# **Product Specification**

| Model Name  | BI050WXGPT V1.0         |  |  |
|-------------|-------------------------|--|--|
|             | Standard AM-OLED Module |  |  |
| Description | 5.0" WXGA               |  |  |
|             | 720(RGB)x1280 Dots      |  |  |
| Date        | 2017/3/17               |  |  |
| Version     | 1.0                     |  |  |

|      | Customer Approval |  |  |  |  |
|------|-------------------|--|--|--|--|
|      |                   |  |  |  |  |
| Date |                   |  |  |  |  |

## **Table of Contents**

| 1. Record of Revision                  |    |
|----------------------------------------|----|
| 2. General Specifications              |    |
| 3. Input/OutputTerminals               | 5  |
| 4. Absolute Maximum Rating             |    |
| 5. Electrical Characteristics          | 6  |
| 6. AC Characteristics                  | 8  |
| 7. Optical Characteristics             | 22 |
| 8. Environmental / Reliability Tests   | 26 |
| 9. Mechanical Drawing                  | 27 |
| 10. Packing                            | 28 |
| 11. TFT-LCD Module Inspection Criteria | 29 |
| 12. Precautions for Use of LCD modules | 34 |

# 1. Record of Revision

| Rev | Issued Date | Description                     | Editor |
|-----|-------------|---------------------------------|--------|
| 1.0 | 2016/12/10  | First Release.                  |        |
| 2.0 | 2017/3/17   | Update Optical Characteristics. |        |
|     |             |                                 |        |
|     |             |                                 |        |
|     |             |                                 |        |
|     |             |                                 |        |
|     |             |                                 |        |
|     |             |                                 |        |
|     |             |                                 |        |
|     |             |                                 |        |
|     |             |                                 |        |
|     |             |                                 |        |
|     |             |                                 |        |
|     |             |                                 |        |
|     |             |                                 |        |
|     |             |                                 |        |

# 2. General Specifications

|                 | Feature              | Spec                           |
|-----------------|----------------------|--------------------------------|
|                 | Size                 | 5 inch                         |
|                 | Resolution           | 720(horizontal)*1280(Vertical) |
|                 | Interface            | MIPI 4 line                    |
|                 | Connect type         | Connector                      |
|                 | Display Colors       | 16.7M                          |
| Characteristics | Technology type      | a-Si                           |
| Characteristics | Pixel pitch (mm)     | -                              |
|                 | Pixel Configuration  | R.G.BStripe                    |
|                 | Display Mode         | Normally black                 |
|                 | LCD Driver IC        | TBD                            |
|                 | Touch IC             | S3402                          |
|                 | Viewing Direction    | ALL                            |
|                 | LCM (W x H x D) (mm) | 65.92*118.64*1.00              |
| Mechanical      | Active Area(mm)      | 61.92 x110.88                  |
|                 | Weight (g)           | TBD                            |

Note 1: Requirements on Environmental Protection: RoHs

Note 2: LCM weight tolerance: +/- 5%

# 3. Input/Output Terminals

| No.   | Symbol  | Description                                                                                                  |
|-------|---------|--------------------------------------------------------------------------------------------------------------|
| 1     | GND     | Ground                                                                                                       |
| 2     | NC      | No connected                                                                                                 |
| 3     | TP_RESX | Touch panel reset.                                                                                           |
| 4     | TP_SCL  | Touch panel I2C clock.                                                                                       |
| 5     | TP_SDA  | Touch panel I2C data.                                                                                        |
| 6     | TP_INT  | Touch panel interrupt output.                                                                                |
| 7     | TP_VDDI | Touch panel digital supply.                                                                                  |
| 8     | TP_VCC  | Touch panel analog supply.                                                                                   |
| 9     | NC      | No connected.                                                                                                |
| 10    | VCI     | Driver IC analog supply.                                                                                     |
| 11    | GND     | Ground                                                                                                       |
| 12    | D3N     | MIPI DSI data3-                                                                                              |
| 13    | D3P     | MIPI DSI data3+                                                                                              |
| 14    | GND     | Ground                                                                                                       |
| 15    | D0N     | MIPI DSI data0-                                                                                              |
| 16    | D0P     | MIPI DSI data0+                                                                                              |
| 17    | GND     | Ground                                                                                                       |
| 18    | CKN     | MIPI DSI clock-                                                                                              |
| 19    | CKP     | MIPI DSI clock+                                                                                              |
| 20    | GND     | Ground                                                                                                       |
| 21    | D1N     | MIPI DSI data1-                                                                                              |
| 22    | D1P     | MIPI DSI data1+                                                                                              |
| 23    | GND     | Ground                                                                                                       |
| 24    | D2N     | MIPI DSI data2-                                                                                              |
| 25    | D2P     | MIPI DSI data2+                                                                                              |
| 26    | GND     | Ground                                                                                                       |
| 27    | VDDI    | Driver IC digital suppy.                                                                                     |
| 28    | RESX    | This signal will reset the device and must be applied to properly initialize the chip. Signal is active low. |
| 29    | TE      | Sync signal from driver IC                                                                                   |
| 30    | OTP_PWR | Driver IC R/W use only,system side must floating                                                             |
| 31-33 | NC      | No connected.                                                                                                |
| 34-38 | VBAT    | Panel power supply                                                                                           |
| 39    | GND     | Ground                                                                                                       |

