

NLT Technologies, Ltd.

TFT COLOR LCD MODULE

NL160120AC27-32

54 cm (21.3 Type) UXGA LVDS Interface (2 port)

PRELIMINARY DATA SHEET

DOD-PP-1268 (2nd edition)

This PRELIMINARY DATA SHEET is updated document from DOD-PP-1244(1).

All information is subject to change without notice. Please confirm the sales representative before starting to design your system.

NLT Technologies, Ltd.

NL160120AC27-32

INTRODUCTION

The Copyright to this document belongs to NLT Technologies, Ltd. (hereinafter called "NLT"). No part of this document will be used, reproduced or copied without prior written consent of NLT.

NLT does and will not assume any liability for infringement of patents, copyrights or other intellectual property rights of any third party arising out of or in connection with application of the products described herein except for that directly attributable to mechanisms and workmanship thereof. No license, express or implied, is granted under any patent, copyright or other intellectual property right of NLT.

Some electronic parts/components would fail or malfunction at a certain rate. In spite of every effort to enhance reliability of products by NLT, the possibility of failures and malfunction might not be avoided entirely. To prevent the risks of damage to death, human bodily injury or other property arising out thereof or in connection therewith, each customer is required to take sufficient measures in its safety designs and plans including, but not limited to, redundant system, fire-containment and anti-failure.

The products are classified into three quality grades: "Standard", "Special", and "Specific" of the highest grade of a quality assurance program at the choice of a customer. Each quality grade is designed for applications described below. Any customer who intends to use a product for application other than that of Standard quality grade is required to contact an NLT sales representative in advance.

The **Standard** quality grade applies to the products developed, designed and manufactured in accordance with the NLT standard quality assurance program, which are designed for such application as any failure or malfunction of the products (sets) or parts/components incorporated therein a customer uses are, directly or indirectly, free of any damage to death, human bodily injury or other property, like general electronic devices.

Examples: Computers, office automation equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment, industrial robots, etc.

The **Special** quality grade applies to the products developed, designed and manufactured in accordance with an NLT quality assurance program stricter than the standard one, which are designed for such application as any failure or malfunction of the products (sets) or parts/components incorporated therein a customer uses might directly cause any damage to death, human bodily injury or other property, or such application under more severe condition than that defined in the Standard quality grade without such direct damage.

Examples: Control systems for transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, medical equipment not specifically designed for life support, safety equipment, etc.

The **Specific** quality grade applies to the products developed, designed and manufactured in accordance with the standards or quality assurance program designated by a customer who requires an extremely higher level of reliability and quality for such products.

Examples: Military systems, aircraft control equipment, aerospace equipment, nuclear reactor control systems, medical equipment/devices/systems for life support, etc.

The quality grade of this product is the "Standard" unless otherwise specified in this document.

NLT Technologies, Ltd.

NL160120AC27-32

CONTENTS

INTRODUCTION	2
4 OUTE INTE	
1. OUTLINE	4
1.1 STRUCTURE AND PRINCIPLE	
1.2 APPLICATION	
1.3 FEATURES	4
3. BLOCK DIAGRAM	6
4.1 MECHANICAL SPECIFICATIONS	
4.1 MECHANICAL SPECIFICATIONS	
4.2 ABSOLUTE MAXIMUM RATINGS 4.3 ELECTRICAL CHARACTERISTICS	
4.3.1 LCD panel signal processing board	
4.3.2 LED Driver board	0
4.3.3 LED driver board current wave	9
4.4 POWER SUPPLY VOLTAGE SEQUENCE	
4.4.1 LCD panel signal processing board	11
4.4.2 LED driver board	
4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS	12
4.5.1 LCD panel signal processing board	12
4.5.2 LED driver board	12
4.5.3 Positions of socket	1/1
4.6 LUMINANCE CONTROL	
4.6.1 Luminance control methods	
4.6.2 Detail of RRTP timing	16
4.6.2 Detail of BRTP timing 4.7 LVDS DATA INPUT MAP	17
4.7.1 Mode A	
4.7.2 Mode B	18
4.7.3 Mode C	
4.8 DISPLAY COLORS AND INPUT DATA SIGNALS	20
4.9 INPUT SIGNAL TIMINGS	21
4.9.1 Timing characteristics	
4.9.2 Input signal timing chart	21
4.10 LVDS DATA TARANSMISSION METHOD	22
4.11 DISPLAY POSITIONS	
4.12 PIXEL ARRANGNMENT	23
4.13 OPTICS	
4.13.1 Optical characteristics	
4.13.2 Definition of contrast ratio	
4.13.3 Definition of luminance uniformity	
4.13.4 Definition of response times	
4.13.5 Definition of viewing angles	26
5. ESTIMATED LUMINANCE LIFETIME.	
6. RELIABILITY TESTS.	
7. PRECAUTIONS	
7.1 MEANING OF CAUTION SIGNS	28
7.2 CAUTIONS	
7.3 ATTENTIONS	28
7.3.1 Handling of the product	28
7.3.2 Environment.	
7.3.3 Characteristics	
7.3.4 Others	
8. OUTLINE DRAWINGS	
8.1 FRONT VIEW	
8.2 REAR VIEW	32
REVISION HISTORY	33

NLT Technologies, Ltd.

NL160120AC27-32

1. OUTLINE

1.1 STRUCTURE AND PRINCIPLE

Color LCD module NL160120AC27-32 is composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array and a backlight.

The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a color-filter glass substrate.

Grayscale data signals from a host system (e.g. signal generator, etc.) are modulated into best form for active matrix system by a signal processing board, and sent to the driver LSIs which drive the individual TFT arrays.

The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Color images are created by regulating the amount of transmitted light through the TFT array of red, green and blue dots.

1.2 APPLICATION

• Color monitor system

1.3 FEATURES

- Ultra-wide viewing angle (Ultra-Advanced Super Fine TFT (UA-SFT))
- High luminance
- High contrast
- High resolution
- Low reflection
- Wide color gamut
- 256 gray scale in each R, G, B sub-pixel (8-bit), 16,777,216 colors
- LVDS interface
- Selectable LVDS data input map
- Small foot print
- Long life LED backlight type with an LED driver board

NLT Technologies, Ltd.

