NEC LCD Technologies, Ltd.

TFT COLOR LCD MODULE

NL2432HC22-50K

8.9cm (3.5 Type) QVGA

All information is subject to change without notice. Please confirm the sales representative before starting to design your system.

INTRODUCTION

The Copyright to this document belongs to NEC LCD Technologies, Ltd. (hereinafter called "NEC"). No part of this document will be used, reproduced or copied without prior written consent of NEC.

NEC does and will not assume any liability for infringement of patents, copyrights or other intellectual property rights of any third party arising out of or in connection with application of the products described herein except for that directly attributable to mechanisms and workmanship thereof. No license, express or implied, is granted under any patent, copyright or other intellectual property right of NEC.

Some electronic parts/components would fail or malfunction at a certain rate. In spite of every effort to enhance reliability of products by NEC, the possibility of failures and malfunction might not be avoided entirely. To prevent the risks of damage to death, human bodily injury or other property arising out thereof or in connection therewith, each customer is required to take sufficient measures in its safety designs and plans including, but not limited to, redundant system, fire-containment and anti-failure.

The products are classified into three quality grades: "Standard", "Special", and "Specific" of the highest grade of a quality assurance program at the choice of a customer. Each quality grade is designed for applications described below. Any customer who intends to use a product for application other than that of Standard quality grade is required to contact an NEC sales representative in advance.

The **Standard** quality grade applies to the products developed, designed and manufactured in accordance with the NEC standard quality assurance program, which are designed for such application as any failure or malfunction of the products (sets) or parts/components incorporated therein a customer uses are, directly or indirectly, free of any damage to death, human bodily injury or other property, like general electronic devices.

Examples: Computers, office automation equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment, industrial robots, etc.

The **Special** quality grade applies to the products developed, designed and manufactured in accordance with an NEC quality assurance program stricter than the standard one, which are designed for such application as any failure or malfunction of the products (sets) or parts/components incorporated therein a customer uses might directly cause any damage to death, human bodily injury or other property, or such application under more severe condition than that defined in the Standard quality grade without such direct damage.

Examples: Control systems for transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, medical equipment not specifically designed for life support, safety equipment, etc.

The **Specific** quality grade applies to the products developed, designed and manufactured in accordance with the standards or quality assurance program designated by a customer who requires an extremely higher level of reliability and quality for such products.

Examples: Military systems, aircraft control equipment, aerospace equipment, nuclear reactor control systems, medical equipment/devices/systems for life support, etc.

The quality grade of this product is the "Standard" unless otherwise specified in this document.

CONTENTS

INTRODUCTION	2
1. OUTLINE	4
1.1 STRUCTURE AND PRINCIPLE	4
1.2 APPLICATION	4
1.3 FEATURES	4
2. GENERAL SPECIFICATIONS	5
3. BLOCK DIAGRAM	6
4. DETAILED SPECIFICATIONS	8
4.1 MECHANICAL SPECIFICATIONS	
4.2 ABSOLUTE MAXIMUM RATINGS	
4.3 ELECTRICAL CHARACTERISTICS	
4.4 POWER SUPPLY VOLTAGE SEQUENCE	
4.5 SETTING OF THE INTERNAL REGISTER	
4.6 INTERFACE PIN CONNECTIONS	
4.7 DISPLAY COLORS AND INPUT DATA SIGNALS	
4.8 DISPLAY POSITIONS	
4.9 SCANNING DIRECTIONS	
4.10 INPUT SIGNAL TIMINGS	
4.10.1 RGB interface (Ta= 25°C, VCC= 3.0V)	
4.10.2 Serial interface (Ta= 25°C, VCC= 3.0V)	
4.11 OPTICAL CHARACTERISTICS	
5. ESTIMATED LUMINANCE LIFETIME	
6. RELIABILITY TESTS	
7. PRECAUTIONS	
7.1 MEANING OF CAUTION SIGNS	
7.2 CAUTIONS	
7.3 ATTENTIONS	
7.3.1 Handling of the product	
7.3.2 Environment	
7.3.3 Characteristics	
7.3.4 Others	
9. RECOMMENDED DESIGN OF FRONT BEZEL	
7. RECOMMENDED DESIGN OF FRONT DELEL	.JU

1. OUTLINE

1.1 STRUCTURE AND PRINCIPLE

Color LCD module NL2432HC22-50K is composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array, touch panel (T/P) and a backlight.

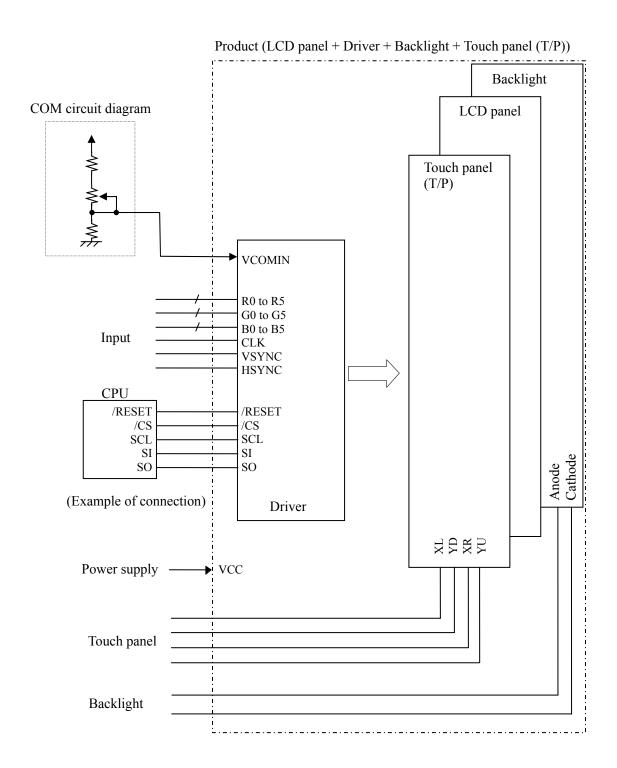
The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a color-filter glass substrate.

Color (Red, Green, Blue) data signals from a host system (e.g. signal generator, etc.) are modulated into best form for active matrix system by a controller, and sent to the driver LSIs which drive the individual TFT arrays.