## 4. Absolute Maximum Rating

| Item                       | Symbol  | Min.     | Max. | Unit |
|----------------------------|---------|----------|------|------|
| Power IC Power supply      | VBAT    | O-// //  | +4.5 | V    |
| Digital Power supply       | VDDI W  | 0,3      | +2.0 | V    |
| Analog Power supply        | O NGI   | //0.3/// | +4.0 | V    |
| Touch analog power supply  | TP VCC  | -0.3     | +4.0 | V    |
| Touch digital power supply | TR_VDDL | -0.3     | +2.0 | V    |

Note: If the module exceeds the absolute maximum ratings, it may be damaged permanently.

## 5. Electrical Characteristics

## **5.1 Operation Conditions**

| Item                   |         | Symbol          | Min.     | Тур.  | Max.     | Unit | Remark  |
|------------------------|---------|-----------------|----------|-------|----------|------|---------|
| Panel Power s          | upply   | VBAT            | 2.9      | 3.7   | 4.5      | V    |         |
| Digital Power s        | supply  | VDDI            | 1.65     | 1.8   | 1.95     | V    |         |
| Analog Power           | supply  | VCI             | 2.7      | 3.1   | 3.6      | V    |         |
| Input Signal           | H Level | V <sub>IH</sub> | 0.8*VDDI | 10.7  | VDDI     | V    | DECY    |
| Voltage                | L Level | V <sub>IL</sub> | 0        | 107   | 0.2*VDDI | V    | RESX    |
| Output Signal          | H Level | V <sub>OH</sub> | 0.7*VDDI | 10.71 | VDDI     | V    | TE      |
| Voltage                | L Level | V <sub>OL</sub> | 0        | -     | 0.3*VDDI | V    | Pall    |
| Touch analog p         | oower   | TP_VCC          | 2.7      | 3.1   | 3.6      | M    |         |
| Touch digital posupply | ower    | TP_VDDI         | 1.65     | 1.8   | 1.95     | N.   | Du 40 5 |

Note 1: The operation is guaranteed under the recommended operating conditions only.

The operation is not guaranteed if a quick voltage change occurs during the operation. To prevent the noise, a bypass capacitor must be inserted into the line closed to the power pin.