NL160120AC27-32

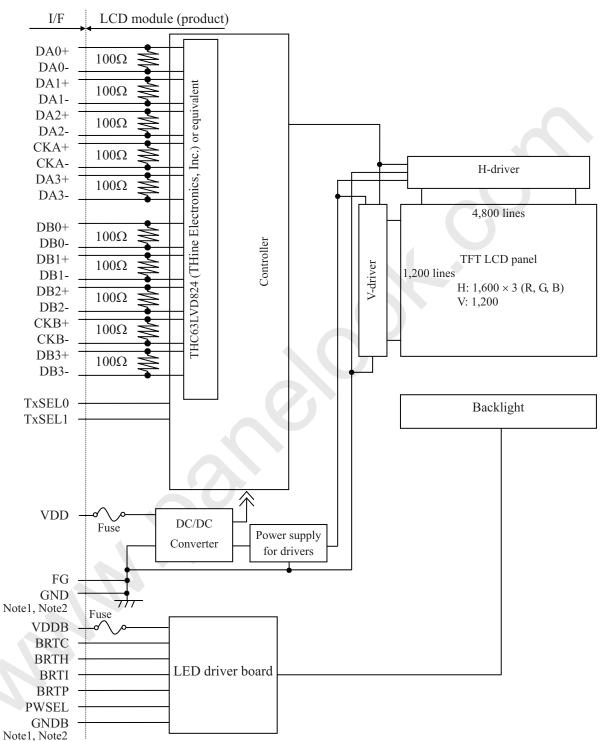
2. GENERAL SPECIFICATIONS

Display area	432.0 (H) × 324.0 (V) mm
Diagonal size of display	54 cm (21.3 inches)
Drive system	a-Si TFT active matrix
Display color	16,777,216 colors
Pixel	1,600 (H) × 1,200 (V) pixels (1 pixel consists of 3 sub-pixels (RGB).)
Pixel arrangement	RGB (Red dot, Green dot, Blue dot) vertical stripe
Dot pitch	0.090 (H) × 0.270 (V) mm
Pixel pitch	0.270 (H) × 0.270 (V) mm
Module size	457.0 (W) × 350.0 (H) × 21.5 (D) mm (typ.)
Weight	(2,700) g (typ.)
Contrast ratio	1400:1 (typ.)
Viewing angle	At the contrast ratio ≥ 10:1 • Horizontal: Right side 88° (typ.), Left side 88° (typ.) • Vertical: Up side 88° (typ.), Down side 88° (typ.)
Designed viewing direction	Viewing angle with optimum grayscale (γ≒ DICOM): normal axis (perpendicular) Note1
Polarizer surface	Antiglare
Polarizer pencil-hardness	2H (min.) [by JIS K5600]
Color gamut	At LCD panel center (72) % (typ.)[against NTSC color space]
Response time	$Ton + Toff (10\% \longleftrightarrow 90\%)$ (40) ms (typ.)
Luminance	At the maximum luminance 900 cd/m ² (typ.)
Signal system	2 ports LVDS interface (THC63LVD824A THine Electronics, Inc. or equivalent) [RGB 8-bit signals, Data enable signal (DE), Dot clock (CK)]
Power supply voltage	LCD panel signal processing board: 12.0V LED driver board: 12.0V
Backlight	LED backlight type with LED driver board
Power consumption	At checkered flag pattern, the maximum luminance (57) W (typ.)

Note1: When the product luminance is 450cd/m^2 , the gamma characteristic is designed to $\gamma = DICOM$.

2

2


2

NLT Technologies, Ltd.

NL160120AC27-32

3. BLOCK DIAGRAM

Note1: Relations between GND (Signal ground), FG (Frame ground) and GNDB (LED driver board ground) in the LCD module are as follows.

GND - FG	Connected	
GND - GNDB	Not connected	
FG - GNDB	Not connected	

Note2: GND, FG and GNDB must be connected to customer equipment's ground, and it is recommended that these grounds be connected together in customer equipment.

2

2

2

2

PRELIMINARY

NLT Technologies, Ltd.

NL160120AC27-32

4. DETAILED SPECIFICATIONS

4.1 MECHANICAL SPECIFICATIONS

Specification		Unit
$457.0 \pm 0.5 \text{ (W)} \times 350.0 \pm 0.5 \text{ (H)} \times 21.5 \text{ (typ., D)}$ 23.0 (max. D)	Note1, Note2	mm
432.0 (H) × 324.0 (V)	Note2	mm
(2,700) (typ.), (2,980) (max.)		g
	457.0 ±0.5 (W) × 350.0 ±0.5 (H) × 21.5 (typ., D) 23.0 (max. D) 432.0 (H) × 324.0 (V)	$457.0 \pm 0.5 \text{ (W)} \times 350.0 \pm 0.5 \text{ (H)} \times 21.5 \text{ (typ., D)}$ 23.0 (max. D) $432.0 \text{ (H)} \times 324.0 \text{ (V)}$ Note2

Note1: Excluding warpage of the cover for LED driver board.

Note2: See "8. OUTLINE DRAWINGS".

4.2 ABSOLUTE MAXIMUM RATINGS

	Parameter		Symbol	Rating	Unit	Remarks	
Power supply				-0.3 to +14.0	V	T 250C	
voltage				-0.3 to +15.0	V	Ta = 25°C	
		al processing board ote1	Vi	-0.3 to +3.45	V	VDD= 12.0V	
		BRTI signal	VBI	-0.3 to +1.5	V		
Input voltage for signals	LED 1' 1 1	BRTP signal	VBP	-0.3 to +5.5	V	VDDD 12.0V	
	LED driver board	BRTC signal	VBC	-0.3 to +5.5	V	VDDB= 12.0V	
		PWSEL signal	VBS	-0.3 to +5.5	V		
	Storage temperate	ure	Tst	-20 to +60	°C	-	
0	4 8	Front surface	TopF	(0 to +60)	°C	Note2	
Operating te	emperature	Rear surface	TopR	(0 to +60)	°C	Note3	
				≤ 95	%	Ta ≤ 40°C	
	Relative humidi Note4	ty	RH	≤ 85	%	40°C < Ta ≤ 50°C	
				≤ 70	%	50°C < Ta ≤ 55°C	
Absolute humidity Note4			АН	≤ 73 Note5	g/m ³	Ta > 55°C	
Operating altitude			-	≤ 4,850	m	0°C ≤ Ta ≤ 55°C	
	Storage altitude		-	≤ 13,600	m	-20°C ≤ Ta ≤ 60°C	

Note1: DA0+/-, DA1+/-, DA2+/-, DA3+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/-, CKB+/-

Note2: Measured at LCD panel surface (including self-heat)

Note3: Measured at LCD module's rear shield surface (including self-heat)

Note4: No condensation

Note5: Water amount at Ta = 55°C and RH = 70%

NLT Technologies, Ltd.

NL160120AC27-32

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD panel signal processing board

 $(Ta = 25^{\circ}C)$

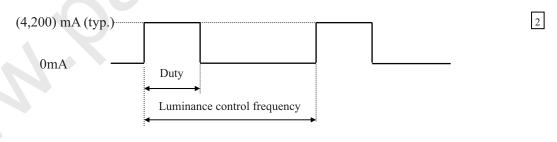
Parameter		Symbol	min.	typ.	max.	Unit	Remarks
Power supply voltage		VDD	10.8	12.0	13.2	V	-
Power supply current		IDD	-	(500) Note1	(700) Note2	mA	at VDD= 12.0V
Permissible ripple voltage		VRP	-	-	100	mVp-p	for VDD
Differential input threshold	High	VTH	-	-	+100	mV	at VCM= 1.2V
voltage	Low	VTL	-100	-	-	mV	Note3, Note4
Input voltage swing		VI	0	-	2.4	V	Note4
Terminating resistance		RT	-	100	-	Ω	-

Note1: Checkered flag pattern (by EIAJ ED-2522)

Note2: Pattern for maximum current

Note3: Common mode voltage for LVDS driver

Note4: DA0+/-, DA1+/-, DA2+/-, DA3+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/-, CKB+/-


NLT Technologies, Ltd.

