

TFT COLOR LCD MODULE

NL204153AC21-17

54cm (21.3 Type) QXGA LVDS interface (4 ports)

PRELIMINARY DATA SHEET

This PRELIMINARY DATA SHEET is updated document from DOD-PP-1243(1).

All information is subject to change without notice. Please confirm the sales representative before starting to design your system.

INTRODUCTION

The Copyright to this document belongs to NLT Technologies, Ltd. (hereinafter called "NLT"). No part of this document will be used, reproduced or copied without prior written consent of NLT.

NLT does and will not assume any liability for infringement of patents, copyrights or other intellectual property rights of any third party arising out of or in connection with application of the products described herein except for that directly attributable to mechanisms and workmanship thereof. No license, express or implied, is granted under any patent, copyright or other intellectual property right of NLT.

Some electronic parts/components would fail or malfunction at a certain rate. In spite of every effort to enhance reliability of products by NLT, the possibility of failures and malfunction might not be avoided entirely. To prevent the risks of damage to death, human bodily injury or other property arising out thereof or in connection therewith, each customer is required to take sufficient measures in its safety designs and plans including, but not limited to, redundant system, fire-containment and anti-failure.

The products are classified into three quality grades: "**Standard**", "**Special**", and "**Specific**" of the highest grade of a quality assurance program at the choice of a customer. Each quality grade is designed for applications described below. Any customer who intends to use a product for application other than that of Standard quality grade is required to contact an NLT sales representative in advance.

The **Standard** quality grade applies to the products developed, designed and manufactured in accordance with the NLT standard quality assurance program, which are designed for such application as any failure or malfunction of the products (sets) or parts/components incorporated therein a customer uses are, directly or indirectly, free of any damage to death, human bodily injury or other property, like general electronic devices.

Examples: Computers, office automation equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment, industrial robots, etc.

The **Special** quality grade applies to the products developed, designed and manufactured in accordance with an NLT quality assurance program stricter than the standard one, which are designed for such application as any failure or malfunction of the products (sets) or parts/components incorporated therein a customer uses might directly cause any damage to death, human bodily injury or other property, or such application under more severe condition than that defined in the Standard quality grade without such direct damage.

Examples: Control systems for transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, medical equipment not specifically designed for life support, safety equipment, etc.

The **Specific** quality grade applies to the products developed, designed and manufactured in accordance with the standards or quality assurance program designated by a customer who requires an extremely higher level of reliability and quality for such products.

Examples: Military systems, aircraft control equipment, aerospace equipment, nuclear reactor control systems, medical equipment/devices/systems for life support, etc.

The quality grade of this product is the "Standard" unless otherwise specified in this document.

NL204153AC21-17

CONTENTS

INTRODUCTION	2
1. OUTLINE	4
1.1 STRUCTURE AND PRINCIPLE	
1.2 APPLICATION	
1.3 FEATURES	
2. GENERAL SPECIFICATIONS	
3. BLOCK DIAGRAM	6
4. DETAILED SPECIFICATIONS	.7
4.1 MECHANICAL SPECIFICATIONS	. 7
4.2 ABSOLUTE MAXIMUM RATINGS	
4.3 ELECTRICAL CHARACTERISTICS	
4.3.1 LCD panel signal processing board4.3.2 LED Driver board	8
4.3.2 LED Driver board	.9
4.3.3 LED Driver board current wave	9
4.3.4 Power supply voltage ripple	
4.3.5 Fuse	. 10
4.4 POWER SUPPLY VOLTAGE SEQUENCE	. 11
4.4.1 LCD panel signal processing board	. 11
4.4.2 LED driver board	. 11
4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS	.12
4.5.1 LCD panel signal processing board	.12
4.5.2 LED driver board	.13
4.5.3 Positions of socket 4.6 LUMINANCE CONTROL	
4.6.1 Luminance control methods	
4.6.2 Detail of BRTP timing	10
4.8 DISPLAY COLORS AND INPUT DATA SIGNALS	21
4.9 INPUT SIGNAL TIMINGS	
4.9.1 Timing characteristics	
4.9.1 Innut signal timing chart	.22
4.9.2 Input signal timing chart	.22
4.11 DISPLAY POSITIONS	.23
4.12 PIXEL ARRANGNMENT	.23
4.13 OPTICS.	25
4.13.1 Optical characteristics	
4.13.2 Definition of contrast ratio	
4.13.3 Definition of luminance uniformity	26
4.13.4 Definition of color uniformity	26
4.13.5 Definition of response times	
4.13.6 Definition of viewing angles	27
5. ESTIMATED LUMINANCE LIFETIME	27
6. RELIABILITY TESTS	
7. PRECAUTIONS	
7.1 MEANING OF CAUTION SIGNS	
7.2 CAUTIONS	
7.3 ATTENTIONS	
7.3.1 Handling of the product	
7.3.2 Environment	
7.3.3 Characteristics	
7.3.4 Others	
8. OUTLINE DRAWINGS	
8.1 FRONT VIEW	
8.2 REAR VIEW	
REVISION HISTORY	34

1. OUTLINE

1.1 STRUCTURE AND PRINCIPLE

Color LCD module NL204153AC21-17 is composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array and a backlight.

The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a color-filter glass substrate.

Color data signals from a host system (e.g. signal generator, etc.) are modulated into best form for active matrix system by a signal processing board, and sent to the driver LSIs which drive the individual TFT arrays.

The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Color images are created by regulating the amount of transmitted light through the TFT array of red, green and blue dots.

1.2 APPLICATION

• Color monitor system

1.3 FEATURES

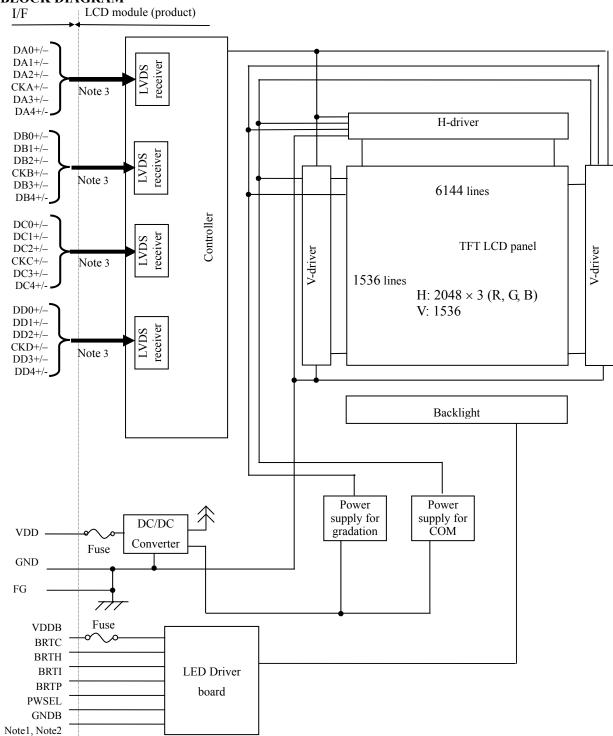
- Ultra-wide viewing angle (Adoption of Ultra-Advanced Super Fine TFT (UA-SFT))
- Wide color gamut
- High luminance
- High contrast
- Low reflection
- 1,024 gray scale in each R, G, B sub-pixel (10-bit), 1,073,741,824 colors
- LVDS interface
- Selectable LVDS data input map
- Small foot print
- Long life LED backlight type with an LED driver board

2. GENERAL SPECIFICATIONS

Display area	433.152 (H) × 324.864 (V) mm			
Diagonal size of display	54cm (21.3 inches)			
Drive system	a-Si TFT active matrix			
Display color	1,073,741,824 colors			
Pixel	$2,048 \text{ (H)} \times 1,536 \text{ (V)}$ pixels (1 pixel consists of 3 sub-pixels (RGB).)			
Pixel arrangement	RGB (Red dot, Green dot, Blue dot) vertical stripe			
Sub-pixel pitch	0.0705 (H) × 0.2115 (V) mm			
Pixel pitch	0.2115 (H) × 0.2115 (V) mm			
Module size	457.0 (W) × 350.0 (H) × 21.5 (D) mm (typ.)			
Weight	(2,700)g (typ.)			
Contrast ratio	1,400:1 (typ.)			
Viewing angle	 At the contrast ratio ≥ 10:1 Horizontal: Right side 88° (typ.), Left side 88° (typ.) Vertical: Up side 88° (typ.), Down side 88° (typ.) 			
Designed viewing direction	Viewing angle with optimum grayscale (γ≒DICOM): normal axis (perpendicular) Note1			
Polarizer surface	Antiglare			
Polarizer pencil-hardness	2H (min.) [by JIS K5600]			
Color gamut	At LCD panel center (72) % (typ.) [against NTSC color space]			
Response time	$\begin{array}{l} Ton + Toff \ (10\% \longleftrightarrow 90\%) \\ (40) \text{ms (typ.)} \end{array}$			
Luminance	<i>At the maximum luminance control</i> 800cd/m ² (typ.)			
Signal system	4 ports LVDS interface (THC63LVD104S×2pcs, THine Electronics, Inc. or equivalent) [RGB 10-bit signals, Data enable signal (DE), Dot clock (CK)]			
Power supply voltage	bltage LCD panel signal processing board: 12.0V LED driver board: 12.0V			
Backlight	LED backlight type with LED driver board			
Power consumption	<i>At checkered flag pattern, the maximum luminance control</i> (58)W (typ.)			

