>
<td>41</td>
<td>XR Horizontal terminal (Right side)</td>
</tr>
<tr>
<td>18</td>
<td>D05</td>
<td>Blue data (MSB)</td>
<td></td>
<td>42</td>
<td>YU Vertical terminal (Up side)</td>
</tr>
<tr>
<td>19</td>
<td>D10</td>
<td>Green data (LSB)</td>
<td></td>
<td>43</td>
<td>GND Ground</td>
</tr>
<tr>
<td>20</td>
<td>D11</td>
<td>Green data</td>
<td></td>
<td>44</td>
<td>ANODE LED voltage (Anode)</td>
</tr>
<tr>
<td>21</td>
<td>D12</td>
<td>Green data</td>
<td></td>
<td>45</td>
<td>CATHODE LED voltage (Cathode)</td>
</tr>
<tr>
<td>22</td>
<td>D13</td>
<td>Green data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>D14</td>
<td>Green data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>D15</td>
<td>Green data (MSB)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note1: All GND terminals should be used without any non-connected lines.
Note2: Do not fold the FPC. When folding the FPC, pattern disconnection may occur. In case of bending FPC, the minimum curvature (R) must be more than 1.0 mm.
Description of terminals

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RESET</td>
<td>When /RESET is L, an internal reset is performed. The reset operation is executed at the /RESET signal level. Be sure to perform reset via this pin at power application.</td>
</tr>
<tr>
<td>/CS</td>
<td>This pin is used for chip select signals. When /CS= L, the chip is active and can perform data I/O operations including command and data I/O.</td>
</tr>
<tr>
<td>SCL</td>
<td>This pin is clock input of serial interface.</td>
</tr>
<tr>
<td>SI</td>
<td>This pin is data input of serial interface.</td>
</tr>
<tr>
<td>VCOMIN</td>
<td>This pin is the Common high voltage. The voltage needs to be adjusted. The details are explained the above. See "3 BLOCK DIAGRAM - Reference design of COM circuit".</td>
</tr>
<tr>
<td>YU,XR,YD,XL</td>
<td>Refer to the below “Circuits of touch panel”</td>
</tr>
<tr>
<td>ANODE, CATHODE</td>
<td>Refer to the below “Circuits of backlight”</td>
</tr>
</tbody>
</table>

![Circuits of touch panel](image)

![Circuits of backlight](image)
4.6 DISPLAY COLORS AND INPUT DATA SIGNALS

This product can display in equivalent to 262,144 colors in 64 gray scales. Also the relation between display colors and input data signals is as the following table.

<table>
<thead>
<tr>
<th>Display colors</th>
<th>Data signal (0: Low level, 1: High level)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0</td>
</tr>
<tr>
<td>Basic colors</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0 0</td>
</tr>
<tr>
<td>Blue</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Red</td>
<td>1 1 1 1 1 1 0</td>
</tr>
<tr>
<td>Magenta</td>
<td>1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Green</td>
<td>0 0 0 0 0 0 1</td>
</tr>
<tr>
<td>Cyan</td>
<td>0 0 0 0 0 0 1</td>
</tr>
<tr>
<td>Yellow</td>
<td>1 1</td>
</tr>
<tr>
<td>White</td>
<td>1 1</td>
</tr>
<tr>
<td>Red gray scale</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0 0</td>
</tr>
<tr>
<td>dark</td>
<td>0 0 0 0 0 0 1 0</td>
</tr>
<tr>
<td>bright</td>
<td>1 1 1 1 0 1 0</td>
</tr>
<tr>
<td>Red</td>
<td>1 1 1 1 1 0</td>
</tr>
<tr>
<td>Green gray scale</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0 0</td>
</tr>
<tr>
<td>dark</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>bright</td>
<td>0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Green</td>
<td>0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Blue gray scale</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0 0</td>
</tr>
<tr>
<td>dark</td>
<td>0 0</td>
</tr>
<tr>
<td>bright</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0</td>
</tr>
<tr>
<td>Blue</td>
<td>1 1</td>
</tr>
</tbody>
</table>

DATA SHEET DOD-PP-0309 (2nd edition) 16
4.7 DISPLAY POSITIONS

The following table is the coordinates per pixel (See figure of "4.8 SCANNING DIRECTIONS").