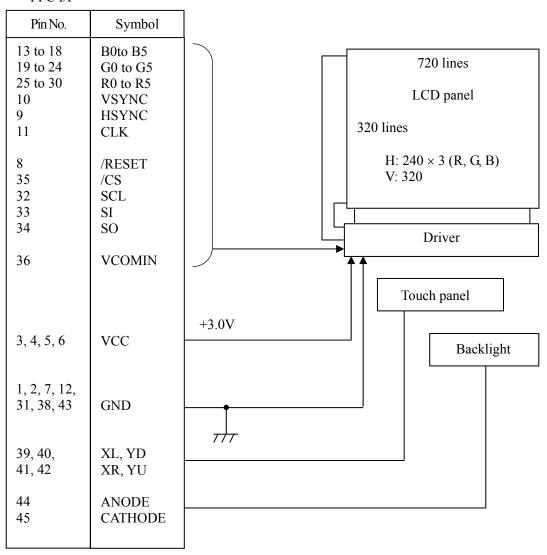
The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Color images are created by regulating the amount of transmitted light through the TFT array of red, green and blue dots.

1.2 APPLICATION

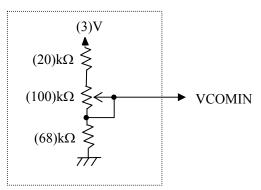
• PDAs


1.3 FEATURES

- Adoption of SR-NLT (Super-Reflective Natural Light TFT) (Transflective type)
- Long life Backlight and touch panel attached
- High luminance
- High contrast
- Including LCD controller and power supply
- 6-bit digital RGB signals
- Compliance with the European RoHS directive (2002/95/EC)


2. GENERAL SPECIFICATIONS

Display area	53.64 (H) × 71.52 (V) mm				
Diagonal size of display	8.9cm (3.5 inches)				
Drive system	a-Si TFT active matrix				
Display color	262,144 colors				
Pixel	240 (H) × 320 (V) pixels				
Pixel arrangement	RGB (Red dot, Green dot, Blue dot) vertical stripe				
Dot pitch	0.0745 (H) × 0.2235 (V) mm				
Pixel pitch	0.2235 (H) × 0.2235 (V) mm				
Module size	63.5 (H) × 85.0 (V) × 4.2 (D) mm (typ.)				
Weight	41 g (typ.)				
Touch Polarizer surface	Clear				
Touch panel Polarizer pencil-hardness	3H (min.) [by JIS K5600]				
Luminance	At $IL=15mA$, with Touch panel $200cd/m^2$ (typ.)				
Reflection ratio	15% (typ.) (with Touch panel)				
Contrast ratio	At transmissive mode, IL= 15mA, with Touch panel 150:1 (typ.) At reflective mode, with Touch panel 15:1 (typ.)				
Response time	$Ton+Toff (10\% \longleftrightarrow 90\%)$ 30 ms (typ., at transmissive mode) 16 ms (typ., at reflective mode)				
Designed viewing direction	Viewing direction without image reversal: down side (6 o'clock)				
Signal system	6-bit digital signals for data of RGB colors, Dot clock (CLK), Horizontal synchronous signal (HSYNC), Vertical synchronous signal (VSYNC), Serial interface signals (SPI correspondence) (/CS, SCL, SI, SO)				
Supply voltage	VCC: 3.0V (typ.)				
Power consumption	LCD panel: 50mW (typ.) Backlight: 225mW (typ., at IL= 15mA)				


3. BLOCK DIAGRAM

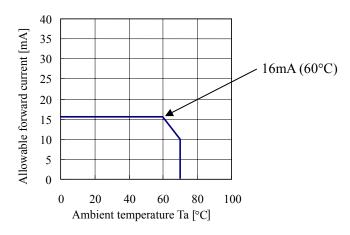
FPC I/F

Reference design of COM circuit

4. DETAILED SPECIFICATIONS

4.1 MECHANICAL SPECIFICATIONS

Parameter	Specification		Unit
Module size	$63.5 \pm 0.3 \text{ (W)} \times 85.0 \pm 0.3 \text{ (H)} \times 4.2 \pm 0.3 \text{ (D)}$ Note1	Note2	mm
Display area	53.64 (H) × 71.52 (V)	Note2	mm
Weight	41 (typ.), 43 (max.)		g


Note1: Excluding FPC

Note2: See "8. OUTLINE DRAWINGS".

4.2 ABSOLUTE MAXIMUM RATINGS

Parameter		Symbol	Rating	Unit	Remarks
Supply volta	Supply voltage		VCC -0.5 to +3.5		Ta= 25°C
Logic input	voltage	VI	-0.5 to VCC+0.5	V	Logic signals
	Reverse voltage	VR	≤ 25	V	T. 250C
	Power dissipation	PD	≤ 595	mW	Ta= 25°C
Backlight	Forward current	IL	Note1	mA	-
	Pulse forward current	IFP	100	mA	Pulse width ≤ 10 ms, Duty $\leq 1/10$
Storage tem	Storage temperature		-3 0 to +80	°C	-
Operating to	emperature	Тор	-20 to +70	C	Product surface Note2
			≤ 95		Ta≤ 40°C
Relative hu	nidity Note3	RH	≤ 85	%	40°C <ta≤ 50°c<="" td=""></ta≤>
	110005		≤ 70		50°C <ta≤ 55°c<="" td=""></ta≤>
Absolute hu	midity Note3	АН	≤ 73 Note4	g/m ³	Ta> 55°C
Storage altit	ude		≤ 13,600	m	-3 0°C ≤ Ta ≤ 80°C
Operating a	ltitude		≤ 4,850	m	$-20^{\circ}\text{C} \le \text{Ta} \le 70^{\circ}\text{C}$

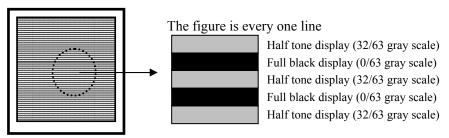
Note1: Allowable forward current

Note2: Measured at display area

Note3: No condensation

Note4: Water amount at Ta= 55°C and RH= 70%

4.3 ELECTRICAL CHARACTERISTICS


(1) Logic/ LCD driving

 $(Ta=25^{\circ}C)$

Parameter	Symbol	min.	typ.	max.	Unit	Remarks	
Logic supply voltage	VCC	2.85	3.0	3.15	V	-	
Logic input high voltage	VIH	0.8VCC	-	VCC	V	Logio signal	
Logic input low voltage	VIL	0	-	0.2VCC	V	Logic signal	
COM high voltage	COM/H	-	1.8	-	V	at VCC= 3.0V Note1	
	ICC	-	16.5	26		at VCC= 3.0V Note2	
VCC supply current	ICCs	-	0.2	1.0	mA	Stand-by mode at VCC= 3.0V Note2	

Note1: The optimum value for COM/H is in the range of 1.3 V to 2.3 V. The optimum COM/H is different each product.