NL160120AC27-32

4.3.2 LED Driver board

 $(Ta = 25^{\circ}C)$ Parameter Symbol min. typ. max. Unit Remarks **VDDB** (11.4)12.0 (12.6)V Power supply voltage VDDB = 12.0V, 2 **TBD** Power supply current **IDDB** (4,200)At the maximum mA luminance control BRTI signal VBI 0 1.0 V High **VBPH** 2.0 5.25 V _ BRTP signal V Low **VBPL** 0 0.8 Input voltage High **VBCH** 2.0 5.25 V for signals BRTC signal 0 V Low **VBCL** 0.8 V 2.0 5.25 High **VBSH** PWSEL signal Low **VBSL** 0 0.8 V **TBD TBD** BRTI signal IBI μΑ High **IBPH TBD** μΑ BRTP signal **IBPL** Low **TBD** μΑ Input current High **IBCH TBD** μΑ for signals BRTC signal **TBD** Low **IBCL** μΑ High **IPSH TBD** μΑ PWSEL signal **IPSL** TBD Low μΑ

4.3.3 LED driver board current wave

At the maximum luminance control: 100% At the minimum luminance control: (1)% (At frequency: 325 Hz) Luminance control frequency: (255)Hz (typ.)

Note1: Luminance control frequency indicate the input pulse frequency, when select the external pulse control. See "4.6.2 Detail of BRTP timing".

Note2: The power supply lines (VDDB and GNDB) have large ripple voltage during luminance control. There is the possibility that the ripple voltage produces acoustic noise and signal wave noise in audio circuit and so on. Put a capacitor $(5,000 \text{ to } 6,000\mu\text{F})$ between the power supply lines (VDDB and GNDB) to reduce the noise, if the noise occurred in the circuit..

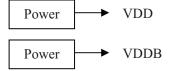
2

NLT Technologies, Ltd.

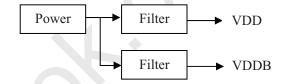
NL160120AC27-32

4.3.4 Power supply voltage ripple

2


This product works, even if the ripple voltage levels are beyond the permissible values as following the table, but there might be noise on the display image.

Power supp	ply voltage	Ripple voltage Note1 (Measure at input terminal of power supply)	Unit
VDD	12.0V	≤ 100	mVp-p
VDDB	12.0V	≤ 200	mVp-p


Note1: The permissible ripple voltage includes spike noise.

Example of the power supply connection

a) Separate the power supply

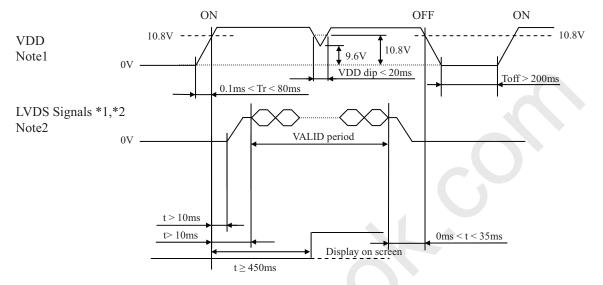
b) Put in the filter

4.3.5 Fuse

2

Parameter	Fuse		Rating	Fusing current	Remarks	
1 drameter	Туре	Type Supplier		rusing current	Remarks	
VDD	VDD FCC16132AB KAMAYA ELECTRIC		1.25A	2.5A, 5 seconds		
VDD	rec10132AB	Co., Ltd.	32V	maximum	Note1	
VDDB	DDB CCF1N10	KOA Corporation	10A	20 A, 1 seconds	140101	
VDDB	CCFINIO	KOA Corporation	60 V	maximum		

Note1: The power supply capacity should be more than the fusing current. If it is less than the fusing current, the fuse may not blow in a short time, and then nasty smell, smoke and so on may occur.

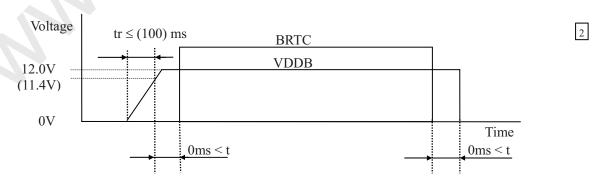


NLT Technologies, Ltd.

NL160120AC27-32

4.4 POWER SUPPLY VOLTAGE SEQUENCE

4.4.1 LCD panel signal processing board



- *1: DA0+/-, DA1+/-, DA2+/-, DA3+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/- and CKB+/-
- *2: LVDS signals should be measured at the terminal of 100Ω resistance.
- Note1: If there is a voltage variation (voltage drop) at the rising edge of VCC below 10.8V, there is a possibility that a product does not work due to a protection circuit.
- Note2: LVDS signals must be set to Low or High-impedance, except the VALID period (See above sequence diagram), in order to avoid the circuitry damage.

 If some of signals are cut while this product is working, even if the signal input to it once again, it might not work normally. If a customer stops the display and function signals, VCC also must be shut down.

Note3: The backlight should be turned on within the valid period of LVDS signals, in order to avoid unstable data display.

4.4.2 LED driver board

Note1: The backlight should be turned on within the valid period of LVDS signals, in order to avoid unstable data display.

Note2: If tr is more than (100)ms, the backlight will be turned off by a protection circuit for LED driver board.

Note3: When VDDB is 0V or BRTC is Low, PWSEL must be set to Low or Open.

PRELIMINARY DATA SHEET DOD-PP-1268 (2nd edition)

NLT Technologies, Ltd.

NL160120AC27-32

4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS

4.5.1 LCD panel signal processing board

CN1 Socket (LCD module side): DF19G-30P-1H (56) (Hirose Electric Co., Ltd. (HRS)) Adaptable plug: DF19-30S-1C (Hirose Electric Co., Ltd. (HRS))

Adaptable	1		Hirose Electric Co		//		
Pin No.	Symbol	Signal		Rem	arks		
1	DA0-	Pixel data A0	Odd pixel data Inp	out (LVDS diffe	erential signal)	No	te1
2	DA0+						_
3	DA1-	Pixel data A1	Odd pixel data Inp	ut (LVDS diffe	erential signal)	No	te1
<u> </u>	DA1+						
5	DA2- DA2+	Pixel data A2	Odd pixel data Inp	out (LVDS diffe	erential signal)	No	te1
7	GND	Ground	Signal ground			No	te2
8	CKA-	Ground	Signal ground			110	7102
	t	Pixel clock	Odd pixel clock In	put (LVDS dif	ferential signal)	No	te1
9	CKA+ DA3-						
11	DA3+	Pixel data A3	Odd pixel data Input (LVDS differential signal) Note			te1	
12	DB0-						
13	DB0+	Pixel data B0	Even pixel data Input (LVDS differential signal) Note1			te1	
14	GND	Ground	Signal ground			No	te2
15	DB1-						
16	DB1+	Pixel data B1	Even pixel data Input (LVDS differential signal) Note1			ote l	
17	GND	Ground	Signal ground			No	te2
18	DB2-	Di1 d-4- D2	Day of all data In	(LVDC 1:0	C1)	NI-	4-1
19	DB2+	Pixel data B2	Even pixel data In	put (LVDS aiii	ierentiai signai)	INC	ote1
20	CKB-	Pixel clock	Even pixel clock I	nnut (LVDS di	fferential cional	No.	ote1
21	CKB+	T IACI CIOCK	Even pixer clock is	iiput (Lv D3 di	increntiai signai,	INC	7tC 1
22	DB3-	Pixel data B3	Even pixel data In	nut (LVDS diff	ferential signal)	No	ote1
23	DB3+	Tixer data B5	Even pixer data in	put (EVD5 um	erentiai signai)	110	7101
24	GND	Ground	Signal ground			No	te2
					ı		7
25	TxSEL0			TxSEL1	TxSEL0	Mode	
		Selection of LVDS		Open	Open	A	
		data input map	Note3, Note4	Open	Low	В	
26	TxSEL1			Low	Open	С	
				Low	Low	A	
27	GND	Ground	Signal ground			No	te2
28	VDD						
29	VDD	Power supply	12V			No	te2
30	VDD						

Note1: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

Note2: All GND and VDD terminals should be used without any non-connected lines.