<table>
<thead>
<tr>
<th>C (0, 0)</th>
<th>C (1, 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C(0, 0)</th>
<th>C(1, 0)</th>
<th>C(X, 0)</th>
<th>C(238, 0)</th>
<th>C(239, 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(0, 1)</td>
<td>C(1, 1)</td>
<td>C(X, 1)</td>
<td>C(238, 1)</td>
<td>C(239, 1)</td>
</tr>
<tr>
<td>C(0, Y)</td>
<td>C(1, Y)</td>
<td>C(X, Y)</td>
<td>C(238, Y)</td>
<td>C(239, Y)</td>
</tr>
<tr>
<td>C(0, 318)</td>
<td>C(1, 318)</td>
<td>C(X, 318)</td>
<td>C(238, 318)</td>
<td>C(239, 318)</td>
</tr>
<tr>
<td>C(0, 319)</td>
<td>C(1, 319)</td>
<td>C(X, 319)</td>
<td>C(238, 319)</td>
<td>C(239, 319)</td>
</tr>
</tbody>
</table>

4.8 SCANNING DIRECTIONS

The following figures are seen from a front view. Also the arrow shows the direction of scan.

Note1: Meaning of C (X, Y) and D (X, Y)

C (X, Y): The coordinates of the display position (See "4.7 DISPLAY POSITIONS").
D (X, Y): The data number of input signal for LCD panel.
4.9 INPUT SIGNAL TIMINGS

4.9.1 RGB interface (Ta= 25°C, VCC= 3.0V)

(1) Timing characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>1/tc</td>
<td>4.81</td>
<td>5.0</td>
<td>5.12</td>
<td>MHz</td>
<td>200ns (typ.)</td>
</tr>
<tr>
<td>Duty</td>
<td>tcd</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rise time, Fall time</td>
<td>tcrf</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>ns</td>
<td>-</td>
</tr>
<tr>
<td>DATA (D00-05) (D10-15) (D20-25) CLK-DATA</td>
<td>Setup time</td>
<td>tds</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>Hold time</td>
<td>tdh</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>-</td>
</tr>
<tr>
<td>Rise time, Fall time</td>
<td>tdrf</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>ns</td>
<td>-</td>
</tr>
<tr>
<td>Cycle</td>
<td>th</td>
<td>50.0</td>
<td>51.2</td>
<td>53.2</td>
<td>µs</td>
<td>19.53kHz (typ.)</td>
</tr>
<tr>
<td>Display period</td>
<td>thd</td>
<td>-</td>
<td>-</td>
<td>240</td>
<td>CLK</td>
<td></td>
</tr>
<tr>
<td>Front-porch</td>
<td>thf</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>CLK</td>
<td>-</td>
</tr>
<tr>
<td>Pulse width</td>
<td>thp</td>
<td>2</td>
<td>8</td>
<td>-</td>
<td>CLK</td>
<td>-</td>
</tr>
<tr>
<td>Back-porch</td>
<td>thb</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>CLK</td>
<td>-</td>
</tr>
<tr>
<td>CLK-HSYNC</td>
<td>Setup time</td>
<td>ths</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>Hold time</td>
<td>thh</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>-</td>
</tr>
<tr>
<td>Rise time, Fall time</td>
<td>thrf</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>ns</td>
<td>-</td>
</tr>
<tr>
<td>Cycle</td>
<td>tv</td>
<td>16.2</td>
<td>16.59</td>
<td>17.24</td>
<td>ms</td>
<td>60Hz (typ.)</td>
</tr>
<tr>
<td>Display period</td>
<td>tvd</td>
<td>-</td>
<td>-</td>
<td>320</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Front-porch</td>
<td>tvf</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>H</td>
<td>-</td>
</tr>
<tr>
<td>Pulse width</td>
<td>tvp</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>H</td>
<td>-</td>
</tr>
<tr>
<td>Back-porch</td>
<td>tvb</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>H</td>
<td>-</td>
</tr>
<tr>
<td>VSYNC-HSYNC timing</td>
<td>tvh</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>-</td>
</tr>
<tr>
<td>Rise time, Fall time</td>
<td>tvrf</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>ns</td>
<td>-</td>
</tr>
</tbody>
</table>