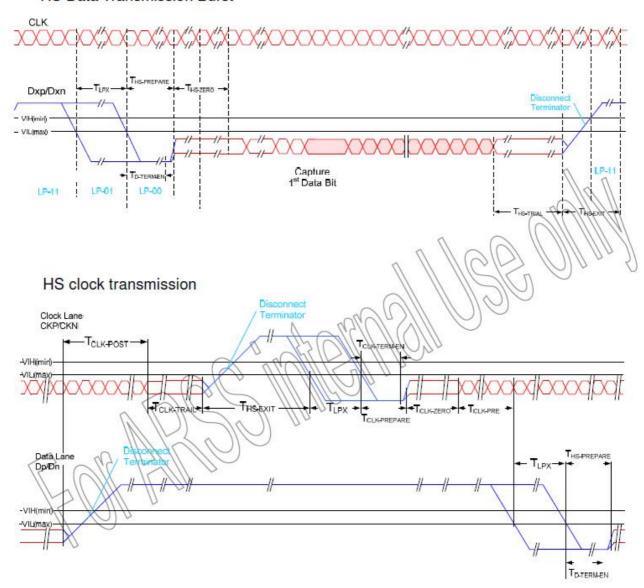
## **5.2 Display Current Consumption**

| Mode                     | Symbol                | Condition                 | Min. | Тур. | Max. | Unit | Remark |
|--------------------------|-----------------------|---------------------------|------|------|------|------|--------|
|                          | IBAT                  |                           |      | 300  | 360  | mA   | Note1  |
| Normal                   | I <sub>VCI</sub>      |                           | =    | 60   | 80   | mA   | Note2  |
| V                        | I <sub>VDDI</sub>     | VBAT = 3.7V               | -    | 1    | 10   | mA   | Note2  |
| Deep Standby<br>(DSTB=1) | l <sub>OVDD/OVS</sub> | VCI = 3.1V<br>VDDI = 1.8V | -    | :=   | <1   | mA   | Note3  |
|                          | I <sub>VCI</sub>      |                           | 4    | -    | <1   | mA   | Note3  |
|                          | I <sub>VDDI</sub>     |                           | -    | -    | <1   | μΑ   | Note3  |

Note 1: VBAT input 2.9V, I<sub>BAT</sub> maximum current enhance to 460mA.

Note 2: Based on white pattern. MIPI-DSI frame rate 60Hz video mode.

Note 3: Display off. RESX = high


## **5.3 Touch Panel Current Consumption**

| Mode                                 | Symbol               | Condition                             | min | Тур. | Max   | Unit |
|--------------------------------------|----------------------|---------------------------------------|-----|------|-------|------|
| Active (1 finger)                    | I <sub>TP_VDDI</sub> | 5                                     | -   | 13   | 14.3  | mA   |
| Active (1 finger)                    | I <sub>TP_vcc</sub>  |                                       | -   | 12.5 | 13.75 | mA   |
| A - 1: - (40 fi )                    | I <sub>TP_VDDI</sub> | TP_VDDI = 1.8V<br>TP_VCC=3.1V         | -   | 18.5 | 20.35 | mA   |
| Active (10 finger)                   | tive (10 finger)     |                                       | 2   | 12.5 | 13.75 | mA   |
| Normal Operation I <sub>TP_VCC</sub> | Report Rate: 100Hz   | =                                     | 0.4 | 0.44 | mA    |      |
|                                      | I <sub>TP_VCC</sub>  | Doze Interval: 30 ms<br>(26Rx x 15Tx) | -   | 0.35 | 0.39  | mA   |
| Sensor Sleep                         | I <sub>TP_VDDI</sub> |                                       | 2   | 13.3 | 14.6  | μΑ   |
| (Deep sleep)                         | I <sub>TP_VCC</sub>  |                                       | -   | 8    | 8.8   | μΑ   |