Note3: This terminal is pulled-up in the product.

Note4: See "4.7 LVDS DATA INPUT MAP".

NLT Technologies, Ltd.

NL160120AC27-32

4.5.2 LED driver board

CN201 socket (LCD module side): DF3Z-10P-2H (2*) (HIROSE ELECTRIC Co,. Ltd.)
Adaptable plug: DF3-10S-2C (HIROSE ELECTRIC Co,. Ltd.)

	1 0		, ,
Pin No.	Symbol	Function	Description
1	GNDB		
2	GNDB		
3	GNDB	LED driver board ground	Note1
4	GNDB		
5	GNDB		
6	VDDB		
7	VDDB		
8	VDDB	Power supply	Note1
9	VDDB		
10	VDDB		

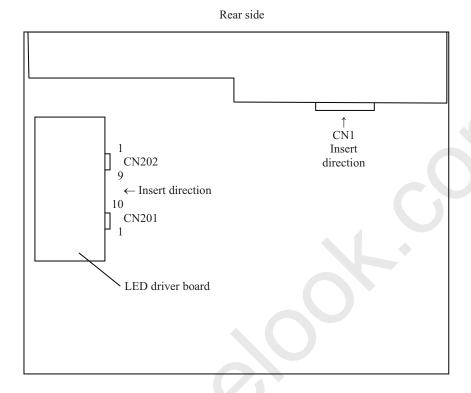
Note1: All VDDB and GNDB terminals should be used without any non-connected lines.

CN202 socket (LCD module side): IL-Z-9PL-SMTYE (Japan Aviation Electronics Industry Limited (JAE))
Adaptable plug: IL-Z-9S-S125C3 (Japan Aviation Electronics Industry Limited (JAE))

Pin No.	Symbol	Function	Description
1	GNDB	LED driver board ground	Note1
2	GNDB	LED driver board ground	Note1
3	N.C.	-	Keep this pin Open.
4	BRTC	Backlight ON/OFF control signal	High or Open: Backlight ON Low: Backlight OFF
5	BRTH	Luminance control terminal	
6	BRTI	Lummance condorterminar	Note2
7	BRTP	BRTP signal	
8	GNDB	LED driver board ground	Note1
9	PWSEL	Selection of luminance control signal method	Note2, Note3

Note1: All GNDB terminals should be used without any non-connected lines.

Note2: See "4.6.1 LUMINANCE CONTROL ".


Note3: When VDDB is 0V or BRTC is Low, PWSEL must be set to Low or Open.

NLT Technologies, Ltd.

NL160120AC27-32

4.5.3 Positions of socket

NLT Technologies, Ltd.

NL160120AC27-32

4.6 LUMINANCE CONTROL

4.6.1 Luminance control methods

Method	Adjustment and lu	minance ratio	PWSEL terminal	BRTP terminal
Variable resistor control Note1	• Adjustment The variable resistor (\mathbf{R}) for luminand 1/10W. Minimum point of the resistance and maximum point of the resistance The resistor (\mathbf{R}) must be connected by BRTH • Luminance ratio Note3 Resistance 0 Ω 10 k Ω	ance is the minimum luminance is the maximum luminance.		Open
Voltage control Note1	Adjustment Voltage control method works, when voltage is input between BRTI-BRTH can carry out continuation adjustment Luminance is the maximum when BR Luminance ratio Note3 BRTI Voltage (VBI) 0V 1.0V	I terminals. This control method to f luminance.		
Pulse width modulation Note1 Note2 Note4	Adjustment Pulse width modulation (PWM) terminal is Low and PWM signal (B terminal. The luminance is controlled Luminance ratio Note3 Duty ratio (0.01) 1.0	BRTP signal) is input into BRTP		BRTP signal

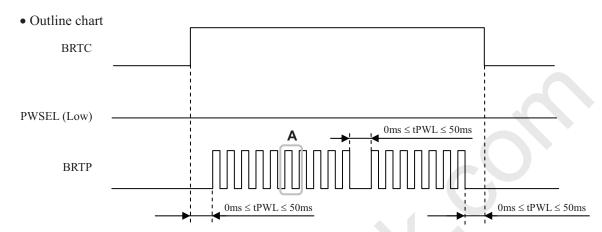
Note1: In case of the variable resistor control method and the voltage control method, noises may appear on the display image depending on the input signals timing for LCD panel signal processing board.

Use PWM method, if interference noises appear on the display image!

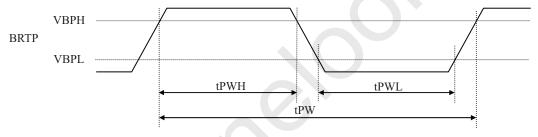
Note2: The LED driver board will stop working, if the Low period of BRTP signal is more than 50ms while BRTC signal is High or Open. Then the backlight will not turn on anymore, even if BRTP signal is input again. This is not out of order. The LED driver board will start to work when power is supplied again.

Note3: These data are the target values.

Note4: See "4.6.2 Detail of BRTP timing".



NLT Technologies, Ltd.


NL160120AC27-32

4.6.2 Detail of BRTP timing

(1) Timing diagrams

• Detail of A part

(2) Each parameter

Parameter	Symbol	min.	typ.	max.	Unit	Remarks
Luminance control frequency	FL	(185)	-	(1,000)	Hz	Note1, Note2
External PWM pulse width	tPWH	(30)	-	-	μs	Note1, Note3

2

2

Note1: Definition of parameters is as follows.

$$FL = \frac{1}{tPW}$$
 $DL = \frac{tPWH}{tPW}$

Note2: See the following formula for luminance control frequency.

Luminance control frequency = $1/\text{tv} \times (\text{n+0.25})$ [or (n + 0.75)]

 $n = 1, 2, 3 \cdot \cdot \cdot \cdot$

tv: Vertical cycle (See "4.9.1 Timing characteristics".)

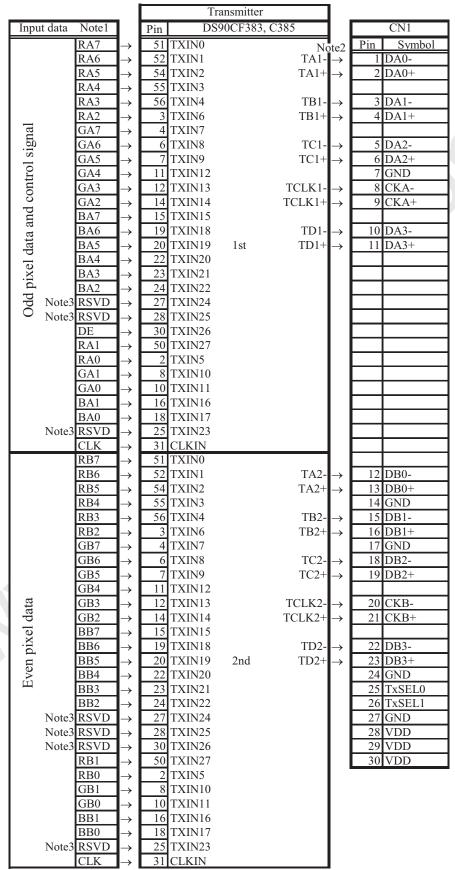
The interference noise of luminance control frequency and input signal frequency for LCD panel signal processing board may appear on a display. Set up luminance control frequency so that the interference noise does not appear!