Note1: When the product luminance is 450cd/m^2 , the gamma characteristic is designed to $\gamma = \text{DICOM}$.

2


2

2

NL204153AC21-17

3. BLOCK DIAGRAM

Note1: Relations between GND (Signal ground), FG (Frame ground) and GNDB (LED driver board ground) in the LCD module are as follows.

GND - FG	Connected
GND - GNDB	Not connected
FG - GNDB	Not connected

Note2 GND, FG and GNDB must be connected to customer equipment's ground, and it is recommended that these grounds be connected together in customer equipment.

Note3 Each pair of the LVDS signal has a 100Ω terminating resistance between D+ and D-.

4. DETAILED SPECIFICATIONS

4.1 MECHANICAL SPECIFICATIONS

Parameter	Specification		Unit]
Module size	457.0 ±1.0 (W) × 350.0 ±1.0 (H) × 21.5 (typ., D) 23.0 (max. D)	Note1, Note2	mm	2
Display area	433.152 (H) × 324.864 (V)	Note2	mm	
Weight	(2,700) (typ.), (2,980) (max.)		g	2

Note1: Excluding warpage of the cover for LED driver board. Note2: See **"8. OUTLINE DRAWINGS**".

4.2 ABSOLUTE MAXIMUM RATINGS

Parameter		Symbol	Rating	Unit	Remarks	
LCD panel sign	al processing board	VDD	-0.3 to +14.0	V		
LED dı	river board	VDDB	-0.3 to +15.0	V		2
		Vi	-0.3 to +2.8	v	VDD= 12.0V	
	BRTI signal	VBI	-0.3 to +1.5	V		
LED driver board	BRTP signal	VBP	-0.3 to +5.5	V	VDDD = 12.0V	
LED driver board	BRTC signal	VBC	-0.3 to +5.5	v	VDDB= 12.0V	
	PWSEL signal	VBS	-0.3 to +5.5	v		
Storage temperat	ure	Tst	-20 to +60	°C	-	
	Front surface	TopF	(0 to +60)	°C	Note2	
g temperature	Rear surface	TopR	(0 to + 60)	°C	Note3	2
			≤ 9 5	%	Ta ≤ 40°C	
Relative humidi Note4	ty	RH	≤ 8 5	%	$40^{\circ}\text{C} < \text{Ta} \le 50^{\circ}\text{C}$	
		≤ 70	%	$50^{\circ}\text{C} < \text{Ta} \le 55^{\circ}\text{C}$		
Absolute humidi Note4	AH	≤ 73 Note5	g/m ³	Ta > 55°C		
Operating altitud	-	≤ 4,850	m	$0^{\circ}C \le Ta \le 55^{\circ}C$		
Storage altitude	e	-	≤ 13,600	m	$-20^{\circ}C \le Ta \le 60^{\circ}C$	
	LCD panel sign LED driver board LED driver board Storage temperat g temperature Relative humidi Note4 Absolute humidi Note4	LCD panel signal processing board LED driver board LCD panel signal processing board Note1 BRTI signal BRTP signal BRTC signal BRTC signal PWSEL signal Storage temperature g temperature Relative humidity Note4 Absolute humidity	LCD panel signal processing boardVDDLED driver boardVDDBLCD panel signal processing board Note1ViLCD panel signal processing board Note1ViBRTI signalVBIBRTP signalVBPBRTC signalVBCPWSEL signalVBSStorage temperatureTstg temperatureFront surfaceRelative humidity Note4Rear surfaceAbsolute humidity Note4AHOperating altitude-	LCD panel signal processing boardVDD-0.3 to +14.0LED driver boardVDDB-0.3 to +15.0LCD panel signal processing board Note1Vi-0.3 to +2.8LED driver boardBRTI signalVBI-0.3 to +5.5BRTP signalVBP-0.3 to +5.5BRTC signalVBC-0.3 to +5.5BRTC signalVBS-0.3 to +5.5Storage temperatureTst-20 to +60g temperatureFront surfaceTopF(0 to +60)g temperatureRear surfaceTopR(0 to +60)Relative humidity Note4RH ≤ 95 ≤ 70 Absolute humidity Note4AH ≤ 73 Note5Operating altitude- $\leq 4,850$	LCD panel signal processing boardVDD-0.3 to +14.0VLED driver boardVDDB-0.3 to +15.0VLCD panel signal processing board Note1Vi-0.3 to +1.5VLCD panel signal processing board Note1Vi-0.3 to +2.8VLCD panel signal processing board Note1Vi-0.3 to +2.8VLCD panel signal processing board Note1Vi-0.3 to +5.5VBRTP signalVBI-0.3 to +5.5VBRTC signalVBC-0.3 to +5.5VBRTC signalVBS-0.3 to +5.5VPWSEL signalVBS-0.3 to +5.5VStorage temperatureTst-20 to +60°Cg temperatureFront surfaceTopF(0 to +60)°CRelative humidity Note4RH ≤ 95 %Absolute humidity Note4AH ≤ 73 Note5g/m³Operating altitude- $\leq 4,850$ m	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Note1: DA0+/-, DA1+/-, DA2+/-, DA3+/-, DA4+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/-, DB4+/-, CKB+/-, DC0+/-, DC1+/-, DC2+/-, DC3+/-, DC4+/-, CKC+/-, DD0+/-, DD1+/-, DD2+/-, DD3+/-, DD4+/-, CKD+/-, BSEL.

- Note2: Measured at LCD panel surface (including self-heat)
- Note3: Measured at LCD module's rear shield surface (including self-heat)

Note4: No condensation

Note5: Water amount at Ta= 55°C and RH= 70%

NL204153AC21-17

2

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD panel signal processing board

							(Ta= 25°C)
Parameter	Symbol	min.	typ.	max.	Unit	Remarks	
Power supply voltage		VDD	10.8	12.0	13.2	V	-
Power supply current		IDD	-	(590) Note1	(980) Note2	mA	at VDD= 12.0V
Permissible ripple voltage		VRP	-	-	100	mVp-p	for VDD
Differential input threshold	High	VTH	-	-	+100	mV	at VCM= 1.2V
voltage Lo		VTL	-100	-	-	mV	Note3, Note4
Input voltage swing		VI	0	-	2.4	V	Note4
Terminating resistance		RT	-	100	-	Ω	-

Note1: Checkered flag pattern (by EIAJ ED-2522)

Note2: Pattern for maximum current

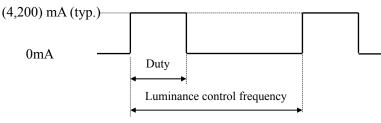
Note3: Common mode voltage for LVDS driver

Note4: DA0+/-, DA1+/-, DA2+/-, DA3+/-, DA4+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/-, DB4+/-, CKB+/-, DC0+/-, DC1+/-, DC2+/-, DC3+/-, DC4+/-, CKC+/-, DD0+/-, DD1+/-, DD2+/-, DD3+/-, DD4+/-, CKD+/-

NL204153AC21-17

4.3.2 LED Driver board

 $(Ta=25^{\circ}C)$


2

2

2

	Parameter	Symbol	min.	typ.	max.	Unit	Remarks	
		-	-				remains	
Powe	r supply voltage		VDDB	(11.4)	12.0	(12.6)	V	-
Powe	r supply current		IDDB	-	(4,200)	TBD	mA	VDDB= 12.0V, At the maximum luminance control
	BRTI signal		VBI	0	-	1.0	V	
	BRTP signal	High	VBPH	2.0	-	5.25	V	
	DITT Signat	Low	VBPL	0	-	0.8	v	
Input voltage for signals	BRTC signal	High	VBCH	2.0	-	5.25	V	
-	DRIC Signal	Low	VBCL	0	-	0.8	V	
	PWSEL signal	High	VBSH	2.0	-	5.25	v	
	1 W SEE Signai	Low	VBSL	0	-	0.8	V	_
	BRTI signal	_	IBI	TBD	-	TBD	μΑ	_
	BRTP signal	High	IBPH	-	-	TBD	μΑ	
_	Ditti signai	Low	IBPL	TBD	-	-	μΑ	
Input current for signals	BRTC signal	High	IBCH	-	-	TBD	μΑ	
-		Low	IBCL	TBD	-	-	μΑ	
	PWSEL signal	High	IPSH	-	-	TBD	μΑ	
		Low	IPSL	TBD	-	-	μΑ	

4.3.3 LED Driver board current wave

At the maximum luminance control: 100% At the minimum luminance control: (1)% (At frequency: 325 Hz) Luminance control frequency: (255)Hz (typ.)