Recommended adjustment display for COM/H

Note2: CLK= 5.0MHz, HSYNC= 19.53kHz, VSYNC= 60Hz, Checkered flag pattern (by EIAJ ED-2522)

(2) Backlight

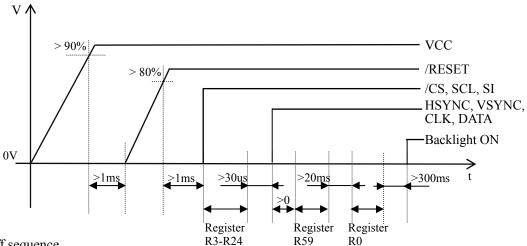
 $(Ta=25^{\circ}C)$

Parameter	Symbol	min.	typ.	max.	Unit	Remarks
Forward Current	IL	-	15	16	mA	-
Forward Voltage	VL	-	15	16.5	V	at IL= 15mA

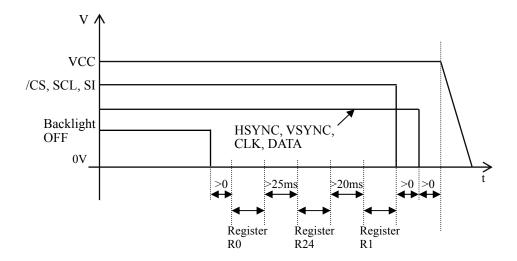
(3) Touch panel

 $(Ta=25^{\circ}C)$

Parameter	Symbol	min.	typ.	max.	Unit	Remarks
Touch panel input voltage	Vtp	-	-	5.5	V	-
Resistor between pins(XL-XR)	Rx	190	-	500	Ω	-
Resistor between pins(YU-YD)	Ry	140	-	540	Ω	-
Line linearity (X direction)	Xlin	-	-	1.5	%	Note1
Line linearity (Y direction)	Ylin	-	-	1.5	%	Note1
Insulation resistance	Rins	20	-	-	ΜΩ	at DC 25V
Static Capacitance	Ctp	-	-	100	nF	-
Chattering	Chat	-	-	10	ms	Note1
Operation starting force	Ost	_	-	0.784	N	Note1, Note2
				80	gf	
Surface hardness	Hs	3	-	-	Н	Pencil hardness [by JIS K5600]
	Lhp	1,000,000	-	-	times	Polyacetal stylus pen: R0.8mm Load: 2.45N(250gf)
Point hitting life	Lhr	1,000,000		•	times	Silicon rubber: R8mm, Hardness 60° Load: 2.94N(300gf)
Line writing life	Lwl	100,000	-	-	times / one direction	Polyacetal stylus pen: R0.8mm Load: 2.45N(250gf), 300mm/s, 35mm, 0.5mm inside of Respo -nse area.


Note1: Input methods are a Finger or R0.8mm Polyacetal Stylus Pen. Input area is Display area.

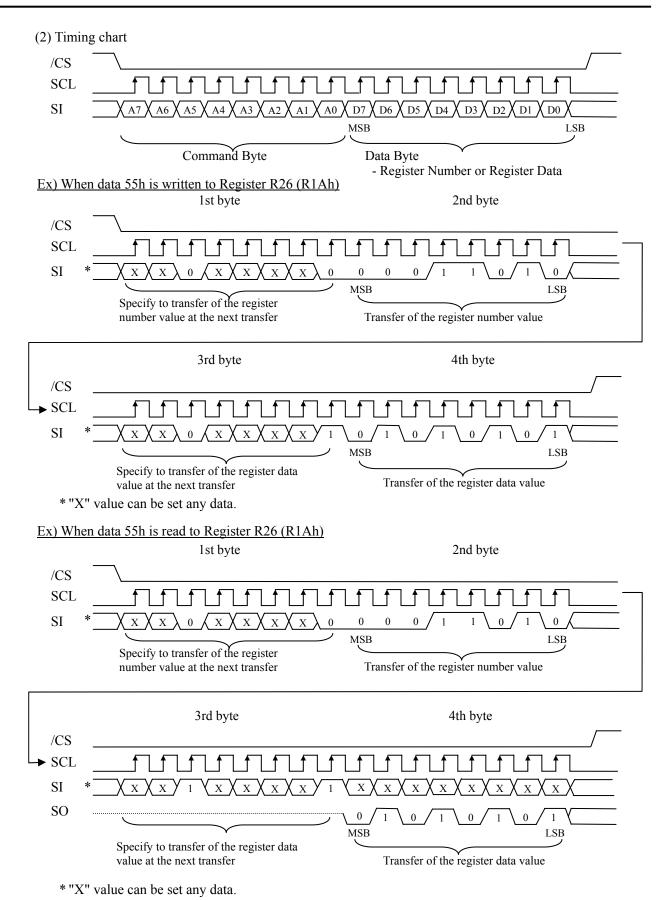
Note2: Test condition


Resistance between X and Y axis must be $2k\Omega$ or less, and the test voltage is 5V DC.

4.4 POWER SUPPLY VOLTAGE SEQUENCE

(1) Power On sequence

(2) Power Off sequence



4.5 SETTING OF THE INTERNAL REGISTER

Initially, the internal register of driver is undefined. Therefore, the following procedure is required. After initialization is done by the /REST pin, the register must be written using /CS, SCL and SI pins. To check or confirm the written register data, you can read it using SO pin. The setting method is as follows.

(1) Command Byte Function

Bits	Functions	Discription
A7	-	-
A6	-	-
A5	Read / Write	0:Write 1:Read
A4	-	-
A3	-	-
A2	-	-
A1	-	-
A0	Register Number / Data	0:Register Number 1:Register Data

Note1: During 32-bit transfer of the Register Data, /CS pin (Pin No.35) must be maintained active.