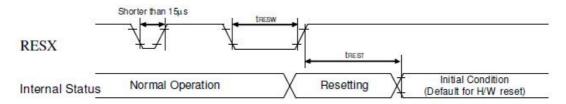
## 6. AC Characteristics

## **6.1 Display AC Characteristics**

### **HS Data Transmission Burst**



### Turnaround Procedure

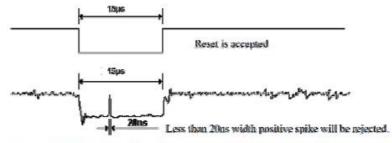



| 0                      | Parameters                                   | Min                  | Typ    | Mov                                   | Unit     |
|------------------------|----------------------------------------------|----------------------|--------|---------------------------------------|----------|
| Symbol                 | Description                                  |                      | Тур    | Max                                   |          |
| T <sub>CLK-POST</sub>  | Time that the transmitter continues to       | 60ns +               |        |                                       | ns       |
|                        | send HS clock after the last                 | 52*UI                |        |                                       |          |
|                        | associated Data Lane has                     |                      |        |                                       |          |
|                        | transitioned to LP Mode. Interval is         |                      |        |                                       |          |
|                        | defined as the period from the end of        |                      |        |                                       |          |
|                        | $T_{HS-TRAIL}$ to the beginning of $T_{CLK}$ |                      |        |                                       |          |
| 2                      | TRAIL ·                                      |                      |        | 85                                    |          |
| T <sub>CLK-TRAIL</sub> | Time that the transmitter drives the         | 60                   |        |                                       | ns       |
|                        | HS-0 state after the last payload            |                      |        |                                       |          |
|                        | clock bit of a HS transmission burst.        |                      |        |                                       |          |
| T <sub>HS-EXIT</sub>   | Time that the transmitter drives LP-         | 300                  |        |                                       | ns       |
| -                      | 11 following a HS burst.                     |                      |        |                                       |          |
| T <sub>CLK-TERM-</sub> | Time for the Clock Lane receiver to          | Time for Dn          |        | 38                                    | \ns\\    |
| EN                     | enable the HS line termination,              | to reach             | -M     | (( )))) '                             | ///////  |
| 1670 111               | starting from the time point when Dn         | V <sub>TERM-EN</sub> | 10/1/2 | 2 (A) //                              | 2 4      |
|                        | crosses V <sub>IL,MAX</sub> .                |                      |        | 9)                                    |          |
| T <sub>CLK</sub> -     | Time that the transmitter drives the         | 380)///              | 010    | 95                                    | ns       |
| PREPARE                | Clock Lane LP-00 Line state                  | 11 11 (())           |        |                                       | 48.0386  |
|                        | immediately before the HS-0 Line             | 11100                |        |                                       |          |
|                        | state starting the HS                        | 11 11                |        |                                       |          |
|                        | transmission.                                |                      |        |                                       |          |
| T <sub>CLK-PRE</sub>   | Time that the HS clock shall be              | 8                    |        |                                       | UI       |
|                        | driven by the transmitter prior to any       |                      |        |                                       | topolici |
| K 6                    | associated Data Lane beginning the           |                      |        |                                       |          |
|                        | transition from LP to HS mode.               |                      |        |                                       |          |
| T <sub>CLK-</sub>      | Tork-PREPARE + time that the                 | 300                  |        | 22                                    | ns       |
| PREPARE                | transmitter drives the HS-0 state            | 1 Maria 2 1          |        |                                       | 2000     |
| + T <sub>CLK</sub> -   | prior to starting the Clock.                 |                      |        |                                       |          |
| ZERO                   | , , , , , , , , , , , , , , , , , , , ,      |                      |        |                                       |          |
| T <sub>D-TERM-EN</sub> | Time for the Data Lane receiver to           | Time for Dn          |        | 35 ns                                 | 3 3      |
| o remitted             | enable the HS line termination,              | to                   |        | +4*UI                                 |          |
|                        | starting from the time point when Dn         | reach                |        |                                       |          |
|                        | crosses V <sub>IL.MAX</sub> .                | V <sub>TERM-EN</sub> |        |                                       |          |
| T <sub>HS</sub> -      | Time that the transmitter drives the         | 40ns + 4*UI          |        | 85 ns +                               | ns       |
| PREPARE                | Data Lane LP-00 Line state                   |                      |        | 6*UI                                  |          |
| THEFANE                | immediately before the HS-0 Line             |                      |        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          |
|                        | state starting the HS transmission           |                      |        |                                       |          |
|                        | July Starting the He transmission            |                      |        | 35                                    | ž š      |

| T <sub>HS</sub> -       | T <sub>HS-PREPARE</sub> + time that the                                                                                         | 145ns +               | ns                     |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|
| PREPARE                 | transmitter drives the HS-0 state                                                                                               | 10*UI                 |                        |
| + T <sub>HS-ZERO</sub>  | prior to transmitting the Sync sequence.                                                                                        |                       |                        |
| T <sub>HS-TRAIL</sub>   | Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst          | 60ns + 4*UI           | ns                     |
| $T_{LPX(M)}$            | Transmitted length of any Low-Power state period of MCU to display module                                                       | 50                    | 150 ns                 |
| $T_{\text{TA-SURE}(M)}$ | Time that the display module waits after the LP-10 state before transmitting the Bridge state (LP-00) during a Link Turnaround. | T <sub>LPX(M)</sub>   | 2*T <sub>LPX(</sub> ns |
| $T_{LPX(D)}$            | Transmitted length of any Low-Power state period of display module to MCU                                                       | 50                    | 150 hs                 |
| $T_{TA\text{-}GET(D)}$  | Time that the display module drives the Bridge state (LP-00) after accepting control during a Link Turnaround.                  | S*TLPXID)             | ns                     |
| T <sub>TA-GO(D)</sub>   | Time that the display module drives the Bridge state (LP-00) before releasing control during a Link Turnaround.                 | 4*T <sub>LPX(D)</sub> | ns                     |
| T <sub>TA-SURE(D)</sub> | Time that the MPU waits after the LP 10 state before transmitting the Bridge state (LP-00) during a Link Turnaround.            | T <sub>LPX(D)</sub>   | 2*T <sub>LPX(</sub> ns |