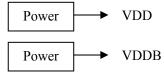
- Note1: Luminance control frequency indicate the input pulse frequency, when select the external pulse control. See "4.6.2 Detail of BRTP timing".
- Note2: The power supply lines (VDDB and GNDB) have large ripple voltage during luminance control. There is the possibility that the ripple voltage produces acoustic noise and signal wave noise in audio circuit and so on. Put a capacitor (5,000 to $6,000\mu$ F) between the power supply lines (VDDB and GNDB) to reduce the noise, if the noise occurred in the circuit.

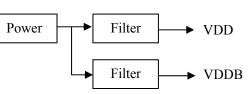
NL204153AC21-17

2

2

4.3.4 Power supply voltage ripple

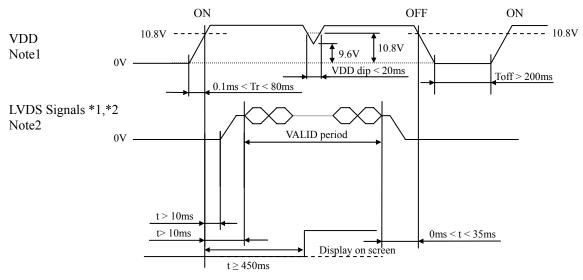

This product works, even if the ripple voltage levels are beyond the permissible values as following the table, but there might be noise on the display image.


Power supp	oly voltage	Ripple voltage Note1 (Measure at input terminal of power supply)	Unit
VDD	12.0V	≤ 100	mVp-p
VDDB	12.0V	≤ 200	mVp-p

Note1: The permissible ripple voltage includes spike noise.

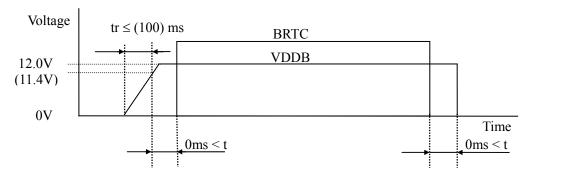
Example of the power supply connection a) Separate the power supply

b) Put in the filter


4.3.5 Fuse

Parameter	Fuse		Dating	Euging ourrent	Remarks
Parameter	Туре	Supplier	Rating	Fusing current	Remarks
VDD	FCC16202AB	KAMAYA ELECTRIC	2.0A	4.0A, 5 seconds	
VDD	Co., Ltd. 32V	Co., Ltd.	32V	maximum	Note1
VDDB	CCF1N10	KOA Corporation	10A	20 A, 1 seconds	Note1
VDDD	CCFINIO	KOA Corporation	60 V	maximum	

Note1: The power supply capacity should be more than the fusing current. If it is less than the fusing current, the fuse may not blow in a short time, and then nasty smell, smoke and so on may occur.


4.4 POWER SUPPLY VOLTAGE SEQUENCE

4.4.1 LCD panel signal processing board

- *1: DA0+/-, DA1+/-, DA2+/-, DA3+/-, DA4+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/-, DB4+/-, CKB+/-, DC0+/-, DC1+/-, DC2+/-, DC3+/-, DC4+/-, CKC+/-, DD0+/-, DD1+/-, DD2+/-, DD3+/-, DD4+/-, CKD+/-
- *2: LVDS signals should be measured at the terminal of 100 Ω resistance.
- Note1: If there is a voltage variation (voltage drop) at the rising edge of VCC below 10.8V, there is a possibility that a product does not work due to a protection circuit.
- Note2: LVDS signals must be set to Low or High-impedance, except the VALID period (See above sequence diagram), in order to avoid the circuitry damage. If some of signals are cut while this product is working, even if the signal input to it once again, it might not work normally. If a customer stops the display and function signals, VCC also must be shut down.
- Note3: The backlight should be turned on within the valid period of LVDS signals, in order to avoid unstable data display.

4.4.2 LED driver board

- Note1: The backlight should be turned on within the valid period of LVDS signals, in order to avoid unstable data display.
- Note2: If tr is more than (100) ms, the backlight will be turned off by a protection circuit for LED 2 driver board.
- Note3: When VDDB is 0V or BRTC is Low, PWSEL must be set to Low or Open.

2

4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS 4.5.1 LCD panel signal processing board

CN1 socket (LCD module side): FI-RE51S-HF (Japan Aviation Electronics Industry Limited (JAE)) Adaptable plug: FI-RE51HL (Japan Aviation Electronics Industry Limited (JAE))

Adaptable plug: FI-RE51HL (Japan Aviation Electronics Industry Limited (
Pin No.	Symbol	Signal	Remarks		
1	GND	Ground			
2	GND	Ground	Note1		
3	GND	Ground			
4	DA0-	Pixel data A0	LVDS differential data input Nate2		
5	DA0+	Pixel data A0	LVDS differential data input Note2		
6	GND	Ground	Note1		
7	DA1-	Pixel data A1	LVDS differential data input Note2		
8	DA1+	Fixel data A1	EVDS differential data input Note2		
9	GND	Ground	Note1		
10	DA2-	Pixel data A2	LVDS differential data input Note2		
11	DA2+		-		
12	GND	Ground	Note1		
13 14	CKA- CKA+	Pixel clock A	LVDS differential data input Note2		
14	GND	Ground	Note1		
16	DA3-				
17	DA3+	Pixel data A3	LVDS differential data input Note2		
18	GND	Ground	Note1		
19	DA4-	Pixel data A4	LVDS differential data input Note2		
20	DA4+		-		
21	GND	Ground	Note1		
22	DB0-	Pixel data B0	LVDS differential data input Note2		
23 24	DB0+ GND	Ground	Note1		
24	DB1-	Ground			
26	DB1+	Pixel data B1	LVDS differential data input Note2		
27	GND	Ground	Note1		
28	DB2-	Pixel data B2			
29	DB2+		LVDS differential data input Note2		
30	GND	Ground	Note1		
31	CKB-	Pixel clock B	LVDS differential data input Note2		
32	CKB+				
33	GND	Ground	Note1		
<u>34</u> 35	DB3- DB3+	Pixel data B3	LVDS differential data input Note2		
36	GND	Ground	Note1		
37	DB4-				
38	DB4+	Pixel data B4	LVDS differential data input Note2		
39	GND	Ground	Note1		

NL204153AC21-17

Continued

40	GND	Ground	Note1
41	RSEV	-	Keep this pin Open.
42	RSEV	-	Keep this pin Open.
43	RSEV	-	Keep this pin Open.
44	RSEV	-	Keep this pin Open.
45	GND	Ground	Note1
46	GND	Ground	Note1
47	GND	Ground	Note1
48	RSEV	-	Keep this pin Open.
49	RSEV	-	Keep this pin Open.
50	RSEV	-	Keep this pin Open.
51	GND	Ground	Note1

Note1: All GND terminals should be used without any non-connected lines.

Note2: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

NL204153AC21-17

CN2 socket (LCD module side):FI-RE41S-HF (Japan Aviation Electronics Industry Limited (JAE))Adaptable plug:FI-RE41HL (Japan Aviation Electronics Industry Limited (JAE))

Adaptable	e plug:	FI-RE41HL (Ja	apan Aviation Electronics Industry Limited (JAE))
Pin No.	Symbol	Signal	Remarks
1	GND	Ground	
2	GND	Ground	Note1
3	GND	Ground	
4	DC0-	Pixel data C0	LVDG 1:00 model 1 data inc. A. Nieto2
5	DC0+	Pixel data C0	LVDS differential data input Note2
6	GND	Ground	Note1
7	DC1-	Pixel data C1	LVDS differential data input Note2
8	DC1+	Pixel data CI	LVDS differential data input Note2
9	GND	Ground	Note1
10	DC2-	Pixel data C2	LVDS differential data input Note2
11	DC2+		-
12	GND	Ground	Note1
13	CKC-	Pixel clock C	LVDS differential data input Note2
14	CKC+		-
15	GND	Ground	Note1
16 17	DC3- DC3+	Pixel data C3	LVDS differential data input Note2
17	GND	Ground	Note1
18	DC4-		
20	DC4+	Pixel data C4	LVDS differential data input Note2
20	GND	Ground	Note1
22	DD0-		
23	DD0+	Pixel data D0	LVDS differential data input Note2
24	GND	Ground	Note1
25	DD1-	Pixel data D1	LVDS differential data input Note2
26	DD1+		-
27	GND	Ground	Note1
28	DD2-	Pixel data D2	LVDS differential data input Note2
29	DD2+		-
<u> </u>	GND CKD-	Ground	Note1
31	CKD- CKD+	Pixel clock D	LVDS differential data input Note2
32	GND	Ground	Note1
33	DD3-		
35	DD3- DD3+	Pixel data D3	LVDS differential data input Note2
36	GND	Ground	Note1
37	DD4-		
38	DD4+	Pixel data D4	LVDS differential data input Note2
39	GND	Ground	Note1
40	GND	Ground	Note1
41	GND	Ground	Note1
		hala ahavid ha yaad with a	

Note1: All GND terminals should be used without any non-connected lines.