(3) Command sequence

① Power On

Sequence	Register Number	Data	Comment	Sequence	Register Number	Data	Comment
1	Power On			26	R76	01h	-
2	1ms min. w	ait.		27	R77	01h	-
3	Reset by the	e /RESET pi	in (Pin No. 8).	28	R80	00h	-
4	1ms min. w	ait after /RE	ESET↑.	29	R81	00h	-
5	R3	01h	-	30	R82	2Eh	-
6	R1	00h	-	31	R83	C4h	-
7	R100	0Fh	-	32	R86	15h	-
8	R101	3Fh	-	33	R87	EDh	-
9	R102	3Fh	-	34	R95	3Fh	-
10	R103	00h	-	35	R96	22h	-
11	R104	00h	-	36	R25	76h	-
12	R105	30h	-	37	R26	54h	-
13	R106	04h	-	38	R27	67h	-
14	R107	37h	-	39	R28	60h	-
15	R108	17h	-	40	R29	04h	
16	R109	00h	-	41	R30	1Ch	-
17	R110	40h	-	42	R31	A9h	-
18	R111	30h	-	43	R32	00h	-
19	R112	04h	-	44	R33	20h	-
20	R113	37h	-	45	R24	77h	-
21	R114	17h	-	46	30 μs min	. wait.	
22	R115 00h -			47	Data input	start	
23	R116	40h	-	48	R59	01h	-
24	R2	40h	-	49	20 ms mir	ı. wait.	
25	R75	04h	-	50	R0	00h	-

② Power Off

Sequence	Register Number	Data	Comment			
1	R0	08h	-			
2	25 ms min. wait.					
3	R24	00h	-			
4	20 ms min	20 ms min. wait.				
5	R1	08h	-			
6	Data Off					
7	Power Off					

3 Standby

Sequence	Register Number	Data	Comment			
1	R0	08h	-			
2	25 ms min	25 ms min. wait.				
3	R24	00h	-			
4	20 ms min. wait.					
5	R1	08h	-			

4 Wake Up

Sequence	Register Number	Data	Comment		
1	R1	00h	-		
2	R24	77h	-		
3	30 μs min. wait.				
4	R0	00h	-		

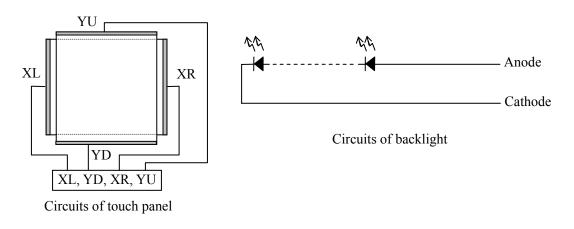
Note1: Be sure to perform reset by the /RESET pin (Pin No. 8) every power-on Note2: Write the Register Data every power-on, because the data are not stored in the product.

4.6 INTERFACE PIN CONNECTIONS

CN1 (FPC)

Adaptable socket: FH23-45S-0.3SHW(05) (Hirose Electric Co., Ltd.(HRS))

Pin No.	Symbols	Function	ns	Pin No.	Symbols	Functions
1	GND	Ground	Note1	25	R0	Red data (LSB)
2	GND	Ground	Note1	26	R1	Red data
3	VCC			27	R2	Red data
4	VCC	Da	Nata 1	28	R3	Red data
5	VCC	Power supply	Note1	29	R4	Red data
6	VCC			30	R5	Red data (MSB)
7	GND	Ground	Note1	31	GND	Ground Note1
8	/RESET	Reset		32	SCL	Serial clock
9	HSYNC	Horizontal synchron	ous signal	33	SI	Serial input
10	VSYNC	Vertical synchronous	s signal	34	SO	Serial output
11	CLK	Dot clock		35	/CS	Chip selection
12	GND	Ground	Note1	36	VCOMIN	COM high voltage input
13	В0	Blue data (LSB)		37	N.C.	Keep this pin Open.
14	B1	Blue data		38	GND	Ground Note1
15	B2	Blue data		39	XL	Horizontal terminal (Left side)
16	В3	Blue data		40	YD	Vertical terminal (Down side)
17	B4	Blue data		41	XR	Horizontal terminal (Right side)
18	B5	Blue data (MSB)		42	YU	Vertical terminal (Up side)
19	G0	Green data (LSB)		43	GND	Ground Note1
20	G1	Green data		44	ANODE	LED voltage (Anode)
21	G2	Green data		45	CATHODE	LED voltage (Cathode)
22	G3	Green data			•	•
23	G4	Green data				
24	G5	Green data (MSB)		1		


24 G5 Green data (MSB)

Note1: All GND terminals should be used without any non-connected lines.

Note2: Do not fold the FPC. When folding the FPC, pattern disconnection may occur. In case of bending FPC, the minimum curvature (R) must be more than 1.0 mm.

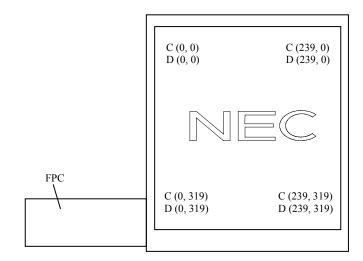
Description of terminals

Terminals	Description
	When /RESET is L, an internal reset is performed.
/RESET	The reset operation is executed at the /RESET signal level.
	Be sure to perform reset by this pin every power-on.
/CS	This pin is used for chip selection signals. When /CS= L, the chip is active and can
703	perform data I/O operations including command and data I/O.
SCL	This pin is clock input of serial interface.
SI	This pin is data input of serial interface.
SO	This pin is data output of serial interface.
VCOMIN	This pin is the Common high voltage. The voltage needs to be adjusted.
VCOMIN	See "3 BLOCK DIAGRAM - Reference design of COM circuit".
YU,XR,YD,XL	Refer to the below "Circuits of touch panel".
ANODE, CATHODE	Refer to the below "Circuits of backlight".

4.7 DISPLAY COLORS AND INPUT DATA SIGNALS

This product can display 262,144 colors with 64 gray scales. Also the relation between display colors and input data signals is as follows.

Display	colors												High 1						
Dispiny	•01015	R 5	R 4	R 3	R 2	R 1	R 0	G 5	G4	G3	G2	G 1	G0	В5	B 4	В3	B 2	B 1	B 0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
lors	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
00	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
Basic colors	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
B	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
scal	dark	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
ay	\uparrow				:					:	:						:		
Red gray scale	\downarrow				:					:	:						:		
Rec	bright	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
		1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ale		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
' SC	dark	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Green gray scale	↑									:	:						:		
su g	\downarrow									:	:						:		
ìrec	bright	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
)	_	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
le		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
sca	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue gray scale	↑				:					:	:						:		
e gi	\downarrow				:	_	_				:	_	_				:	_	
Blu	bright	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
		0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1


4.8 DISPLAY POSITIONS

The following table is the coordinates per pixel (See figure of "4.9 SCANNING DIRECTIONS".).