## **6.2 Display RESET Timing Characteristics**

### Reset input timing

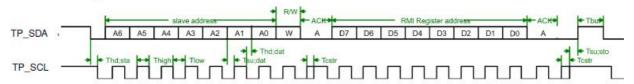



| Symbol            | Parameter                 | Related<br>Pins | MIN | TYP | MAX | Note                                           | Unit |
|-------------------|---------------------------|-----------------|-----|-----|-----|------------------------------------------------|------|
| t <sub>RESW</sub> | *1) Reset low pulse width | RESX            | 15  | -   | 120 | 121                                            | μs   |
| *2) Reset         | *2) Reset complete        | *               | -   | -   | 5   | When reset<br>applied during<br>Sleep in mode  | ms   |
| t <sub>REST</sub> | time                      |                 |     | - 5 | 120 | When reset<br>applied during<br>Sleep out mode | ms   |

Note 1. Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.

| RESX Pulse           | Action                                 |  |  |  |  |  |  |
|----------------------|----------------------------------------|--|--|--|--|--|--|
| Shorter than 5µs     | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |  |  |  |  |  |  |
| Longer than 15µs     | Valid Reset                            |  |  |  |  |  |  |
| Between 5µs and 15µs | Reset Initialization Precedure         |  |  |  |  |  |  |

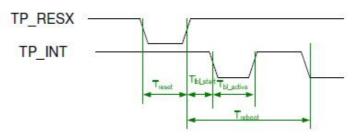
- Note 2. During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In –mode) and then return to Default condition for H/W reset.
- Note 3. During Reset Complete Time, data in OTP will be latched to internal register during this period. This loading is done every time when there is H/W reset complete time (tREST) within 5ms after a rising edge of RESX.
- Note 4. Spike Rejection also applies during a valid reset pulse as shown below:




Note 5. It is necessary to wait 5msec after releasing RESX before sending commands.

Also Sleep Out command cannot be sent for 120msec.

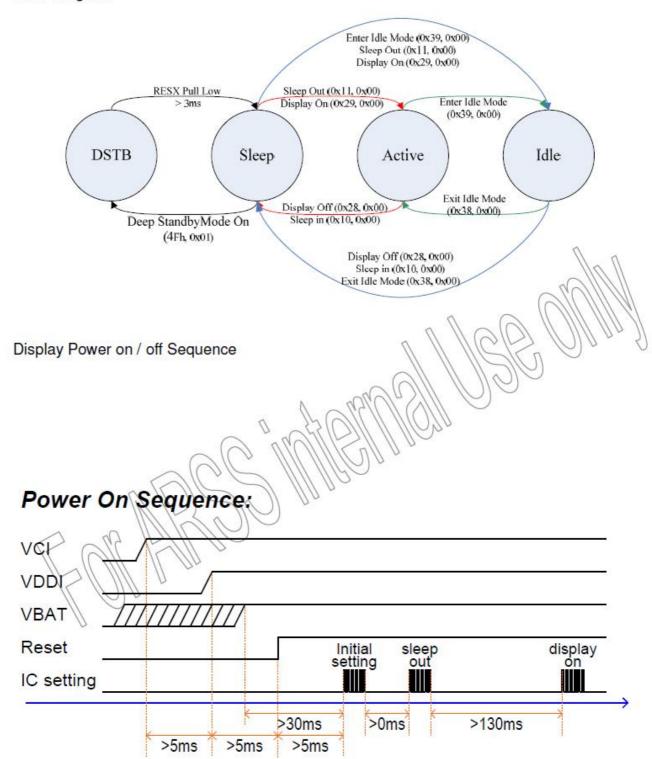
# **6.3 Touch Panel Timing Characteristics**