Note3: See "4.6.1 Luminance control methods".

NLT Technologies, Ltd.

NL160120AC27-32

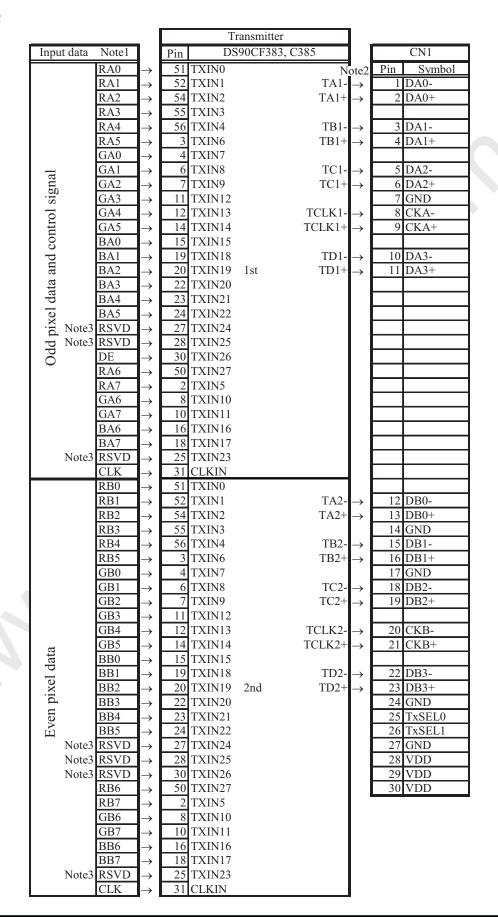
4.7 LVDS DATA INPUT MAP 4.7.1 Mode A


					Transn	nitter				
Input data	Note1	Pin	THC63LVD	M83D	Pin		THC63LVD823B			CN1
			TA0			R12	No	te2	Pin	Symbol
			TA1			R13	TA1-			DA0-
			TA2			R14	TA1+	\rightarrow	2	DA0+
			TA3			R15				
			TA4			R16	TB1-			DA1-
-			TA5			R17	TB1+	\rightarrow	4	DA1+
gus Superior			TA6			G12	TOI			DAO
S15			TB0			G13	TC1-			DA2-
lo.	~		TB1			G14 G15	TC1+	\rightarrow		DA2+ GND
ntr	~		TB2 TB3			G15	TCLK1-			CKA-
00			TB4			G17	TCLK1+			CKA+
ρι			TB5			B12	ICLKIT	\rightarrow	9	CKAT
at			TB6			B13	TD1-	\rightarrow	10	DA3-
ata			TC0 1s	·+		B13	TD1+			DA3+
l d			TC1	,,		B15	101		11	11111
Odd pixel data and control signal			TC2			B16				
pi			TC3			B17				
P Note:			TC4			RSVD)			
O Note:			TC5			RSVD				
11010.			TC6			DE	•			
			TD0			R10				
			TD1			R11				
		$\stackrel{/}{\rightarrow}$ 8	TD2			G10				
			TD3			G11				
			TD4			B10				
	D 1.4		TD5			B11				
Note:			TD6		-					
			CLKIN		10	CLK				
			TA0			R22				
	RB3	→ 52	TA1		82	R23	TA2-	\rightarrow	12	DB0-
	RB4	→ 54	TA2		83	R24	TA2+	\rightarrow		DB0+
	RB5	→ 55	TA3			R25				GND
	RB6		TA4			R26	TB2-	\rightarrow		DB1-
			TA5			R27	TB2+	\rightarrow		DB1+
	GB2 -		TA6			G22				GND
			TB0			G23	TC2-	\rightarrow		DB2-
			TB1			G24	TC2+	\rightarrow	19	DB2+
			TB2			G25				
			TB3			G26	TCLK2-			CKB-
ta			TB4		96	G27	TCLK2+	\rightarrow	21	CKB+
Even pixel data			TB5			B22				
<u>e</u>			TB6			B23	TD2-			DB3-
.X			TC0 21	nd		B24	TD2+	\rightarrow		DB3+
n F			TC1			B25			24	GND
ve.			TC2		-	B26			25	TxSEL0
			TC3		6	B27				TxSEL1
Note:			TC4		-				27	GND
Note:			TC5							VDD
Note:			TC6		- 70	DCC				VDD
			TD0			R20			30	VDD
			TD1			R21				
			TD2			G20				
			TD3			G21				
			TD4			B20				
			TD5			B21				
	IDCVD	25	TD6		l - I					
Note:	CLK -		CLKIN		<u> </u>					

NLT Technologies, Ltd.

NL160120AC27-32

4.7.2 Mode B



NLT Technologies, Ltd.

NL160120AC27-32

4.7.3 Mode C

NLT Technologies, Ltd.

NL160120AC27-32

Note1: LSB (Least Significant Bit) – RA0, GA0, BA0, RB0, GB0, BB0 MSB (Most Significant Bit) – RA7, GA7, BA7, RB7, GB7, BB7

Note2: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel

signal processing board and LVDS transmitter.

Note3: Input signal RSVD is not used inside the product, but do not keep pin open to avoid noise

problem.

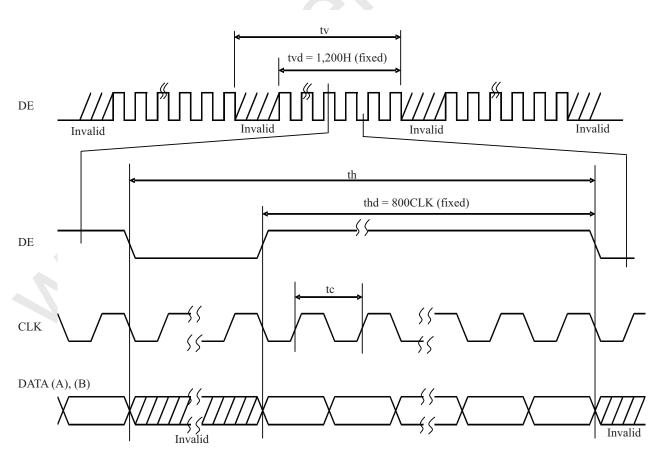
4.8 DISPLAY COLORS AND INPUT DATA SIGNALS

This product can display in equivalent to 16,777,216 colors in 256 gray scales in each RGB sub-pixel. Also the relation between display colors and input data signals is as the following table.

																				-					
										Data s	ignal	(0: I	Low 1	evel,	1: H	igh le	evel)								
Displ	ay colors	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	GA7	GA6	GA5	GA4	GA3	GA2	GA1	GA0	BA7	BA6	BA5	BA4	BA3	BA2	BA1	BA0
	1	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	GB7	GB6	GB5	GB4	GB3		GB1	GB0		BB6	BB5	BB4	BB3	BB2	BB1	BB0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
ors	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
[]	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Basic Colors	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
B	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red gray scale	dark	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ay s	↑					:								:								:			
d gr	\downarrow					:								:								:			
Re	bright	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>e</u>		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
scal	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Green gray scale	1					:								:								:			
en 8	↓ ↓					:								:								:			
Gre	bright	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Blue gray scale	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
ray s	1					:								:								:			
e g1	↓					:								:								:			
Blu	bright	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

NLT Technologies, Ltd.