Note1: Definition of parameters is as follows.
tc= 1CLK, tcd= tch/tc, th= 1H
Note2: All parameters should be kept within the specified range.
(2) Input signal timing chart

Note 1: Unless otherwise specified, the input level is defined to be $V_{IH} = 0.8VCC$, $V_{IL} = 0.2VCC$.

Note: $X = 0$ to 239

(Note: $Y = 0$ to 319)
Note1: Unless otherwise specified, the input level is defined to be VIH= 0.8VCC, VIL= 0.2VCC.
4.9.2 Serial interface (Ta= 25°C, VCC= 3.0V)

(1) Timing characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial clock cycle</td>
<td>tSCYC</td>
<td>READ</td>
<td>450</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WRITE</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>SCL high level pulse width</td>
<td>tSHW</td>
<td>READ</td>
<td>210</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WRITE</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>SCL low level pulse width</td>
<td>tSLW</td>
<td>READ</td>
<td>210</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WRITE</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>/CS rise time, fall time</td>
<td>tsrf</td>
<td>/CS</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>SCL rise time, fall time</td>
<td>tsrf</td>
<td>SCL</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>SI rise time, fall time</td>
<td>tsrf</td>
<td>SI</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>/CS setup time</td>
<td>tCSS</td>
<td>/CS</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>/CS hold time</td>
<td>tCSH</td>
<td>/CS</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Data setup time</td>
<td>tSDS</td>
<td>SI</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Data hold time</td>
<td>tSDH</td>
<td>SI</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Reset pulse width</td>
<td>tRW</td>
<td>/RESET</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>/RESET↑ to /CS time</td>
<td>tRCS</td>
<td>/RESET↑ to /CS</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>ms</td>
<td></td>
</tr>
</tbody>
</table>

Note1: All parameters should be kept within the specified range.

Note2: Unless otherwise specified, the input level is defined to be VIH= 0.8VCC, VIL= 0.2VCC.
4.10 OPTICAL CHARACTERISTICS

<Backlight turning OFF>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Symbol</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflection ratio</td>
<td>White, at center</td>
<td>RE</td>
<td>8</td>
<td>15</td>
<td>-</td>
<td>%</td>
<td>Note6</td>
</tr>
<tr>
<td>Contrast ratio</td>
<td>White/Black, at center</td>
<td>CR</td>
<td>3</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>Note7</td>
</tr>
</tbody>
</table>

Reference data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Symbol</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromaticity coordinates</td>
<td>White</td>
<td>Wx</td>
<td>-</td>
<td>0.32</td>
<td>-</td>
<td>-</td>
<td>Note8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wy</td>
<td>-</td>
<td>0.34</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Color gamut</td>
<td>at center, against NTSC color space</td>
<td>C</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Response time</td>
<td>White to black</td>
<td>Ton</td>
<td>-</td>
<td>7</td>
<td>14</td>
<td>ms</td>
<td>Note9</td>
</tr>
<tr>
<td></td>
<td>Black to white</td>
<td>Toff</td>
<td>-</td>
<td>9</td>
<td>18</td>
<td></td>
<td>Note10</td>
</tr>
</tbody>
</table>