Note2: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

CN3 socket (LCD module side): IL-Z-12PL-SMTYE (Japan Aviation Electronics Industry Limited (JAE)) Adaptable plug: IL-Z-12S-S125C (Japan Aviation Electronics Industry Limited (JAE))

Adaptabl	e plug.	IL-Z-125-5125C (Ja	pair Aviation Electronics industry Linnied (JAE)
Pin No.	Symbol	Function	Description
1	VDD		
2	VDD		
3	VDD	Dowor cumply	Note1
4	VDD	Power supply	Note1
5	VDD		
6	VDD		
7	GND		
8	GND		
9	GND	Signal ground	Note1
10	GND	Signal ground	110101
11	GND]	
12	GND		

Note1: All VDD and GND terminals should be used without any non-connected lines.

4.5.2 LED driver board

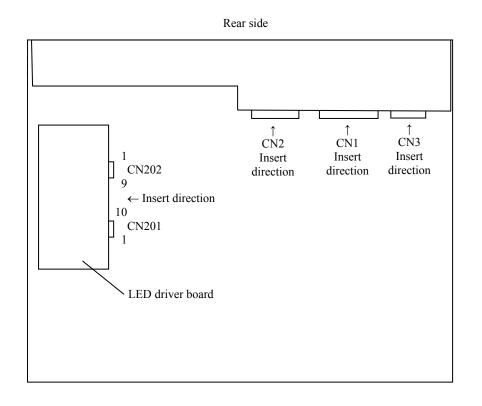
CN201 socket (LCD module side): DF3Z-10P-2H (2*) (HIROSE ELECTRIC Co,.Ltd.) Adaptable plug: DF3-10S-2C (HIROSE ELECTRIC Co,.Ltd.)

Adaptable	plug.	DI J-105-2C (IIIROBE ELL	le Hue eo,.Ltd.)
Pin No.	Symbol	Function	Description
1	GNDB		
2	GNDB		
3	GNDB	LED driver board ground	Note1
4	GNDB		
5	GNDB		
6	VDDB		
7	VDDB		
8	VDDB	Power supply	Note1
9	VDDB		
10	VDDB		

Note1: All VDDB and GNDB terminals should be used without any non-connected lines.

Adaptable	plug:	IL-Z-9S-S125C3 (Japan Av	iation Electronics Industry Limited (JAE))
Pin No.	Symbol	Function	Description
1	GNDB	LED driver board ground	Note1
2	GNDB	LED driver board ground	Note1
3	N.C.	-	Keep this pin Open.
4	BRTC	Backlight ON/OFF control signal	High or Open: Backlight ON Low: Backlight OFF
5	BRTH	Luminance control terminal	
6	BRTI	Ediminance control terminar	Note2
7	BRTP	BRTP signal	
8	GNDB	LED driver board ground	Note1
9	PWSEL	Selection of luminance control signal method	Note2, Note3

CN202 socket (LCD module side):	IL-Z-9PL-SMTYE (Japan Aviation Electronics Industry Limited (JAE))
Adaptable plug:	IL-Z-9S-S125C3 (Japan Aviation Electronics Industry Limited (JAE))


Note1: All GNDB terminals should be used without any non-connected lines.

Note2: See "4.6.1 LUMINANCE CONTROL ".

Note3: When VDDB is 0V or BRTC is Low, PWSEL must be set to Low or Open.

4.5.3 Positions of socket

NL204153AC21-17

4.6 LUMINANCE CONTROL

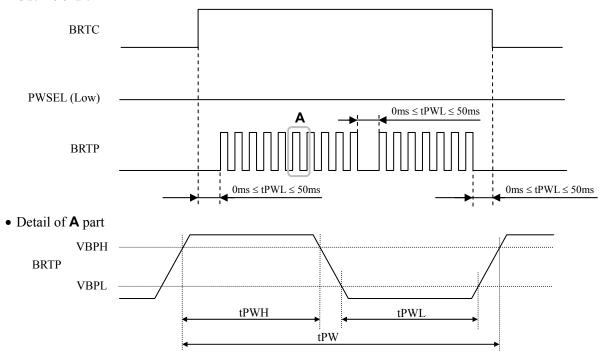
4.6.1 Luminance control methods

Method	Adjustment and luminance ratio	PWSEL terminal	BRTP terminal	
Variable resistor control Note1 Voltage control Note1	• Adjustment The variable resistor (R) for luminance control should be $10k\Omega \pm 5\%$, 1/10W. Minimum point of the resistance is the minimum luminance and maximum point of the resistance is the maximum luminance. The resistor (R) must be connected between BRTH-BRTI terminals. BRTH R BRTI • Luminance ratio Note3 • Luminance ratio Note3 • Adjustment Voltage control method works, when BRTH terminal is 0V and VBI voltage is input between BRTI-BRTH terminals. This control method can carry out continuation adjustment of luminance. Luminance is the maximum when BRTI terminal is Open. • Luminance ratio Note3 • Luminance ratio Note3 • Luminance ratio Note3	High or Open	Open	
Pulse width modulation Note1 Note2 Note4	 Adjustment Pulse width modulation (PWM) method works, when PWSEL terminal is Low and PWM signal (BRTP signal) is input into BRTP terminal. The luminance is controlled by duty ratio of BRTP signal. Luminance ratio Note3 Duty ratio Luminance ratio (0.01) (1)% (Min. Luminance) (At frequency: 325 Hz) 1.0 100% (Max. Luminance) 	Low	BRTP signal	

Note1: In case of the variable resistor control method and the voltage control method, noises may appear on the display image depending on the input signals timing for LCD panel signal processing board.

Use PWM method, if interference noises appear on the display image!

Note2: The LED driver board will stop working, if the Low period of BRTP signal is more than 50ms while BRTC signal is High or Open. Then the backlight will not turn on anymore, even if BRTP signal is input again. This is not out of order. The LED driver board will start to work when power is supplied again.


Note3: These data are the target values.

Note4: See "4.6.2 Detail of BRTP timing".

4.6.2 Detail of BRTP timing

- (1) Timing diagrams
 - Outline chart

(2) Each parameter

Parameter	Symbol	min.	typ.	max.	Unit	Remarks	
Luminance control frequency	FL	(185)	-	(1,000)	Hz	Note1, Note2	2
External PWM pulse width	tPWH	(30)	-	-	μs	Note1, Note3	2

Note1: Definition of parameters is as follows.

$$FL = \frac{1}{tPW}$$
, $DL = \frac{tPWH}{tPW}$

Note2: See the following formula for luminance control frequency.

Luminance control frequency= $1/tv \times (n+0.25)$ [or (n+0.75)] n = 1, 2, 3 · · · · · tv: Vertical cycle (See "**4.9.1 Timing characteristics**".)

The interference noise of luminance control frequency and input signal frequency for LCD panel signal processing board may appear on a display. Set up luminance control frequency so that the interference noise does not appear!

Note3: See "4.6.1 Luminance control methods".