C	C(0,0)	C (1,	0)				
R	G I	B R G	В				
		1					
C(_	0, 0)	C(1, 0)	• • •	C(X, 0)	• • •	C(238, 0)	C(239, 0)
C(0, 1)	C(1, 1)	• • •	C(X, 1)	• • •	C(238, 1)	C(239, 1)
	•	•	•	•	•	•	•
	•	•	•	•	•	•	•
C(0, Y)	C(1, Y)	•••	C(X, Y)	•••	C(238, Y)	C(239, Y)
	•	•	•	•	•	•	•
	•	•	•	•	•	•	•
C(0, 318)	C(1, 318)	• • •	C(X, 318)	• • •	C(238, 318)	C(239, 318)
C(0, 319)	C(1, 319)	• • •	C(X, 319)	• • •	C(238, 319)	C(239, 319)

4.9 SCANNING DIRECTIONS

The following figures are seen from a front view.

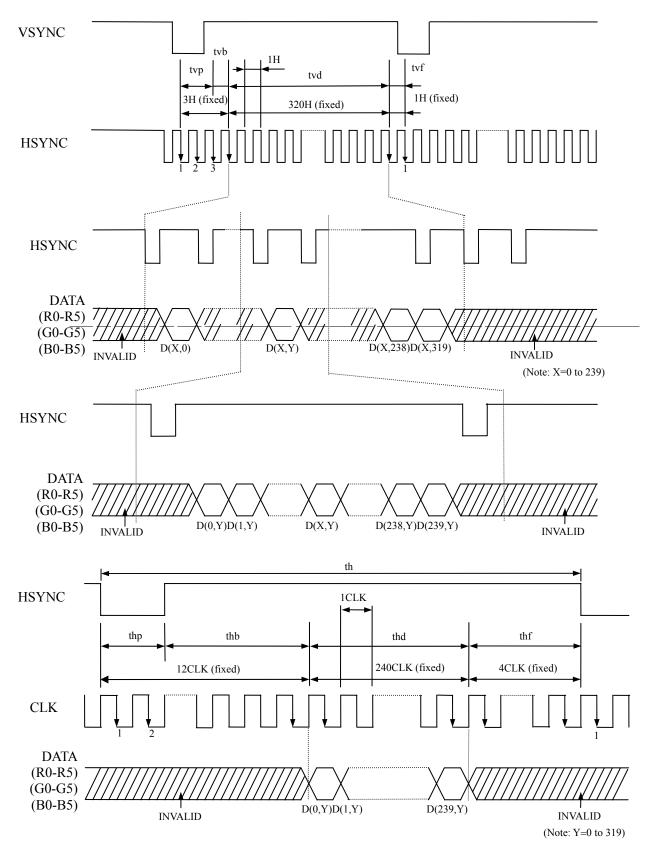
Note1: Meaning of C(X, Y) and D(X, Y)

C (X, Y): The coordinates of the display position (See "4.8 DISPLAY POSITIONS".)

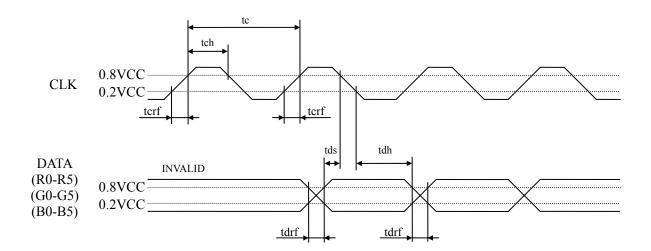
D (X, Y): The data number of input signal for LCD panel

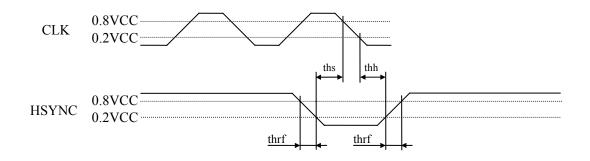
4.10 INPUT SIGNAL TIMINGS

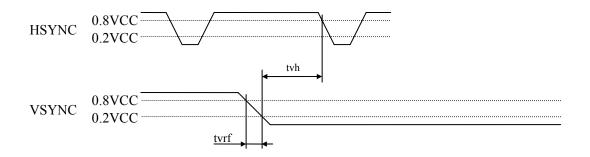
4.10.1 RGB interface (Ta= 25°C, VCC= 3.0V)


(1) Timing characteristics

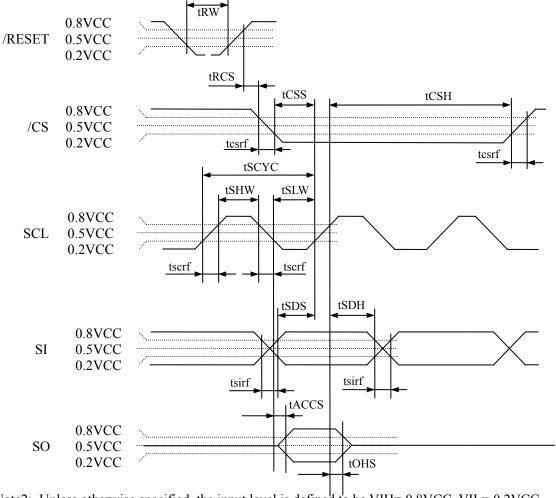
	Parameter		Symbol	min.	typ.	max.	Unit	Remarks
	Frequency		1/tc	4.81	5.0	5.12	MHz	200ns (typ.)
CLK	Duty		tcd	0.4	0.5	0.6	-	
	Rise time, Fall	Rise time, Fall time		-	-	15	ns	-
DATA	CLK-DATA	Setup time	tds	15	-	-	ns	
(R0-R5) (G0-G5)	CLK-DAIA	Hold time	tdh	15	-	-	ns	-
(B0-B5)	Rise time, Fall	time	tdrf	-	-	15	ns	
	Cycle		th	50.0	51.2	53.2	μs	19.53kHz (typ.)
	Cycle		uii		256		CLK	
	Display period		thd		240		CLK	
	Front-porch		thf		4		CLK	
HSYNC	Pulse width		thp	2	8	-	CLK	
	Back-porch		thb		4		CLK	-
	CLK-	Setup time	ths	15	-	ı	ns	
	HSYNC	Hold time	thh	15	-	ı	ns	
	Rise time, Fall time		thrf	-	-	15	ns	
	Cycle		tv	16.2	16.59	17.24	ms	60Hz (typ.)
	Cycle		tv		324		Н	
	Display period		tvd		320		Н	
VSYNC	Front-porch		tvf		1		Н	
VSTIVE	Pulse width	Pulse width		1	2	-	Н	-
	Back-porch		tvb		1		Н	
	VSYNC-HSYN	NC timing	tvh	15	-	-	ns	
	Rise time, Fall	time	tvrf	-	-	15	ns	


Note1: Definition of parameters is as follows. tc= 1CLK, tcd= tch/tc, th= 1H


Note2: All parameters should be kept within the specified range.