NL160120AC27-32

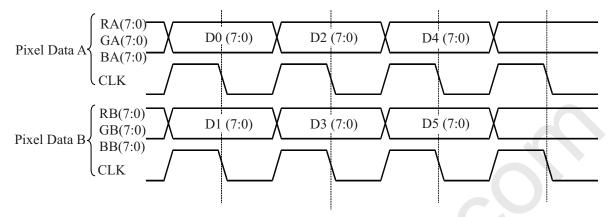

4.9 INPUT SIGNAL TIMINGS

4.9.1 Timing characteristics

	Parameter	Symbol	min.	typ.	max.	Unit	Remarks
	Frequency	1/ tc	60.0	64.5	65.0	MHz	LVDS transmitter
CLK	Pulse width	tc	15.38	15.5	-	ns	input
CLK	Duty	1	See the data	sheet of LVD	S	-	
	Rise, fall	1	transmitter.			ns	
	Cycle	th	13.1	13.3	19.2	μs	Note1
Horizontal	Cycle	un	848	860	1,156	CLK	Note1
	Display period	thd		800		CLK	-
	Cycle	1/tv	59	60	61	Hz	
Vertical	Cycle	tv	1,206	1,250	-	Н	-
	Display period	tvd		1,200	1	Н	-
D.F.	Setup time	-	0 1 1	1 CIUD		ns	
DE, DATA	Hold time	-	See the data transmitter.	See the data sheet of LVDS			-
Dilli	Rise, fall	-	transmitter.			ns	

Note1: During operation, fluctuation of horizontal cycle should be within ±1 CLK.

4.9.2 Input signal timing chart



NLT Technologies, Ltd.

NL160120AC27-32

4.10 LVDS DATA TARANSMISSION METHOD

4.11 DISPLAY POSITIONS

Odd pixel: RA= Red data

GA= Green data

Even pixel:

RB= Red data GB= Green data

BA= Blue data

BB= Blue data

	יע	(1,1)		ע	(2, 1)	
	RA	GA	BA	RB	GB	ВВ
٠			1			

D(1, 1)	D(2, 1)	•••	D(X, 1)	•••	D(1599, 1)	D(1600, 1)
D(1, 2)	D(2, 2)	•••	D(X, 2)	•••	D(1599, 2)	D(1600, 2)
•	•		•	•	•	•
•	•	•••	•	• • •	•	• • •
•	•	•	•	•	•	•
D(1, Y)	D(2, Y)	•••	D(X,Y)	• • •	D(1599, Y)	D(1600, Y)
•	•	•	•	•	•	•
•		•••	•	• • •	•	•
•	•	•	•	•	•	•
D(1, 1199)	D(2, 1199)	• • •	D(X, 1199)	• • •	D(1599, 1199)	D(1600, 1199)
D(1, 1200)	D(2, 1200)	• • •	D(X, 1200)	• • •	D(1599, 1200)	D(1600, 1200)

NLT Technologies, Ltd.

NL160120AC27-32

4.12 PIXEL ARRANGNMENT

	1	2	1,600
1	R G B	R G B	 R G B
1,200	R G B	R G B	 R G B

NLT Technologies, Ltd.

NL160120AC27-32

4.13 OPTICS

4 13 1 Ontical characteristics

4.13.1 Optica	l characte	eristics						(Note1, N	lote2)	
Paramet	er	Condition	Symbol	min.	typ.	max.	Unit	Measuring instrument	Remarks	
Luminan	ce	White at center $\theta R=0^{\circ}$, $\theta L=0^{\circ}$, $\theta U=0^{\circ}$, $\theta D=0^{\circ}$	L	TBD	900	-	cd/m ²	BM-5A or SR-3	Note3	2
Contrast ra	atio	White/Black at center $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	CR	TBD	1,400	-	-	BM-5A or SR-3	Note3 Note5	
Luminance un	iformity	$255/255$ gray scale $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$	LU1023	(80)	-	-	%	BM-5A or SR-3	Note4 Note6	
	White	x coordinate	Wx	(0.269)	0.299					
	Wille	y coordinate	Wy	(0.285)	0.315	(0.345)	-			
	Red	x coordinate	Rx	-	(0.65)	-	-			
Chamanatiaitre	Keu	y coordinate	Ry	-	(0.33)	-	-		Note3	
Chromaticity	Green	x coordinate	Gx	- <	(0.29)	-	-		Note8	
	Green	y coordinate	Gy	-	(0.60)	///-	-			
	Blue	x coordinate	Bx	-	(0.15)	-	-			
	Blue	y coordinate	Ву	-	(0.07)	-	-			
Color unifor	rmity	$\theta R = 0^{\circ}, \ \theta L = 0^{\circ}, \ \theta U = 0^{\circ}, \ \theta D = 0^{\circ}$	Δu'v'		1	0.01	-	SR-3	Note4 Note7	2
Color gan	nut	$\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ at center, against NTSC color space	C	(65)	(72)	-	%	SR-3	Note3	
Response t	ime	Black to White	Ton	-	(20)	(30)	ms	BM-5A	Note3	
Response		White to Black	Toff	-	(20)	(30)	ms	DIVI-JA	Note9	2
	Right	θ U= 0°, θ D= 0°, CR \geq 10	θR	70	88	-	0			
Viewing angle	Left	θU= 0°, θD= 0°, CR≥ 10	θL	70	88	-	0	BM-5A or	Note3	2
, 10 ming ungle	Up	$\theta R = 0^{\circ}, \theta L = 0^{\circ}, CR \ge 10$	θU	70	88	-	0	EZ Contrast	Note10	
	1		1	1		1	1	1	I	

Note1: These are initial characteristics.

Down

Note2: Measurement conditions are as follows.

Ta = 25°C, VDD = 12.0V, VDDB = 12.0V, PWM: Duty 100%, Display mode: UXGA, Horizontal cycle = 1/75.19 kHz, Vertical cycle = 1/60.0Hz

 θD

70

88

 $\theta R = 0^{\circ}, \ \theta L = 0^{\circ}, \ CR \ge 10$

Optical characteristics are measured after 20 minutes from working the product, in the dark room. Also measurement methods are as follows.

Note3: Product surface temperature at the maximum luminance control: TopF = 32°C

Note4: Product surface temperature at 450cd/m^2 luminance control: TopF = 30° C

Temperature difference in display area: ΔTBD°C

NLT Technologies, Ltd.

NL160120AC27-32

Note5: See "4.13.2 Definition of contrast ratio".

Note6: See "4.13.3 Definition of luminance uniformity".

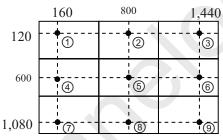
Note7: See "4.13.4 Definition of color uniformity".

Note8: These coordinates are found on CIE 1931 chromaticity diagram.

Note9: See "4.13.5 Definition of response times".

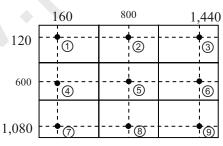
Note 10: See "4.13.6 Definition of viewing angles".

4.13.2 Definition of contrast ratio


The contrast ratio is calculated by using the following formula.

4.13.3 Definition of luminance uniformity

The luminance uniformity is calculated by using following formula.


$$Luminance \ uniformity \ (LU) = \frac{Minimum \ luminance \ from \ \textcircled{1} \ to \ \textcircled{5}}{Maximum \ luminance \ from \ \textcircled{1} \ to \ \textcircled{5}}$$

The luminance is measured at near the 9 points shown below.