I2C timing



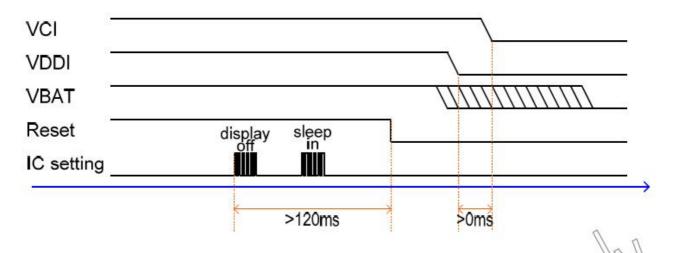
| Symbol   | Parameter                                                                                    |                | d- Mode<br>ost | Fast-Mo        | de Host | Unit |
|----------|----------------------------------------------------------------------------------------------|----------------|----------------|----------------|---------|------|
|          | 111                                                                                          | Min.           | Max.           | Min.           | Max.    |      |
| fSCL     | SCL clock frequency                                                                          |                | 100            | Ų.             | 400     | kHz  |
| Tcstr    | Stretch time                                                                                 | H              | 25             |                | 25      | μs   |
| Thd;sta  | Hold time (repeated) START condition. After this period, the first clock pulse is generated. | 4.0            | -              | 0.6            |         | μs   |
| Tlow     | LOW period of the SCL clock                                                                  | 4.7            |                | 13             |         | μ\$  |
| Thigh    | HIGH period of the SCL clock                                                                 | 4.0            | m@             | 060            |         | μs   |
| Tsu;sta  | Set-up time for a repeated START condition                                                   | 4.7            |                | 0.6            |         | μs   |
| Thd;dat  | Data hold time                                                                               | 11/10/1/2/     | 3.45           | 0              | 0.9     | μs   |
| Thd;dato | Data out hold time                                                                           | 1111 0         | 0              | -              | 0       | μs   |
| Tsu;dat  | Data set-up time                                                                             | 250            |                | 100            | 1       | ns   |
| (Tr      | Rise time of both SDA and SCL signals                                                        | -              | 1000           | 20 + 0.1<br>Cb | 300     | ns   |
| Pf)      | Fall time of both SDA and SCL signals                                                        | -              | 3000           | 20 + 0.1<br>Cb | 300     | ns   |
| Tsu;sto  | Set-up time for STOP condition                                                               | 4.0            | ū              | 0.6            | -       | μs   |
| Tbuf     | Bus free time between a STOP and START condition                                             | 4.7            | -              | 1.3            |         | μs   |
| Cb       | Capacitive load for each bus line                                                            | -              | 400            | J              | 400     | pF   |
| VnL      | Noise margin at the<br>LOW level for each<br>connected device<br>(including hysteresis)      | 0.1<br>TP_VDDI |                | 0.1<br>TP_VDDI |         | V    |
| VnH      | Noise margin at the<br>HIGH level for each<br>connected device<br>(including hysteresis)     | 0.2<br>TP_VDDI | -              | 0.2<br>TP_VDDI | +       | V    |

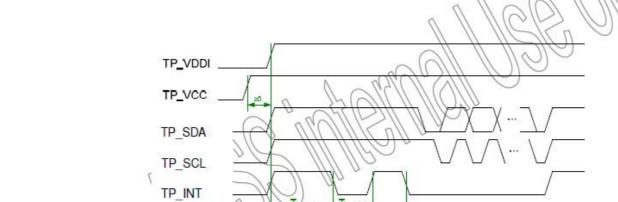
# Touch Panel RESET Timing Characteristics


# Reset input timing



| Symbol                       | Min. | Max. | Unit |
|------------------------------|------|------|------|
| T <sub>reset</sub> (TP_RESX) | 100  | -    | ns   |
| T <sub>bl_start</sub>        | 8=   | 2    | ms   |
| T <sub>bl_active</sub>       | -    | 11   | ms   |
| T <sub>reboot</sub>          | - \  | 16   | ms   |