(2) Input signal timing chart

Note1: Unless otherwise specified, the input level is defined to be VIH= 0.8VCC, VIL= 0.2VCC.


Note1: Unless otherwise specified, the input level is defined to be VIH= 0.8VCC, VIL= 0.2VCC.

4.10.2 Serial interface (Ta= 25°C, VCC= 3.0V)

(1) Timing characteristics

Parameter	Symbol	Condition	min.	typ.	max.	Unit	Remarks
Serial clock cycle	tSCYC	READ	450	-	-	ns	-
Serial Clock Cycle	tocre	WRITE	100	-	-	ns	-
SCL high level pulse width	tSHW	READ	210	-	-	ns	-
SCL night level pulse width	ISHW	WRITE	40	-	-	ns	-
SCL low level pulse width	tSLW	READ	210	1	1	ns	-
SCL low level pulse width	ISLW	WRITE	40	-	-	ns	-
/CS rise time, fall time	tesrf	/CS	-	-	15	ns	-
SCL rise time, fall time	tscrf	SCL	-	-	15	ns	-
SI rise time, fall time	tsirf	SI	-	-	15	ns	-
/CS setup time	tCSS	/CS	50	-	-	ns	-
/CS hold time	tCSH	/CS	30	-	-	ns	-
Data setup time	tSDS	SI	30	-	-	ns	-
Data hold time	tSDH	SI	15	-	-	ns	-
Reset pulse width	tRW	/RESET	2	-	-	μs	-
/RESET↑ to /CS time	tRCS	/RESET↑ to /CS	1	-	-	ms	-
Access time	tACCS	SO	-	ı	180	ns	-
Output disable time	tOHS	SO	-	-	100	ns	-

Note1: All parameters should be kept within the specified range.

4.11 OPTICAL CHARACTERISTICS

<Backlight turning OFF>

(Note1, Note3, Note4)

Parameter	Condition	Symbol	min.	typ.	max.	Unit	Remarks
Reflection ratio	White, at center	RE	8	15	-	%	Note6
Contrast ratio	White/Black, at center	CR	10	15	-	-	Note7

Reference data

(Note1, Note3, Note4)

Parameter	Condit	ion	Symbol	min.	typ.	max.	Unit	Remarks	
Chromaticity	Whit	Wx	-	0.32	-	-			
coordinates	Wint	Wy	ı	0.34	ı	ı	Note8		
Color gamut	at center, against NT	SC color space	С	-	5	-	%		
Dagnanga tima	White to black	90%→ 10%	Ton	-	7	14		Note9	
Response time	Black to white 10%→ 90%		Toff	-	9	18	ms	Note10	

<Backlight turning ON>

(Note2, Note3, Note5)

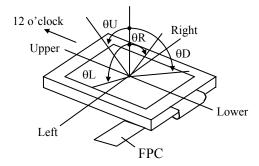
Parameter	Condition	Symbol	min.	typ.	max.	Unit	Remarks
Luminance	White at center $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	L	150	200	-	cd/m ²	-
Contrast ratio	White/Black at center $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	CR	75	150	-	-	Note7
Luminance uniformity	White $\theta R=0^{\circ}$, $\theta L=0^{\circ}$, $\theta U=0^{\circ}$, $\theta D=0^{\circ}$ Maximum luminance: 100%	LU	60	70	-	%	Note11

Reference data

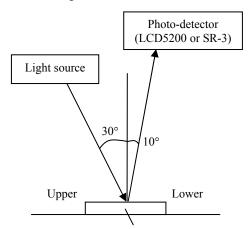
(Note2, Note3, Note5)

								, ,	
Parameter		Condit	ion	Symbol	min.	typ.	max.	Unit	Remarks
Chromaticity coordinates		White		Wx	0.25	0.30	0.35	-	
				Wy	0.27	0.32	0.37	-	Note8
Color gamut		$\theta R=0^{\circ}, \theta L=0^{\circ}, \theta U=0^{\circ}, \theta D=0^{\circ}$ at center, against NTSC color space		С	1	40	-	%	
D		White to black 90%→ 10%		Ton	-	7	14	ma	Note9
Response t	iiiie	Black to white 10%→ 90%		Toff	-	23	46	ms	Note10
	Right	$\theta U=0^{\circ}, \theta D=0^{\circ}, CR \ge 5$ $\theta U=0^{\circ}, \theta D=0^{\circ}, CR \ge 5$		θR	-	35	-	0	
Viewing angle	Left			θL	-	35	-	0	
	Up	θR= 0°, θL=	0°, CR≥ 5	θU	-	35	-	0	-
	Down	θR= 0°, θL=	0°, CR≥ 5	θD	-	35	-	0	

Note1: Measurement conditions are as follows.

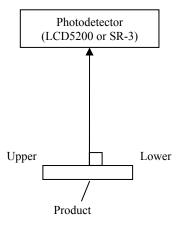

Ta= 25 °C, VCC= 3.0V

Note2: Measurement conditions are as follows.


Ta= 25 °C, VCC= 3.0V, IL= 15mA

Note3: Definition of viewing angles

Normal axis (Perpendicular)



Note4: In reflective mode (Backlight turning OFF), Reflection ratio, Contrast ratio, Chromaticity coordinates and Color gamut are measured as follows.

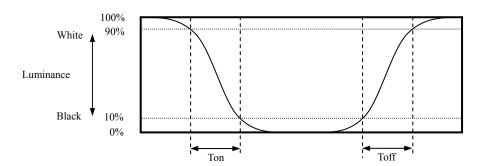
Product or Standard diffused reflector

Note5: In transmissive mode (Backlight turning ON), Luminance, Contrast ratio, Chromaticity coordinates and Color gamut are measured as follows.

Note6: Definitions of reflectance ratio

The reflection ratio is calculated by using the following formula.

Reflection (RE) =
$$\frac{\text{Luminance of reflected light at white screen}}{\text{Luminance of standard diffused reflector}} \times 100$$

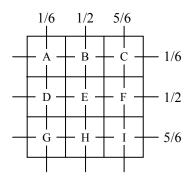

Note7: Definition of contrast ratio

The contrast ratio is calculated by using the following formula.

Note8: The White chromaticity coordinates are deviated by the LED deviation in addition to color filter deviation.