<Backlight turning ON>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Symbol</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminance</td>
<td>White at center</td>
<td>L</td>
<td>150</td>
<td>200</td>
<td>-</td>
<td>cd/m²</td>
<td></td>
</tr>
<tr>
<td>Contrast ratio</td>
<td>White/Black at center</td>
<td>CR</td>
<td>65</td>
<td>130</td>
<td>-</td>
<td>-</td>
<td>Note7</td>
</tr>
<tr>
<td>Luminance uniformity</td>
<td>White</td>
<td>LU</td>
<td>60</td>
<td>70</td>
<td>-</td>
<td>%</td>
<td>Note11</td>
</tr>
</tbody>
</table>

Reference data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Symbol</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromaticity coordinates</td>
<td>White</td>
<td>Wx</td>
<td>0.25</td>
<td>0.30</td>
<td>0.35</td>
<td>-</td>
<td>Note8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wy</td>
<td>0.27</td>
<td>0.32</td>
<td>0.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color gamut</td>
<td>0R= 0°, 0L= 0°, 0U= 0°, 0D= 0° at center, against NTSC color space</td>
<td>C</td>
<td>-</td>
<td>40</td>
<td>-</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Response time</td>
<td>White to black</td>
<td>Ton</td>
<td>-</td>
<td>7</td>
<td>14</td>
<td>ms</td>
<td>Note9</td>
</tr>
<tr>
<td></td>
<td>Black to white</td>
<td>Toff</td>
<td>-</td>
<td>23</td>
<td>46</td>
<td></td>
<td>Note10</td>
</tr>
<tr>
<td>Viewing angle</td>
<td>Right</td>
<td>0R= 0°, 0D= 0°, CR≥ 5</td>
<td>0R</td>
<td>30</td>
<td>-</td>
<td>°</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>0L= 0°, 0D= 0°, CR≥ 5</td>
<td>0L</td>
<td>30</td>
<td>-</td>
<td>°</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Up</td>
<td>0R= 0°, 0L= 0°, CR≥ 5</td>
<td>0U</td>
<td>30</td>
<td>-</td>
<td>°</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Down</td>
<td>0R= 0°, 0L= 0°, CR≥ 5</td>
<td>0D</td>
<td>35</td>
<td>-</td>
<td>°</td>
<td>-</td>
</tr>
</tbody>
</table>
Note1: Measurement conditions are as follows.

Ta= 25 °C, VCC= 3.0V, with touch panel

Note2: Measurement conditions are as follows.

Ta= 25 °C, VCC= 3.0V, IL= 20mA, with touch panel

Note3: Definition of viewing angles

Note4: In reflective mode (Backlight turning OFF), Reflection ratio, Contrast ratio, Chromaticity coordinates and Color gamut are measured as follows.

Note5: In transmissive mode (Backlight turning ON), Luminance, Contrast ratio, Chromaticity coordinates and Color gamut are measured as follows.
Note 6: Definitions of reflection ratio

The reflection ratio is calculated by using the following formula.

\[
\text{Reflection (RE)} = \frac{\text{Luminance of reflected light at white screen}}{\text{Luminance of standard diffused reflector}} \times 100
\]

Note 7: Definition of contrast ratio

The contrast ratio is calculated by using the following formula.

\[
\text{Contrast ratio (CR)} = \frac{\text{Luminance of white screen}}{\text{Luminance of black screen}}
\]

Note 8: The White chromaticity coordinates are deviated by the LED deviation in addition to color filter deviation.

Note 9: Definition of response times

Response time is measured, the luminance changes from "white" to "black", or "black" to "white" on the same screen point, by photo-detector. Ton is the time it takes the luminance change from 90% down to 10%. Also Toff is the time it takes the luminance change from 10% up to 90% (See the following diagram.).