NL204153AC21-17

4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NO. N I I I I D I I I
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$) [] [] [] [] [] [] [] [] [] [] [] [] [] [
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$) [] [] [] [] [] [] [] [] [] [] [] [] [] [
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	р р р р р р р р р р р р р р р р р р р
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$) []) []) [] 5 [] 7 []
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$) []) []) [] 5 [] 7 []
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D D D D D D D D D D D D D D D D D D D
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D D D D D D D D D D D D D D D D D D D
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$) [] _ [] 5 [] 7 []
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$) [] D 5 [] 7 D
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$) [] D 5 [] 7 D
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 E
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 E
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 E
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 E 7 D
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 E 7 D
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7 D
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7 D
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $) [
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	' L
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$) D
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 [
RB9 TA4 R10 GB4 TA6 G14 GB5 TB0 G15	3 D
GB4 TA6 G14 - GB5 TB0 G15 - CD4 TD1 C14 -	
CDC TD1 C1C	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 I
$\overline{GB8}$ $\overline{TB3}$ $\overline{G18}$ $\overline{BTB+}$ \rightarrow 26	5 D
GB9 TB4 G19 B1B Z BB4 TB5 B14 I I I	
BB5 TB6 B15 -	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
even $\frac{BB}{BB8}$ $\frac{1C1}{TC2}$ $\frac{B1}{B18}$ $BTC- \rightarrow 28$	3 I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) D
data Vsync TC5 Vsync Dict 22	
B DE TC6 DE -	
RB2 TD0 R12 RB3 TD1 R13 PTD 24	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 D
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
N.C. TD6 -	
RB0 TE0 R10 RB1 TE1 R11	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7 I
$\overline{GB1}$ $\overline{TE3}$ $\overline{G11}$ \rightarrow 33	8 D
BBU IE4 BIU DIET	
N.C. TE6 -	
CLK CLK CLK $\begin{array}{ccc} BTCLK & \rightarrow & 31\\ BTCLK^+ & \rightarrow & 32\end{array}$	

2

Signal

Name -DA0-DA0--DA1-DA1-DA1-DA2-DA2-DA2+ -DA3-DA3-DA3+ -

DA4-DA4+ -CKA-CKA+

DB0-DB0+ -DB1-DB1+ -DB2-DB2+ -DB3-DB3+ -DB4-DB4+ -CKB-CKB+

PRELIMINARY DATA SHEET DOD-PP-1266 (2nd edition)

NL204153AC21-17

2

		Transm	itter Pin Assign				
	Bit mapping	Single type	Dual type LVDS Tx	Output		Cì	
	Dit mapping	LVDS Tx	Thine THC63LVD1023B	Connector		Pin No.	Signal Name
	RC4	TA0	R14			-	-
	RC5 RC6	TA1 TA2	R15 R16	CTA-	\rightarrow	4	DC0-
	RC0 RC7	TA2 TA3	R10	CTL I		~	DCAL
	RC8	TA4	R18	CTA+	\rightarrow	5	DC0+
	RC9	TA5	R19				
	GC4 GC5	TA6 TB0	G14 G15			-	-
	GC6	TB1	G16	CTB-	_	7	DC1-
	GC7	TB2	G17	CID-	_		
	GC8 GC9	TB3 TB4	G18 G19	CTB+	\rightarrow	8	DC1+
	BC4	TB5	B14			-	
	BC5	TB6	B15			-	-
	BC6 BC7	TC0 TC1	B16 B17	0750		1.0	D.GO
odd	BC8	TC2	B18	CTC-	\rightarrow	10	DC2-
Pixel	BC9	TC3	B19	CTC+	\rightarrow	11	DC2+
data	Hsync Vsync	TC4 TC5	Hsync Vsync	-			
С	DE	TC6	DE	1		-	-
	RC2	TD0	R12				L
	RC3 GC2	TD1 TD2	R13 G12	CTD-	\rightarrow	16	DC3-
	GC2 GC3	TD3	G13	CTD+		17	DC3+
	BC2 BC3	TD4	B12	CID	_	17	DCJ
	N.C.	TD5 TD6	B13	-		-	-
	RC0	TE0	R10				
	RC1	TE1	R11	OTE		19	DC4-
	GC0 GC1	TE2 TE3	G10 G11	CTE-	\rightarrow		
	BC0	TE4	B10	CTE+	\rightarrow	20	DC4+
	BC1	TE5	B11			-	-
	N.C.	TE6	-	CTCLK-	\rightarrow	13	CKC-
	CLK	CLK	CLK	CTCLK+	\rightarrow	14	CKC+
	RD4	TA0	R14 R15			-	-
	RD5 RD6	TA1 TA2	R15 R16	DTA-	\rightarrow		
	RD7	TA3	R17	DTA+	\rightarrow	23	DD0+
	RD8 RD9	TA4	R18 R19	DIM		25	DD0
	GD4	TA5 TA6	G14	-		-	-
	GD5	TB0	G15				
	GD6 GD7	TB1 TB2	G16 G17	DTB-	\rightarrow	25	DD1-
	GD7 GD8	TB3	G17 G18	DTD		26	DD1
	GD9	TB4	G19	DTB+	\rightarrow	26	DD1+
	BD4 BD5	TB5 TB6	B14 B15	-		_	_
	BD5 BD6	TC0	B15 B16			_	-
	BD7	TC1	B17	DTC-	\rightarrow	28	DD2-
even	BD8 BD9	TC2 TC3	B18 B19				
Pixel	Hsync	TC4	Hsvnc	DTC+	\rightarrow	29	DD2+
data D	Vsync	TC5	Vsync				
D	DE RD2	TC6 TD0	DE R12			-	-
	RD3	TD1	R13	DTD-	\rightarrow	34	DD3-
	GD2 GD3	TD2 TD3	G12 G13		,		
	BD2	TD3 TD4	B12	DTD+	\rightarrow	35	DD3+
	BD3	TD5	B13]			
	N.C. RD0	TD6 TE0				-	-
	RD0	TE0	R10 R11	1		27	DD4
	GD0	TE2	G10	DTE-	\rightarrow	37	DD4-
	GD1 BD0	TE3 TE4	G11 B10	DTE+	\rightarrow	38	DD4+
	BD1	TE5	B10 B11				
	N.C.	TE6	-			-	-
	CLK	CLK	CLK	DTCLK- DTCLK+	\rightarrow \rightarrow	$\frac{31}{32}$	CKD- CKD+
-		L	1				

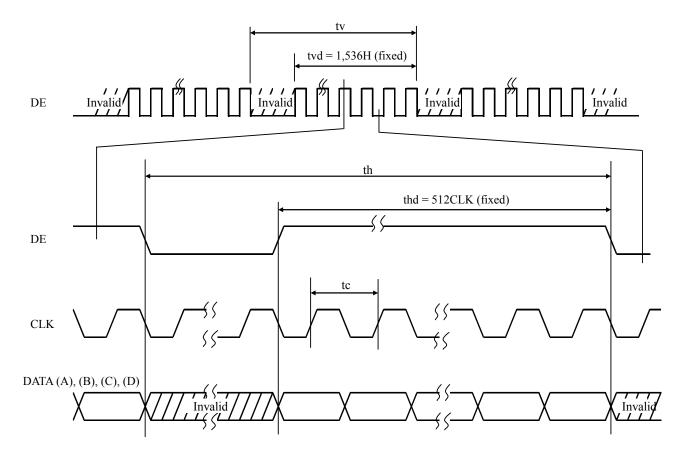
Note1: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

4.8 DISPLAY COLORS AND INPUT DATA SIGNALS

This product can display 1,073,741,824 colors equivalent with 1,024 gray scale in each R, G, B sub-pixel. Also the relation between display colors and input data signals is as follows.

											Dat	a sigi	nal	(0:1	Lov	v le	vel,	1:	Hig	h le	evel)										
Display		RB9 RC9	RB8 RC8	RB7 RC7	RB6 RC6	RB5 RC5	RA4 RB4 RC4 RD4	RB3 RC3	RB2 RC2	RB1 RC1	RB0 RC0	GB9 GC9	GB8 GC8	GB7 GC7	GB6 606	GB5 GC5	GB4 GC4	GB3 GC3	GB2 GC2	GBI GCI	GA0 GB0 GC0 GD0	BB9 BC9	BB8 BC8	BA7 BB7 BC7 BD7	BB6 BC6	BB5 BC5	BB4 BC4	BB3 BC3	BB2 BC2	BB1 BC1	BB0 BC0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Red	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Basic Colors	Magent a	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Isic	Green	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Bĉ	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
cale	dark ↑	0	0	0	0	0	0 :	0	0	1	0	0	0	0	0	0	0 :	0	0	0	0	0	0	0	0	0	0 :	0	0	0	0
ay s	\downarrow						:										:										:				
Red gray scale	↓ bright	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ongin	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Green gray scale	dark ↑	0	0	0	0	0	0 :	0	0	0	0	0	0	0	0	0	0 :	0	0	1	0	0	0	0	0	0	0 :	0	0	0	0
ray	\downarrow						:										:										:				
su g		0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Gree	bright	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
ale	dark ↑	0	0	0	0	0	0 :	0	0	0	0	0	0	0	0	0	0 :	0	0	0	0	0	0	0	0	0	0 :	0	0	1	0
iy sc							:					1					:										:				
gra	\downarrow	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0
Blue gray scale	bright	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1
	ы	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