## 6.4 Operating Sequence

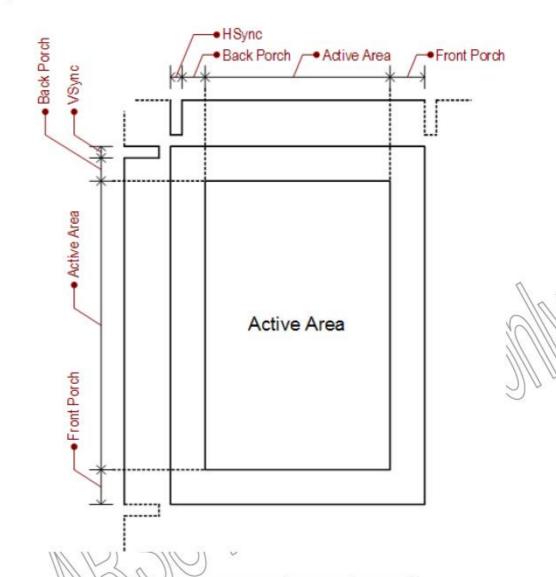

State Diagram



# Power Off Sequence:

Touch Panel Power on Sequence






| Symbol                                     | Min.             | Max. | Unit |
|--------------------------------------------|------------------|------|------|
| Tpowerupt                                  | 3 <del>5</del> 3 | 60   | ms   |
| T <sub>bl_start</sub> (bootloader start)   | 3.72             | 46   | ms   |
| T <sub>bl_active</sub> (bootloader active) | -                | 11   | ms   |

Display Initial Setting

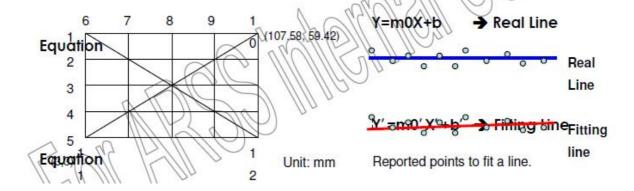
| Item | Parameter qt'y | address | Po  | P1   | P2   | Рз   | P4     | P5    | P6                            | P7  | P8   | P9    | P10 |
|------|----------------|---------|-----|------|------|------|--------|-------|-------------------------------|-----|------|-------|-----|
| 1    | 5              | F0      | 55  | AA   | 52   | 08   | 00     |       |                               |     |      |       |     |
| 2    | 3              | B0      | 00  | 10   | 10   | 3 Y  |        |       |                               | 2 Y |      |       |     |
| 3    | 1              | BA      | 60  |      |      |      |        |       |                               |     |      |       |     |
| 4    | 7              | BB      | 00  | 00   | 00   | 00   | 00     | 00    | 00                            |     |      |       |     |
| 5    | 8              | CO      | CO  | 04   | 00   | 20   | 02     | E4    | E1                            | Co  |      |       |     |
| 6    | 8              | C1      | CO  | 04   | 00   | 20   | 04     | E4    | E1                            | Co  |      |       |     |
| 7    | 5              | F0      | 55  | AA   | 52   | 08   | 02     |       |                               |     |      |       |     |
| 8    | 5              | EA      | 7F  | 20   | 00   | 00   | 00     |       |                               |     |      |       |     |
| 9    | 1              | CA      | 04  |      |      |      |        |       |                               |     |      |       |     |
| 10   | 1              | E1      | 00  |      |      |      |        |       |                               | 3 V |      |       |     |
| 11   | 1              | E2      | OA  |      |      |      |        |       |                               |     |      | 1/2   | 7   |
| 12   | 1              | E3      | 40  |      |      |      |        |       |                               |     | N    | 2///  |     |
| 13   | 4              | E7      | 00  | 00   | 00   | 00   |        |       |                               |     |      | 1111  |     |
| 14   | 8              | ED      | 48  | 00   | E0   | 13   | 08     | 00    | 91                            | 80  | 11 1 | 11/1/ | 011 |
| 15   | 6              | FD      | 00  | 08   | 1C   | 00   | 00     | 01    | 1110                          |     |      | )) // | K)  |
| 16   | 11             | C3      | 11  | 24   | 04   | 0A   | 02     | 04    | 00                            | 70  | 10   | F0    | 00  |
| 17   | 5              | F0      | 55  | AA   | 52   | 08   | 03     | /// / | $\langle \mathcal{O} \rangle$ | 9   |      |       |     |
| 18   | 1              | E0      | 00  |      | 1    | 12/1 | 1//(   | 7///  |                               |     |      |       |     |
| 19   | 6              | F1 ,    | -00 | 00   | 00   | 00   | 00     | 15    |                               |     |      |       |     |
| 20   | 1              | F6      | 08  | 1111 | 1111 |      | 7 /1 - |       |                               |     |      |       |     |
| 21   | 5              | EQ (    | 55  | AA   | 52   | 800  | 05     |       |                               | S   |      |       |     |
| 22   | 5              | // C3   | 00  | 10   | 50   | 50   | 50     |       |                               |     |      |       |     |
| 23   | 2              | C4 1    | 00  | 14   |      |      |        |       |                               |     |      |       |     |
| 24   | 7 2/1/2 /      | C9 \    | 04  |      |      |      |        |       | s.                            |     |      |       |     |
| 25   | (5)            | \\ F0\\ | 55  | AA   | 52   | 08   | 01     |       |                               | S   |      |       |     |
| 26   | 1/2 /3         | B0      | 06  | 06   | 06   |      |        |       |                               |     |      |       |     |
| 27   | 3              | B1      | 14  | 14   | 14   |      |        |       |                               |     |      |       |     |
| 28   | 3              | B2      | 00  | 00   | 00   |      |        |       |                               |     |      |       |     |
| 29   | 3              | B4      | 66  | 66   | 66   | 8    |        |       |                               | 3   |      |       |     |
| 30   | 3              | B5      | 44  | 44   | 44   |      |        |       |                               |     |      |       |     |
| 31   | 3              | B6      | 54  | 54   | 54   |      |        |       |                               |     |      |       |     |
| 32   | 3              | B7      | 24  | 24   | 24   |      |        |       |                               |     |      |       |     |
| 33   | 3              | B9      | 04  | 04   | 04   | 3    |        |       |                               | 3   |      |       |     |
| 34   | 3              | BA      | 14  | 14   | 14   |      |        |       |                               |     |      |       |     |
| 35   | 3              | BE      | 22  | 38   | 78   |      |        |       |                               |     |      |       |     |
| 36   | 1              | 35      | 00  |      |      |      |        |       |                               |     |      |       |     |