Note 10: Product surface temperature: Top = 25°C

Note 11: Definition of luminance uniformity

Luminance uniformity is calculated by using the following formula.

\[
\text{Luminance uniformity (LU)} = \frac{\text{Minimum luminance from A to I}}{\text{Maximum luminance from A to I}} \times 100
\]
5. RELIABILITY TESTS

<table>
<thead>
<tr>
<th>Test item</th>
<th>Condition</th>
<th>Judgment</th>
<th>Note1</th>
</tr>
</thead>
<tbody>
<tr>
<td>High temperature and humidity</td>
<td>① High temperature and humidity (Operation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>② Display data is black.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat cycle</td>
<td>① -20 ± 3°C...1 hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>② 70 ± 3°C...1 hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>③ 50 cycles, 4 hours/cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>④ Display data is black.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal shock</td>
<td>① -30 ± 3°C...30 minutes</td>
<td></td>
<td>No display malfunctions</td>
</tr>
<tr>
<td>(Non operation)</td>
<td>② 80 ± 3°C...30 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>③ 100 cycles, 1 hour/cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>④ Temperature transition time is within 5 minutes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low pressure</td>
<td>① 15kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Non operation)</td>
<td>② -30 ± 3°C...24 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>③ 80 ± 3°C...24 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low pressure</td>
<td>① 53.3 kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Operation)</td>
<td>② -30 ± 3°C...24 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>③ 70 ± 3°C...24 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD</td>
<td>① 150pF, 150Ω, ±10kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Operation)</td>
<td>② 3 places on a panel surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>③ 10 times each places at 1 sec interval</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dust</td>
<td>① Sample dust: No. 15 (by JIS-Z8901)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Operation)</td>
<td>② 15 seconds stir</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>③ 8 times repeat at 1 hour interval</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td>① 30 to 100Hz, 19.6m/s²</td>
<td></td>
<td>No display malfunctions</td>
</tr>
<tr>
<td>(Operation)</td>
<td>② 30 minutes/cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>③ X, Y, Z direction</td>
<td></td>
<td>No physical damages</td>
</tr>
<tr>
<td></td>
<td>④ 1 times each directions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical shock</td>
<td>① 3,920m/s², 2.5ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Non operation)</td>
<td>② ±X, ±Y, ±Z direction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>③ 1 times each directions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note1: Display and appearance are checked under environmental conditions equivalent to the inspection conditions of defect specifications.
6. PRECAUTIONS

6.1 MEANING OF CAUTION SIGNS

The following caution signs have very important meaning. Be sure to read "6.2 CAUTIONS" and "6.3 ATTENTIONS", after understanding these contents!

⚠️ This sign has the meaning that customer will be injured by himself or the product will sustain a damage, if customer has wrong operations.

❗️ This sign has the meaning that customer will get an electrical shock, if customer has wrong operations.

⚠️ This sign has the meaning that customer will be injured by himself, if customer has wrong operations.

6.2 CAUTIONS

⚠️ Do not touch the working backlight. There is a danger of an electric shock.

⚠️ Do not touch the working backlight. There is a danger of burn injury.

⚠️ Do not shock and press the LCD panel and the backlight! There is a danger of breaking, because they are made of glass. (Shock: To be not greater 3,920m/s² and to be not greater 2.5ms)

6.3 ATTENTIONS

6.3.1 Handling of the product

① Take hold of both ends without touching the FPC when the product (LCD module) is picked up from the tray.
② Do not hook nor pull the FPC in order to avoid any damage.
③ When the product is put on the table temporarily, display surface must be placed downward.
④ When handling the product, take the measures of electrostatic discharge with such as earth band, ionic shower and so on, because the product may be damaged by electrostatic.
⑤ The product must be installed and/or handled without any stress such as bends or twist. Bends, twist or any stress to any portion may cause display failures. And also do not put heavy or hard materials on the product.
⑥ Do not hit or rub the surface of touch panel with hard materials, because it is easily scratched. (Touch panel pencil-hardness: 3H)
⑦ When cleaning the T/P surface, wipe it with a soft dry cloth.
⑧ Do not push nor pull the FPC while the product is working.
⑨ Do not fold the FPC. When the FPC is folded, pattern disconnection may be caused. In case of bending FPC, the minimum curvature (R) must be more than 1.0 mm.
⑩ When installing the product, do not contact a conductor such as a metal to the FPC excluding the terminal area. There is a risk of short circuit which is caused by breakage of insulation layer of the FPC.
When installing the product, apply the waterproof design to avoid going of water into the product.