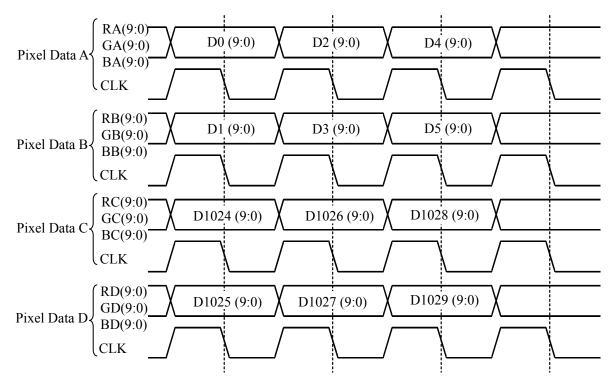
4.9 INPUT SIGNAL TIMINGS


4.9.1 Timing characteristics

fv=60Hz

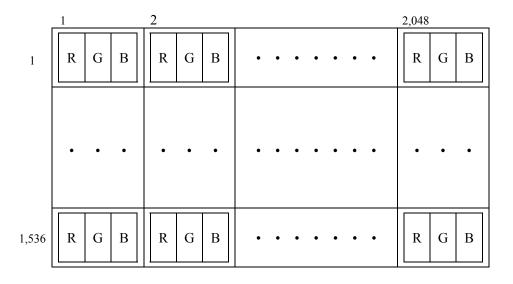
	Parameter		Symbol	min.	typ.	max.	Unit	Remarks
	Frequency		1/ tc	1/ tc 60.0 65.0 66.0				-
CLK	Duty		-	See the data	sheet of LVD	S	-	-
	Rise time, Fal	ll time	-	transmitter.			ns	-
		Cycle	th	10.34	10.34	10.77	μs	96,72kHz(typ.)
	Horizontal	Cycle	ui	640	672	700	CLK	Note1
		Display period	thd		512		CLK	-
		Cycle	tv	15.47	16.667	17.9	ms	60.0Hz(typ.)
DE	Vertical	Cycle	ιv	1547	1612	1628	Н	00.0112(typ.)
		Display period	tvd		1536		Н	-
	CLK-DE	Setup time	-	See the data	sheet of LVD	S.	ns	-
	CLK-DE	Hold time	-	transmitter.	Sheet OI LVL	0	ns	-
	Rise time, Fal	ll time	-	transmitter.			ns	-

Note1: The sum of jitter and skew of horizontal period should be within ±1 CLK.


4.9.2 Input signal timing chart

NL204153AC21-17

4.10 LVDS DATA TARANSMISSION METHOD



4.11 DISPLAY POSITIONS

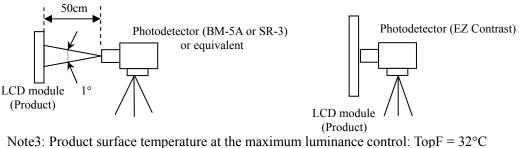
	0	dd pixel	GA,GC	= Red date =Green dat =Blue date	Even	G	B,RD=Red B,GD=Gree B,BD=Blue	en date		
	I	D (1, 1)	D (2, 1)			D ((1025, 1)	D (1026,	1)	
	RA	GA	BA RB G	B BB		RC	GC BC	RD GD	BD	
		\langle	7	<u> </u>			\square	<u> </u>		
	1, 1	2, 1		1023, 1	1024, 1	(1025, 1	1026, 1	•••	2047, 1	2048, 1
	1, 2	2, 2	•••	1023, 2	1024, 2	1025, 2	1026, 2	•••	2047, 2	2048, 2
	• •	• •	•	• •	• •	• •	•	• • •	• •	•
1	, 1535	2, 1535	•••	1023, 1535	1024, 1535	1025, 1535	1026, 1535	•••	2047, 1535	2048, 1535
1	, 1536	2, 1536	•••	1023, 1536	1024, 1536	1025, 1536	1026, 1536	•••	2047, 1536	2048, 1536

4.12 PIXEL ARRANGNMENT

NL204153AC21-17

4.13 OPTICS

4.13.1 Optical characteristics


								(Note1,	Note2)	-
Paramet	er	Condition	Symbol	min.	typ.	max.	Unit	Measuring instrument	Remarks	
Luminan	ce	White at center $\theta R = 0^\circ, \ \theta L = 0^\circ, \ \theta U = 0^\circ, \ \theta D = 0^\circ$	L	TBD	800	-	cd/m ²	BM-5A or SR-3	Note3	2
Contrast r	atio	White/Black at center $\theta R = 0^\circ, \ \theta L = 0^\circ, \ \theta U = 0^\circ, \ \theta D = 0^\circ$	CR	TBD	1,400	-	-	BM-5A or SR-3	Note3 Note5	
Luminance un	iformity	1023/1023 gray scale $\theta R = 0^{\circ}, \ \theta L = 0^{\circ}, \ \theta U = 0^{\circ}, \ \theta D = 0^{\circ}$	LU1023	(80)	-	-	%	BM-5A or SR-3	Note4 Note6	
	White	x coordinate	Wx	(0.269)	0.299					
	white	y coordinate	Wy	(0.285)	0.315	(0.345)	-			
	Red	x coordinate	Rx	-	(0.65)	-	-			
Chromaticity	Keu	y coordinate	Ry	-	(0.33)	-	-		Note3	
Chromatienty	Green	x coordinate	Gx	-	(0.29)	-	-		Note8	
	Gitteli	y coordinate	Gy	-	(0.60)	-	-			
	Blue	x coordinate	Bx	-	(0.15)	-	-			
	Diuc	y coordinate	By	-	(0.07)	-	-			
Color unifo	rmity	818/1023 gray scale $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$	Δu'v'	-	-	0.01	-	SR-3	Note4 Note7	2
Color gan	nut	$\theta R = 0^{\circ}, \ \theta L = 0^{\circ}, \ \theta U = 0^{\circ}, \ \theta D = 0^{\circ}$ at center, against NTSC color space	С	(65)	(72)	-	%	SR-3	Note3	
Response t	time	Black to White	Ton	-	(20)	(30)	ms	BM-5A	Note3	
Response	time	White to Black	Toff	-	(20)	(30)	ms	- DIVI-JA	Note9	2
	Right	$\theta U=0^{\circ}, \ \theta D=0^{\circ}, \ CR\geq 10$	θR	70	88	-	0			
Viewing angle	Left	$\theta U=0^{\circ}, \theta D=0^{\circ}, CR \ge 10$	θL	70	88	-	0	BM-5A or	Note3	2
, iowing ungle	Up	$\theta R=0^{\circ}, \ \theta L=0^{\circ}, \ CR\geq 10$	$\theta R = 0^{\circ}, \ \theta L = 0^{\circ}, \ CR \ge 10$ θU 70 88 - °		0	EZ Note Contrast				
	Down	$\theta R = 0^\circ, \ \theta L = 0^\circ, \ CR \ge 10$	θD	70	88	-	0			

Note1: These are initial characteristics.

Note2: Measurement conditions are as follows.

Ta= 25°C, VDD= 12.0V, VDDB= 12.0V, PWM: Duty 100%, Display mode: QXGA, Horizontal cycle= 1/96.72 kHz, Vertical cycle= 1/60.0 Hz

Optical characteristics are measured at luminance saturation 20minutes after the product works in the dark room. Also measurement methods are as follows.

Note3: Product surface temperature at the maximum luminance control: $TopF = 32^{\circ}C$ Note4: Product surface temperature at $450cd/m^2$ luminance control: $TopF = 30^{\circ}C$ Temperature difference in display area: $\Delta TBD^{\circ}C$

2

2

- Note5:See "4.13.2 Definition of contrast ratio".Note6:See "4.13.3 Definition of luminance uniformity".Note7:See "4.13.4 Definition of color uniformity".Note8:These coordinates are found on CIE 1931 chromaticity diagram.Note9:See "4.13.5 Definition of response times".Note10:See "4.13.6 Definition of viewing angles".
- 4.13.2 Definition of contrast ratio

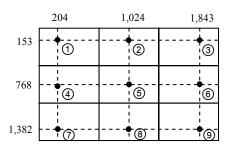
The contrast ratio is calculated by using the following formula.

Contrast ratio (CR) = Luminance of white screen Luminance of black screen

4.13.3 Definition of luminance uniformity

The luminance uniformity is calculated by using following formula.

Luminance uniformity (LUxx) = <u>Minimum luminance from ① to ③</u> Maximum luminance from ① to ③


xx: 0, 104, 512, 816, 1023 gray scale.

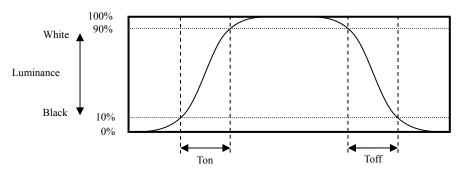
The luminance is measured at near the 9 points shown below.