Note9: Definition of response times

Response time is measured at the time when the luminance changes from "white" to "black", or "black" to "white" on the same screen point, by photo-detector. Ton is the time when the luminance changes from 90% down to 10%. Also Toff is the time when the luminance changes from 10% up to 90% (See the following diagram.).



Note10: Product surface temperature: Top= 25°C

Note11: Definition of luminance uniformity

Luminance uniformity is calculated by using the following formula.

Luminance uniformity (LU) =
$$\frac{\text{Minimum luminance from A to I}}{\text{Maximum luminance from A to I}} \times 100$$

5. ESTIMATED LUMINANCE LIFETIME

The luminance lifetime is the time from initial luminance to half-luminance.

This lifetime is the estimated value, and is not guarantee value.

	Condition	Estimated luminance lifetime (Life time expectancy) Note1, Note2, Note3	Unit
LED elementary substance	25°C (Ambient temperature of LED) Continuous operation, IL=15mA	33,000	h

Note1: Life time expectancy is mean time to half-luminance.

Note2: Estimated luminance lifetime is not the value for an LCD module but the value for LED elementary substance.

Note3: By ambient temperature, the lifetime changes particularly. Especially, in case the product works under high temperature environment, the lifetime becomes short.

6. RELIABILITY TESTS

Test item	Condition	Judgment	Note1
High temperature and humidity (Operation)	① 55 ± 2°C, RH = 85%, 240 hours ② Display data is black.		
Heat cycle (Operation)	 ① -20 ± 3°C1 hour 70 ± 3°C1 hour ② 50 cycles, 4 hours/cycle ③ Display data is black. 		
Thermal shock (Non operation)	 30 ± 3°C30 minutes 80 ± 3°C30 minutes 100 cycles, 1 hour/cycle Temperature transition time is within 5 minutes. 		
Low pressure (Non operation)	① 15kPa ② -30 ± 3°C24 hours ③ 80 ± 3°C24 hours	No display malfunctions	
Low pressure (Operation)	① 53.3 kPa ② -20 ± 3°C24 hours ③ 70 ± 3°C24 hours		
ESD (Operation)	 ① 150pF, 150Ω, ±10kV ② 3 places on a panel surface ③ 10 times each places at 1 sec interval 		
Dust (Operation)	 ① Sample dust: No. 15 (by JIS-Z8901) ② 15 seconds stir ③ 8 times repeat at 1 hour interval 		
Vibration (Operation)	 30 to 100Hz, 19.6m/s² 30 minutes/cycle X, Y, Z directions 1 times each directions 	No display malfunctions	
Mechanical shock (Non operation)	 3,920m/s², 2.5ms ±X, ±Y, ±Z directions 1 times each directions 	No physical damages	

Note1: Display and appearance are checked under environmental conditions equivalent to the inspection conditions of defect specifications.

7. PRECAUTIONS

7.1 MEANING OF CAUTION SIGNS

The following caution signs have very important meaning. Be sure to read "7.2 CAUTIONS" and "7.3 ATTENTIONS"!

This sign has the meaning that a customer will be injured or the product will sustain damage if the customer practices wrong operations.

This sign has the meaning that a customer will be injured if the customer practices wrong operations.

7.2 CAUTIONS

* Do not shock and press the LCD panel and the backlight! There is a danger of breaking, because they are made of glass. (Shock: Equal to or no greater than 3,920m/s² and equal to or no greater than 2.5ms)

7.3.1 Handling of the product

- ① Take hold of both ends without touching the FPC when the product (LCD module) is picked up from the tray.
- ② Do not hook nor pull the FPC in order to avoid any damage.
- 3 When the product is put on the table temporarily, display surface must be placed downward.
- 4 When handling the product, take the measures of electrostatic discharge with such as earth band, ionic shower and so on, because the product may be damaged by electrostatic.
- (5) The product must be installed and/or handled without any local stress such as bends or twist. Bends, twist or any local stress to any portion may cause display failures. And also do not put heavy or hard materials on the product.
- © Do not hit or rub the surface of touch panel with hard materials, because it is easily scratched. (Touch panel pencil-hardness: 3H)
- ① When cleaning the T/P surface, wipe it with a soft dry cloth.
- On not push or pull the FPC while the product is working.
- Do not fold the FPC. When the FPC is folded, pattern disconnection may be caused. In case of bending FPC, the minimum curvature (R) must be more than 1.0 mm.
- When installing the product, do not contact a conductor such as a metal to the FPC excluding the terminal area. There is a risk of short circuit which is caused by breakage of insulation layer of the FPC.
- (f) When installing the product, apply the waterproof design to avoid going of water into the product.
- ② Usually liquid crystals don't leak through the breakage of glasses because of the surface tension of thin layer and the construction of LCD panel. But, if you contact with liquid crystal by any chance, please wash it away with soap and water.

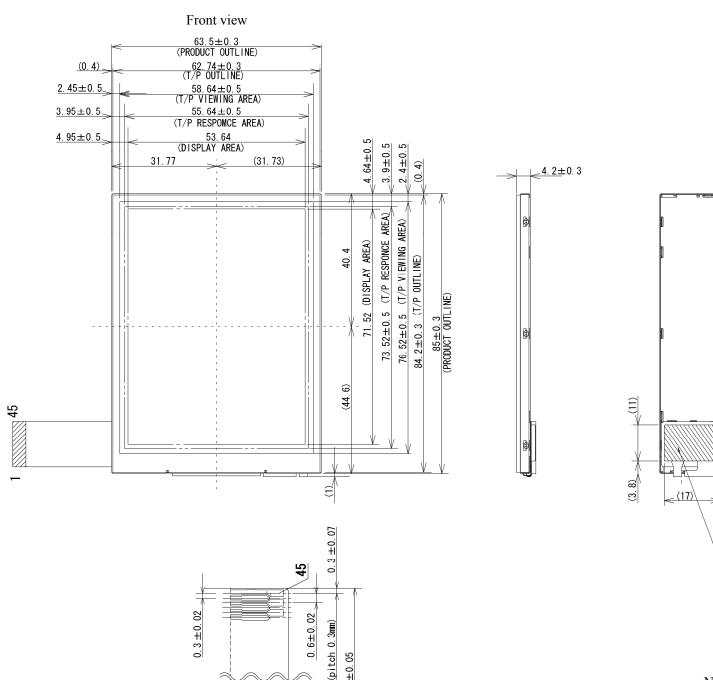
7.3.2 Environment

- ① Do not operate or store in high temperature, high humidity, dewdrop atmosphere or corrosive gases. Keep the product in packing box with antistatic pouch in room temperature to avoid dusts and sunlight, when storing the product.
- ② In order to prevent dew condensation occurred by temperature difference, the product packing box must be opened after enough time being left under the environment of an unpacking room. Evaluate the storage time sufficiently because dew condensation is affected by the environmental temperature and humidity. (Recommended leaving time: 6 hours or more with the original packing state after a customer receives the package)
- 3 Do not operate in high magnetic field. If not, circuit boards may be broken.
- 4 This product is not designed as radiation hardened.