If the product is subjected to direct sunlight for a long time, touch panel transmission may be degraded.

6.3.2 Environment

1. Do not operate or store in high temperature, high humidity, dewdrop atmosphere or corrosive gases. Keep the product in packing box with antistatic pouch in room temperature to avoid for dusts and sunlight, when storing the product.
2. In order to prevent dew condensation occurring by temperature difference, the product packing box should be opened after enough time being left under the environment of an unpacking room. Evaluate the leaving time sufficiently because a situation of dew condensation occurring is changed by the environmental temperature and humidity. (Recommended leaving time: 6 hours or more with packing state)
3. Do not operate in high magnetic field. Circuits may be broken down by it.
4. This product is not designed as radiation hardened.

6.3.3 Characteristics

The following items are neither defects nor failures.

1. Response time, luminance and color may be changed by ambient temperature.
2. Display mura, flicker, vertical seam or small spot may be observed depending on display patterns.
3. Do not display the fixed pattern for a long time because it may cause image sticking.
4. Optical characteristics may be changed depending on input signal timings.
5. Touch panel film has polarizing characteristic. And the polarizer characteristics differ among products. Therefore, when seeing the displays through the other polarizing material (for example polarizing sunglasses), some displays can not be seen and some displays look different color darker because of polarizer characteristic mismatching between touch panel film and the other polarizing material.

6.3.4 Other

1. All GND terminals should be used without any non-connected lines.
2. Do not disassemble the product.
3. Pack the product with original shipping package, in order to avoid any damages during transportation, when returning the product to NEC.
4. When installing the product to customer equipment, do not apply any stress to the rear side of the product, FPC, A area, Soldering Area and Mounting Area. If not, it may cause display un-uniformity or LCD panel separation or break down of the product.
7. OUTLINE DRAWINGS

Pin No.	Symbols	Pin No.	Symbols
1 | GND | 25 | D20 |
2 | GND | 26 | D21 |
3 | VCC | 27 | D22 |
4 | VCC | 28 | D23 |
5 | VCC | 29 | D24 |
6 | VCC | 30 | D25 |
7 | GND | 31 | GND |
8 | /RESET | 32 | SCL |
9 | HSYNC | 33 | SI |
10 | VSYNC | 34 | RSVD |
11 | CLK | 35 | /US |
12 | GND | 36 | VCOMIN |
13 | D00 | 37 | S.C. |
14 | D01 | 38 | GND |
15 | D02 | 39 | XL |
16 | D03 | 40 | VD |
17 | D04 | 41 | XR |
18 | D05 | 42 | VY |
19 | D10 | 43 | GND |
20 | D11 | 44 | ANSDE |
21 | D12 | 45 | CATHODE |
22 | D13 | |
23 | D14 | |
24 | D15 | |

Note1: The values in parentheses are for reference.

Note2: When installing the product to customer equipment, do not apply any stress to the rear side of the product, FPC, A area, Soldering Area and Mounting Area. If not, it may cause display un-uniformity or LCD panel separation or break down of the product.

Note3: While the product is working, do not contact a conductor such as a metal to the Soldering Area and Mounting Area of the FPC.
8. RECOMMENDED DESIGN OF FRONT BEZEL

Design guidance for the front bezel and the spacer

1. Front Bezel opening design
 a. Please place the front bezel opening to maintain the operation by a stylus pen inside the T/P response area.
 b. Any pressures in the area between T/P response area and T/P viewing area are prohibited.
 Please use the appropriate material as the front bezel.

2. Spacer design
 a. Please put the spacer, a cushion, on the front bezel. Do not use a double-sided adhesive tape because it adheres on the touch panel surface.
 b. Please position the spacer over the Spacer area to avoid a “short”.