	204	1,024	1,843	
153	1	2	3	
768	4	5	<u> </u> 6	
1,382	7			

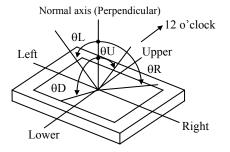
4.13.4 Definition of color uniformity

The color (u', v') is measured at near the 9 points shown below.

The color uniformity in each measuring point is calculated by using the following formula.


Color uniformity($\Delta u'v'$) = $\sqrt{(u'_x - u'_y)^2 + (v'_x - v'_y)^2}$

u'_x, v'_x: u', v' value at measuring point x. u'_y, v'_y: u', v' value at measuring point y. 2



4.13.5 Definition of response times

Response time is measured at the time when the luminance changes from "black" to "white", or "white" to "black" on the same screen point, by photo-detector. Ton is the time when the luminance changes from 10% up to 90%. Also Toff is the time when the luminance changes from 90% down to 10% (See the following diagram.).

4.13.6 Definition of viewing angles

5. ESTIMATED LUMINANCE LIFETIME

The luminance lifetime is the time from initial luminance to half-luminance.

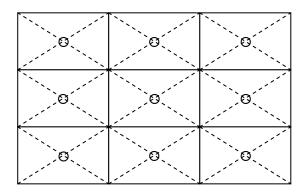
This lifetime is the estimated value, and is not guarantee value.

Condition		Estimated luminance lifetime (Life time expectancy) Note1, Note2, Note3	Unit
LED elementary substance	25°C (Ambient temperature of the product) Continuous operation, PWM: Duty 100%	70,000	h
	60°C (Surface temperature at screen) Continuous operation, PWM: Duty 100%	TBD	11

Note1: Life time expectancy is mean time to half-luminance.

Note2: Estimated luminance lifetime is not the value for an LCD module but the value for LED elementary substance.

Note3: By ambient temperature, the lifetime changes particularly. Especially, in case the product works under high temperature environment, the lifetime becomes short.


6. RELIABILITY TESTS

Test item		Condition	Judgment Note1	
High temperature and humidity (Operation)		 ① 60 ± 2°C, RH= 60%, 500hours ② Display data is white. Note2 		
Heat cycle (Operation)		 ① 0 ± 3°C1hour 60 ± 3°C1hour ② 50cycles, 4hours/cycle ③ Display data is white. Note2 	No display malfunctions	
Thermal shock (Non operation)		 -20 ± 3°C30minutes 60 ± 3°C30minutes 100cycles, 1hour/cycle Temperature transition time is within 5 minutes. 		
Vibration (Non operation)		 ① 5 to 100Hz, 11.76m/s² ② 1 minute/cycle ③ X, Y, Z directions ④ 10 times each directions 	No display malfunctions	
Mechanical shock (Non operation)		 ① 294m/s², 11ms ② X, Y, Z directions ③ 3 times each directions 	No physical damages	
ESD (Operation)		 ① 150pF, 150Ω, ±10kV ② 9 places on a panel surface Note3 ③ 10 times each places at 1 sec interval 	No display malfunctions	
Dust (Operation)		 ① Sample dust: No.15 (by JIS-Z8901) ② 15 seconds stir ③ 8 times repeat at 1 hour interval Note2 	No display manunctions	
Low pressure	Non-operation	 ① 15kPa (Equivalent to altitude 13,600m) ② -20°C±3°C24 hours ③ +60°C±3°C24 hours 	No display malfunctions	
	Operation	 ① 53.3kPa (Equivalent to altitude 4,850m) ② 0°C±3°C24 hours ③ +60°C±3°C24 hours Note2 	no display manuficions	

Note1: Display and appearance are checked under environmental conditions equivalent to the inspection conditions of defect criteria.

Note2: Luminance: 450 cd/m^2 at luminance control.

Note3: See the following figure for discharge points

7. PRECAUTIONS

7.1 MEANING OF CAUTION SIGNS

The following caution signs have very important meaning. **Be sure to read "7.2 CAUTIONS" and "7.3 ATTENTIONS"!**

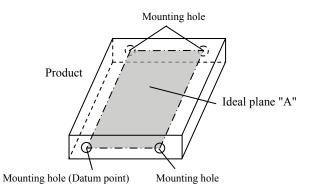
This sign has the meaning that a customer will be injured or the product will sustain damage if the customer practices wrong operations.

This sign has the meaning that a customer will be injured if the customer practices wrong operations.

7.2 CAUTIONS

* Do not shock and press the LCD panel and the backlight! There is a danger of breaking, because they are made of glass. (Shock: Equal to or no greater than 294m/s² and equal to or no greater than 11ms, Pressure: Equal to or no greater than 19.6N (φ16mm jig))

7 3 ATTENTIONS


7.3.1 Handling of the product

- ① Take hold of both ends without touching the circuit board when the product (LCD module) is picked up from inner packing box to avoid broken down or misadjustment, because of stress to mounting parts on the circuit board.
- ② Do not hook nor pull cables such as lamp cable, and so on, in order to avoid any damage.
- ③ When the product is put on the table temporarily, display surface must be placed downward.
- ④ When handling the product, take the measures of electrostatic discharge with such as earth band, ionic shower and so on, because the product may be damaged by electrostatic.
- (5) The torque for product mounting screws must never exceed 0.735 N·m. Higher torque might result in distortion of the bezel. And the length of product mounting screws must be ≤ 5.0 mm.

(6) The product must be installed using mounting holes without undue stress such as bends or twist (See outline drawings). And do not add undue stress to any portion (such as bezel flat area). Bends or twist described above and undue stress to any portion may cause display mura.

Recommended installing method: Ideal plane "A" is defined by one mounting hole (datum point) and other mounting holes. The ideal plane "A" should be the same plane within ± 0.3 mm.

- ⑦ Do not press or rub on the sensitive product surface. When cleaning the product surface, wipe it with a soft dry cloth.
- ③ Do not push or pull the interface connectors while the product is working.
- When handling the product, use of an original protection sheet on the product surface (polarizer) is
 recommended for protection of product surface. Adhesive type protection sheet may change color or
 characteristics of the polarizer.
- O Usually liquid crystals don't leak through the breakage of glasses because of the surface tension of thin layer and the construction of LCD panel. But, if you contact with liquid crystal by any chance, please wash it away with soap and water.

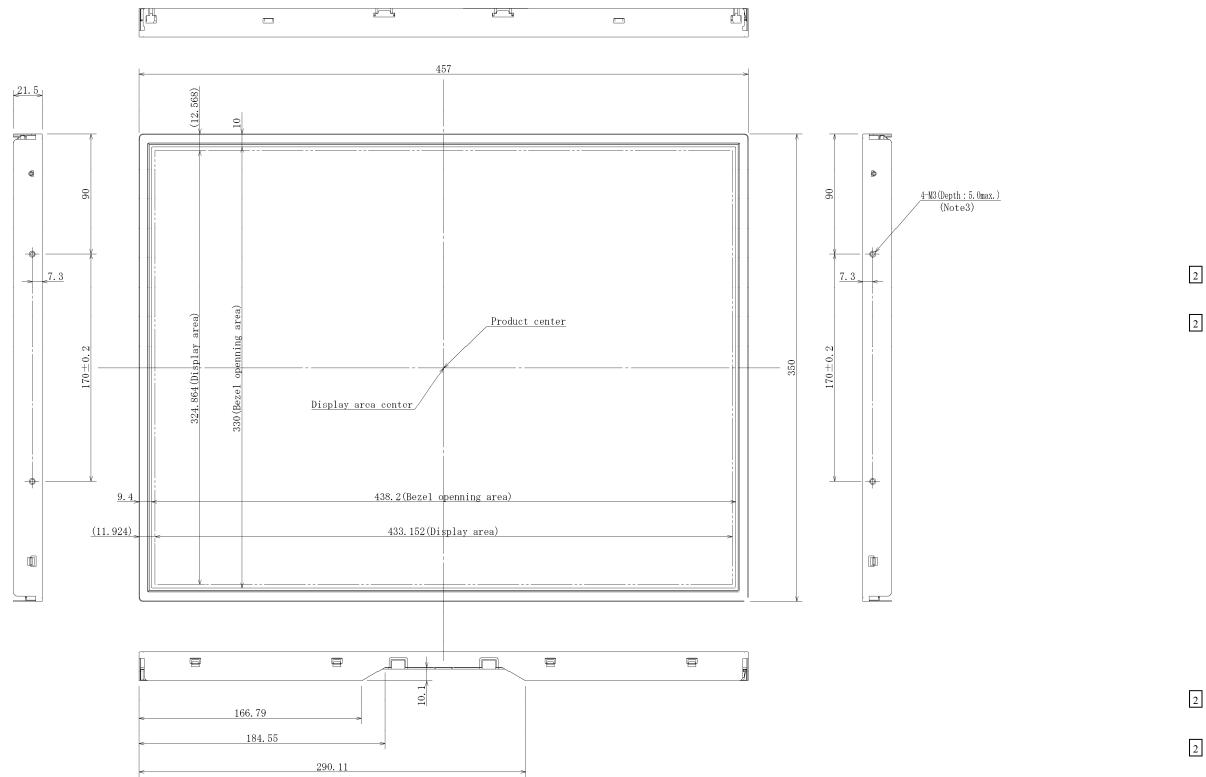
7.3.2 Environment

- ① Do not operate or store in high temperature, high humidity, dewdrop atmosphere or corrosive gases. Keep the product in packing box with antistatic pouch in room temperature to avoid dusts and sunlight, when storing the product.
- ② In order to prevent dew condensation occurred by temperature difference, the product packing box must be opened after enough time being left under the environment of an unpacking room. Evaluate the storage time sufficiently because dew condensation is affected by the environmental temperature and humidity. (Recommended leaving time: 6 hours or more with the original packing state after a customer receives the package)
- ③ Do not operate in high magnetic field. If not, circuit boards may be broken.
- ④ This product is not designed as radiation hardened.