4.13.4 Definition of color uniformity

The color (u', v') is measured at near the 9 points shown below.

The color uniformity in each measuring point is calculated by using the following formula.

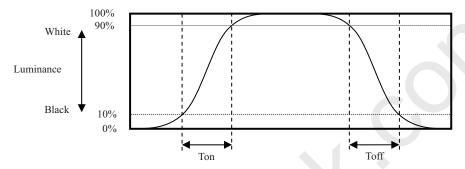
Color uniformity(
$$\Delta u'v'$$
)= $\sqrt{(u'_x - u'_y)^2 + (v'_x - v'_y)^2}$

u'x, v'x: u', v' value at measuring point x.

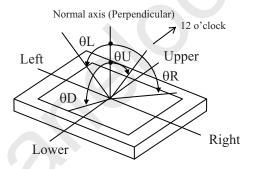
u'y, v'y: u', v' value at measuring point y.

2

2



NLT Technologies, Ltd.


NL160120AC27-32

4.13.5 Definition of response times

Response time is measured at the time when the luminance changes from "black" to "white", or "white" to "black" on the same screen point, by photo-detector. Ton is the time when the luminance changes from 10% up to 90%. Also Toff is the time when the luminance changes from 90% down to 10% (See the following diagram.).

4.13.6 Definition of viewing angles

5. ESTIMATED LUMINANCE LIFETIME

The luminance lifetime is the time from initial luminance to half-luminance.

This lifetime is the estimated value, and is not guarantee value.

	Condition	Estimated luminance lifetime (Life time expectancy) Note1, Note2, Note3	Unit
LED elementary substance	25°C (Ambient temperature of the product) Continuous operation, PWM: Duty 100%	70,000	h
LED elementary substance	60°C (Surface temperature at screen) Continuous operation, PWM: Duty 100%	TBD	п

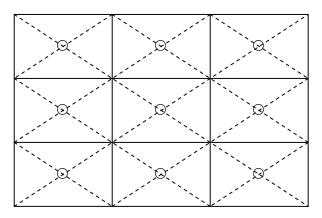
Note1: Life time expectancy is mean time to half-luminance.

Note2: Estimated luminance lifetime is not the value for an LCD module but the value for LED elementary substance.

Note3: By ambient temperature, the lifetime changes particularly. Especially, in case the product works under high temperature environment, the lifetime becomes short.

PRELIMINARY DATA SHEET DOD-PP-1268 (2nd edition)

NLT Technologies, Ltd.


NL160120AC27-32

6. RELIABILITY TESTS

Tes	st item	Condition	Judgment Note1
~ ^	cure and humidity eration)	① 60 ± 2°C, RH = 60%, 500hours ② Display data is white. Note2	
	t cycle eration)	① 0 ± 3°C1hour 60 ± 3°C1hour ② 50cycles, 4hours/cycle ③ Display data is white. Note2	No display malfunctions
	nal shock operation)	 1 -20 ± 3°C30minutes 60 ± 3°C30minutes 2 100cycles, 1hour/cycle 3 Temperature transition time is within 5 minutes. 	
	oration operation)	 5 to 100Hz, 11.76m/s² 1 minute/cycle X, Y, Z directions 10 times each directions 	No display malfunctions No physical damages
	nical shock operation)	 ① 294m/s², 11ms ② X, Y, Z directions ③ 3 times each directions 	
_	ESD eration)	 ① 150pF, 150Ω, ±10kV ② 9 places on a panel surface Note3 ③ 10 times each places at 1 sec interval 	No display malfunctions
	Oust eration)	 ① Sample dust: No.15 (by JIS-Z8901) ② 15 seconds stir ③ 8 times repeat at 1 hour interval Note2 	No display manufictions
Low pressure	Non-operation	① 15 kPa (Equivalent to altitude 13,600m) ② -20°C±3°C24 hours ③ +60°C±3°C24 hours	No display malfunctions
Low pressure	Operation	① 53.3 kPa (Equivalent to altitude 4,850m) ② 0°C±3°C24 hours ③ +60°C±3°C24 hours Note2	tvo dispiay manunctions

Note1: Display and appearance are checked under environmental conditions equivalent to the inspection conditions of defect criteria.

Note2: Luminance: 450cd/m² at luminance control. Note3: See the following figure for discharge points

NLT Technologies, Ltd.

NL160120AC27-32

7. PRECAUTIONS

7.1 MEANING OF CAUTION SIGNS

The following caution signs have very important meaning. **Be sure to read "7.2 CAUTIONS" and "7.3 ATTENTIONS"!**

This sign has the meaning that a customer will be injured or the product will sustain damage if the customer practices wrong operations.

This sign has the meaning that a customer will be injured if the customer practices wrong operations.

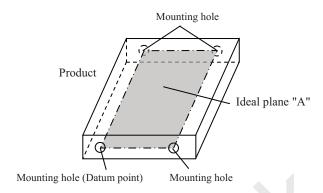
7.2 CAUTIONS

* Do not shock and press the LCD panel and the backlight! There is a danger of breaking, because they are made of glass. (Shock: Equal to or no greater than 294m/s 2 and equal to or no greater than 11ms, Pressure: Equal to or no greater than 19.6N (ϕ 16mm jig))

7.3 ATTENTIONS 1

7.3.1 Handling of the product

- ① Take hold of both ends without touching the circuit board when the product (LCD module) is picked up from inner packing box to avoid broken down or misadjustment, because of stress to mounting parts on the circuit board.
- ② Do not hook nor pull cables such as lamp cable, and so on, in order to avoid any damage.
- 3 When the product is put on the table temporarily, display surface must be placed downward.
- When handling the product, take the measures of electrostatic discharge with such as earth band, ionic shower and so on, because the product may be damaged by electrostatic.
- (5) The torque for product mounting screws must never exceed 0.735N·m. Higher torque might result in distortion of the bezel. And the length of product mounting screws must be ≤ 5.0mm.



NLT Technologies, Ltd.

NL160120AC27-32

The product must be installed using mounting holes without undue stress such as bends or twist (See outline drawings). And do not add undue stress to any portion (such as bezel flat area). Bends or twist described above and undue stress to any portion may cause display mura. Recommended installing method: Ideal plane "A" is defined by one mounting hole (datum point) and other mounting holes. The ideal plane "A" should be the same plane within ±0.3 mm.

- ② Do not press or rub on the sensitive product surface. When cleaning the product surface, wipe it with a soft dry cloth.
- Do not push or pull the interface connectors while the product is working.
- When handling the product, use of an original protection sheet on the product surface (polarizer) is recommended for protection of product surface. Adhesive type protection sheet may change color or characteristics of the polarizer.
- Wusually liquid crystals don't leak through the breakage of glasses because of the surface tension of thin layer and the construction of LCD panel. But, if you contact with liquid crystal by any chance, please wash it away with soap and water.