7.3.3 Characteristics

The following items are neither defects nor failures.

- ① Response time, luminance and color may be changed by ambient temperature.
- ② Display mura, flickering, vertical streams or tiny spots may be observed depending on display patterns.
- 3 Do not display the fixed pattern for a long time because it may cause image sticking.
- 4 Optical characteristics may be changed depending on input signal timings.
- ⑤ Touch panel film has polarizing characteristic. And the polarizer characteristics differ among products. Therefore, when seeing the displays through the other polarizing material (for example polarizing sunglasses), some displays can not be seen and some displays look different color darker because of polarizer characteristic mismatching between touch panel film and the other polarizing material.


7.3.4 Others

- ① All GND terminals should be used without any non-connected lines.
- ② Do not disassemble the product.
- 3 Pack the product with the original shipping package, in order to avoid any damages during transportation, when returning the product to NEC.
- When installing the product to the customer equipment, do not apply any local stress to the rear side of the product, FPC, Soldering Area and Component Mounting Area. If not, it may cause display un-uniformity or break down of the product.
- (5) The information of China RoHS directive six hazardous substances or elements in this product is as follows.

China RoHS directive six hazardous substances or elements							
Lead (Pb)	Mercury (Hg)	Cadmium (Cd)	Hexavalent Chromium (Cr VI)	Polybrominated Biphenys (PBB)	Polybrominated Biphenyl Ethers (PBDE)		
0	0	0	0	0	0		

Note1: (): This indicates that the poisonous or harmful material in all the homogeneous materials for this part is equal or below the limitation level of SJ/T11363-2006 standard regulation.

8. OUTLINE DRAWINGS

Component Mounting Area (t=6.2Max.)

Solding Area (t=6.0Max.)

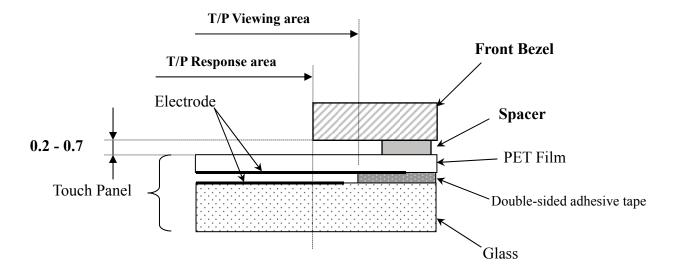
Rear view

Pin No.	Symbol s	Pin No.	Symbols
1	GND	25	R0
2	GND	26	R1
3	VCC	27	R2
4	VCC	28	R3
5	VCC	29	R4
6	VCC	30	R5
7	GND	31	GND
8	/RESET	32	SCL
9	HSYNC	33	SI
10	VSYNC	34	SO
11	CLK	35	/CS
12	GND	36	VCOMIN
13	В0	37	N.C.
14	B1	38	GND
15	B2	39	XL
16	В3	40	YD
17	B4	41	XR
18	B5	42	YU
19	G0	43	GND
20	G1	44	ANODE
21	G2	45	CATHODE
22	G3		
23	G4		
24	G5		

Note1: The values in parentheses are for reference.

Note2: When installing the product to the customer equipment, do not apply any local stress to the rear side of the product, FPC, Soldering Area and Component Mounting Area. If not, it may cause display un-uniformity or break down of the product.

Note3: While the product is working, do not contact a conductor such as a metal to the Soldering Area and Component Mounting Area of the FPC.

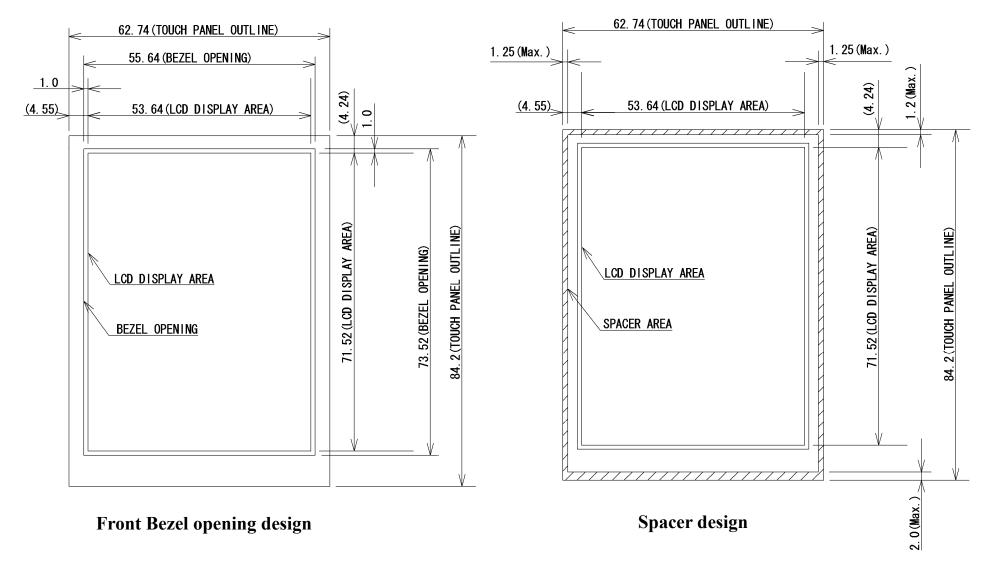

Unit: mm

DETAIL A

Adaptable sockect : HIROSE FH23-45S-0.3SHW(05)

 3.5 ± 0.3

9. RECOMMENDED DESIGN OF FRONT BEZEL



Design guidance for the front bezel and the spacer

- 1. Front Bezel opening design
- a. Please place the front bezel opening to maintain the operation by a stylus pen inside the T/P response area.
- b. Any pressures in the area between T/P response area and T/P viewing area are prohibited. Please use the appropriate material as the front bezel.

2. Spacer design

- a. Please put the spacer, a cushion, on the front bezel. Do not use a double-sided adhesive tape because it adheres on the touch panel surface.
- b. Please position the spacer over the Spacer area to avoid a "short".