7.3.3 Characteristics

The following items are neither defects nor failures.

- ① Response time, luminance and color may be changed by ambient temperature.
- ② Display mura, flickering, vertical streams or tiny spots may be observed depending on display patterns.
- ③ Do not display the fixed pattern for a long time because it may cause image sticking. Use a screen 2 saver, if the fixed pattern is displayed on the screen.
- ④ The display color may be changed depending on viewing angle because of the use of condenser sheet in the backlight.
- ^⑤ Optical characteristics may be changed depending on input signal timings.


7.3.4 Others

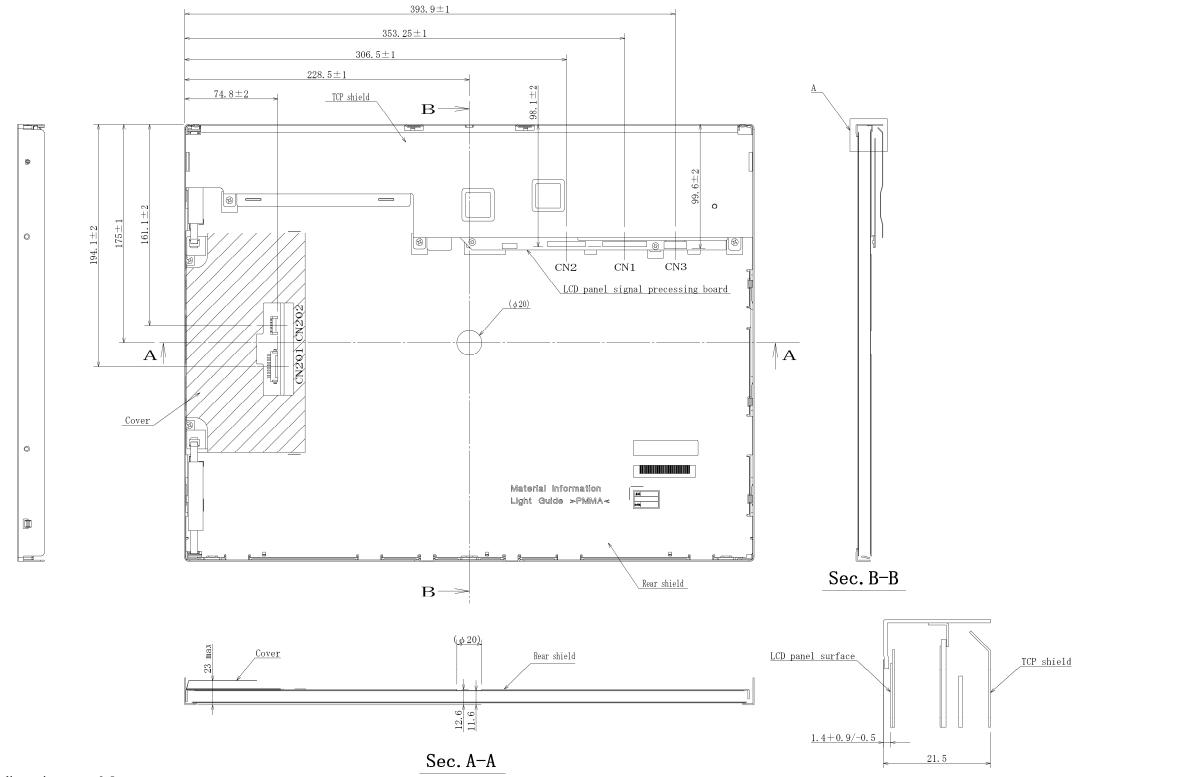
- ① All GND, GNDB, VDD and VDDB terminals should be used without any non-connected lines.
- ② Do not disassemble a product or adjust variable resistors.
- ③ Pack the product with the original shipping package, in order to avoid any damages during transportation, when returning the product to NLT for repairing and so on.
- (4) The LCD module by itself or integrated into end product should be packed and transported with display in the vertical position. Otherwise the display characteristics may be degraded.

8. OUTLINE DRAWINGS

8.1 FRONT VIEW

Note1: Not shown tolerances of the dimensions are ± 0.5 mm.

Note2: The torque for product mounting screws must never exceed 0.735N·m.


Note3: The length of product mounting screws from surface of plate must be \leq 5.0mm.

Note4: The values in parentheses are for reference.

Unit: mm

8.2 REAR VIEW

Note1: Not shown tolerances of the dimensions are ± 0.5 mm.

Note2: The torque for product mounting screws must never exceed 0.735N·m.

Note3: The length of product mounting screws from surface of plate must be \leq 5.0mm.

Note4: The values in parentheses are for reference.

Detail A

Unit: mm

2

REVISION HISTORY

The inside of latest specifications is revised to the clerical error and the major improvement of previous edition. Only a changed part such as functions, characteristic value and so on that may affect a design of customers, are described especially below.

Edition	Document number	Prepared date	Revision contents and signature	
1st edition	DOD-PP- 1243	July 8, 2011	Revision contents New issue Writer Approved by Checked by T. OGAWA T. OGAWA	
2nd edition	DOD-PP- 1266	Sep 16, 2011	Revision contentsP5 General specifications• Luminance: 770 ed/m² (typ.) → 800 ed/m² (typ.)• Signal system: THC63LVD824 → THC63LVD104S• Power consumption: (54) W (typ.) → (58) W (typ.)P7 Mechanical specifications• Module size: TBD (max. D) mm → 23.0 (max. D) mm• Weight: TBD (max.) g → (2,980) (max.) gP7 Absolute maximum ratings• Power supply voltage - LED driver board: -0.3 to +27.0 V → -0.3 to +15.0 V• Operating temperature-Rear surface: (0 to + TBD) °C → (0 to +60) °CP8 LCD panel signal processing board• Power supply current: (7000) (typ.), TBD (max.) mA → (590) (typ.), (980) (max.) mAP9 LED Driver board• Power supply current: (5,000) (typ.), mA → (4,200) (typ.) mAP9 LED Driver board• Operating temperature-Rear surface: (0 to + TBD °C → (0 to +60) °CP8 LCD priver board• Power supply voltage ripple (addition), Fuse (addition)P11 LED Driver board• T TBD ms → tr ≲ (100) ms• Note2: TBD → (100) ms• Note2: TBD → (100) ms• Note2: TBD → (000), (1) Å, (A tf requency: 325 Hz)P18 Detail of BRTP timing- Each parameter• Luminance control - Luminance ratio: 0Ω: TBD % → 0 %• Voltage control - Luminance ratio: 0Ω: TBD % → (1,000) (max.) Hz• Parameter: Duty ratio → External PWM pulse widthP19-20 Method of connection for LVDS transmitter• Transmitter: THC63LVD104S → THC63LVD1023BP25-26 Optical characteristics• Luminance: 770 cd/m² (typ.) → 800 cd/m² (typ.)• Color uniformity (addition)• Note3: TopF = TBD°C → TopF = 3	

REVISION HISTORY

Edition	Document number	Prepared date	Revision contents and signature	
2nd edition	DOD-PP- 1266	Sep 16, 2011	Revision contents P31 Characteristics • Optical characteristics, because the LCD has cold cathode fluorescent lamps. (elimination) P32-33 Outline drawings- Front view • Front view • 7.5 → 7.3 (2 points), 8.9 → 10.1 • Display center → Product center • 92, 122.3 (elimination) • 166.79, 184.55, 290.11 (additon) • Rear view • Cover: figure is changed.	
			Signature of writer Approved by Checked by Prepared by	