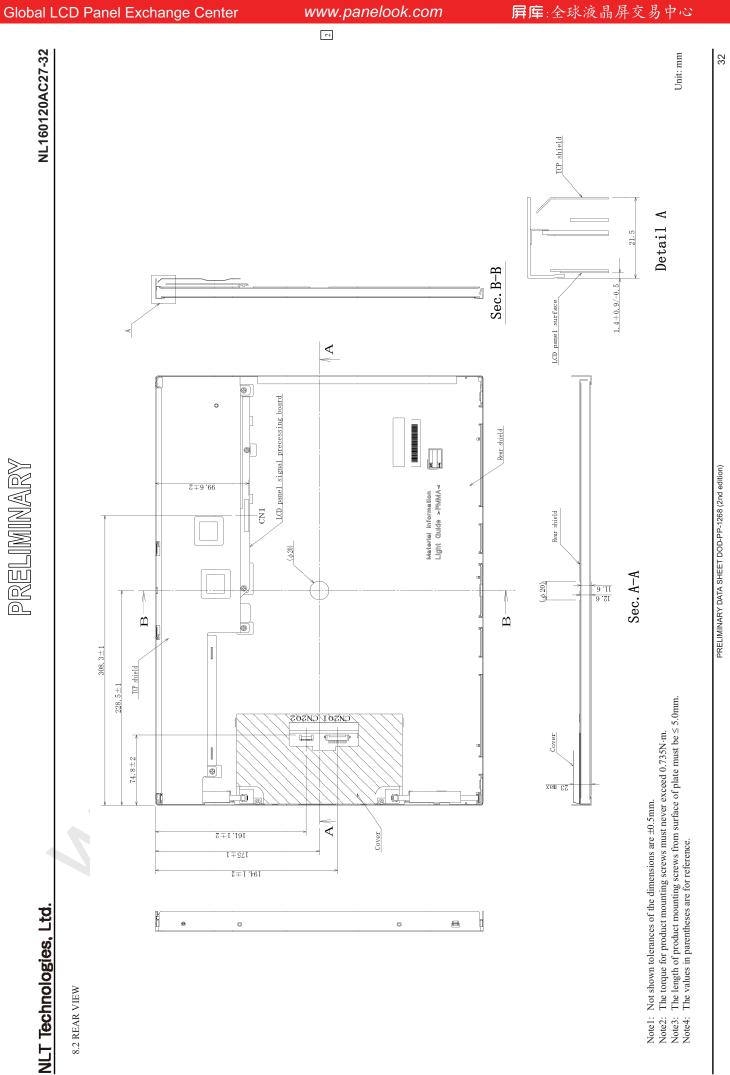
7.3.2 Environment

- ① Do not operate or store in high temperature, high humidity, dewdrop atmosphere or corrosive gases. Keep the product in packing box with antistatic pouch in room temperature to avoid dusts and sunlight, when storing the product.
- ② In order to prevent dew condensation occurred by temperature difference, the product packing box must be opened after enough time being left under the environment of an unpacking room. Evaluate the storage time sufficiently because dew condensation is affected by the environmental temperature and humidity. (Recommended leaving time: 6 hours or more with the original packing state after a customer receives the package)
- 3 Do not operate in high magnetic field. If not, circuit boards may be broken.
- 4 This product is not designed as radiation hardened.

NLT Technologies, Ltd.

NL160120AC27-32

7.3.3 Characteristics


The following items are neither defects nor failures.

- ① Response time, luminance and color may be changed by ambient temperature.
- ② Display mura, flickering, vertical streams or tiny spots may be observed depending on display patterns.
- 3 Do not display the fixed pattern for a long time because it may cause image sticking. Use a screen saver, if the fixed pattern is displayed on the screen.
- The display color may be changed depending on viewing angle because of the use of condenser sheet in the backlight.
- ⑤ Optical characteristics may be changed depending on input signal timings.

7.3.4 Others

- ① All GND, GNDB, VDD and VDDB terminals should be used without any non-connected lines.
- ② Do not disassemble a product or adjust variable resistors.
- ③ Pack the product with the original shipping package, in order to avoid any damages during transportation, when returning the product to NLT for repairing and so on.
- The LCD module by itself or integrated into end product should be packed and transported with display in the vertical position. Otherwise the display characteristics may be degraded.

PRELIMINARY

NLT Technologies, Ltd.

NL160120AC27-32

REVISION HISTORY

The inside of latest specifications is revised to the clerical error and the major improvement of previous edition.

Edition	Document number	Prepared date	Re	vision contents and signa	ture
1st	DOD-PP-	July 8,	Revision contents		
edition	1244	2011	New issue		
			Writer		
			Approved by	Checked by	Prepared by
			T. OGAWA		T. OGAWA
2nd edition	DOD-PP- 1268	Sep 16, 2011	Revision contents		
			P5 General specifications		
			• Luminance: 890 cd/m ² (typ.)		
			• Signal system: THC63LVD824		
			• Power consumption: (52) W (t	$yp.) \rightarrow (57) W (typ.)$	
			P7 Mechanical specifications	22.0 (5)	
			 Module size: TBD (max. D) m Weight: TBD (max.) g → (2,9) 		
			P7 Absolute maximum ratings	980) (max.) g	
			Power supply voltage- LED of	lriver board: -0.3 to +27.0	$V \rightarrow -0.3 \text{ to } +15.0 \text{ V}$
			Operating temperature- Rear		
			P8 LCD panel signal processing b		(1.11.11)
			• Power supply current: TBD ($\max.) \text{ mA} \rightarrow (700) \text{ (max.)}$	mA
			P9 LED Driver board	(4.200) (t	\ A
			• Power supply current: (5,000 P9 LED Driver board current way		.) IIIA
			• $(5,000)$ mA $(typ.) \rightarrow (4,200)$		
			• At the minimum luminance c		At frequency: 325 Hz)
			P10 Power supply voltage ripple (
			P11 LED Driver board	,, , ,	
			• $tr \le TBD \text{ ms} \rightarrow tr \le (100) \text{ ms}$		
			• Note2: TBD \rightarrow (100) ms		
			P15 Luminance control methods		
			Variable resistor control- Lun		→ 0 %
			Voltage control- Luminance r		
			• Pulse width modulation- Lun		Δ
			: TBD, TBD % \rightarrow (0.01), (1) • Note4: "4.6.3 Detail of BRTF		
			P16 Detail of BRTP timing- Eac		i bkir tillilig
			Luminance control frequency		0) (max) Hz
			• Parameter: Duty ratio → Exte		o) (max.) 112
			P17 LVDS data input map- Mode A	mail will palse wiam	
			• Transmitter: THC63LVDF83A	→ THC63LVDM83D, THC63	$3LVD823 \rightarrow THC63LVD823B$
			P24-25 Optical characteristics	2	
			• Luminance: 890 cd/m ² (typ.)	\rightarrow 900 cd/m ² (typ.)	
			• Color uniformity (addition)	ND () (20) (`
			• Response time: Ton / Toff: TI		
			• Viewing angle- Measuring in		1)
			 Note3: TopF = TBD°C → To Note4: TopF = TBD°C → To 		
			-	pr = 30°C e in display area: ΔTBD°C	(addition)
			Note7 (addition)	e in dispiay area. ATBD*C	(audition)
		I	- INOIC/ (addition)		
			 Definition of color uniformity 	(addition)	

NLT Technologies, Ltd.

NL160120AC27-32

REVISION HISTORY

Edition	Document number	Prepared date	Revision contents and signature
2nd edition	DOD-PP- 1268	Sep 16, 2011	P30 Characteristics • Optical characteristics, because the LCD has cold cathode fluorescent lamps. (elimination) P31-32 Outline drawings- Front view • Front view • 7.5 → 7.3 (2 points), 8.9 → 10.1 • Display center → Product center • 92, 122.3 (elimination) • Rear view • Cover: figure is changed. Signature of writer
			Approved by Checked by Prepared by T. Ogawa T. OGAWA T. OGAWA