## Display Timing



| Name          | Qt'y  | Unit |
|---------------|-------|------|
| Frame Rate    | 60    | Hz   |
| Line Time     | 12.75 | us   |
| H total       | 752   | dot  |
| H sync        | 5     | dot  |
| H back porch  | 11    | dot  |
| H active area | 720   | dot  |
| H front porch | 16    | dot  |
| V total       | 1312  | line |
| V sync        | 5     | line |
| V back porch  | 11    | line |
| V active area | 1280  | line |
| V front porch | 16    | line |

## 6.5 Touch Specifications


| No. | Ite                   | em                                       | Spec.                       | Remark                               |
|-----|-----------------------|------------------------------------------|-----------------------------|--------------------------------------|
| 1   | Touch IC              |                                          | S3402                       | Synaptics                            |
| 2   | Multi-Finger          | 1                                        | 10                          | 22111                                |
| 3   | Report Rate           |                                          | ≧ 100Hz                     |                                      |
| 4   | Dorformonoo           | Accuracy.                                | <b>≦2.0mm</b>               | Note 1                               |
| 4   | Performance Linearity |                                          | <b>≦2.0mm</b>               | Note 1                               |
|     | Wakeup                | Double tape                              | 0.6se >∆t >(1/ report rate) | Δt=Ttape1-Ttape2                     |
| 5   | Gesture               | 11 (12 (12 (12 (12 (12 (12 (12 (12 (12 ( |                             | ΔS :swipe distance V :swipe velocity |

Note 1: Draw straight lines on the X axis, Y axis and diagonal axis with 6mm diameter copper slug at 50mm/sec drawing speed. And, drawing area is defined as below figure shown, which according to AA area and slig size.

Accuracy=  $Max\{|(y-m0x-b)/(m0^2+1)^0.5|\}$ 

Linearity=  $Max\{|(y-m0'x-b')/(m0'^2+1)^0.5|\}$ 

where (x,y)s are the TP IC reported coordinates.



### E. Touch Panel IIC address

Reading Manufacturer ID:

IIC address (7 bits) = 0x20

Although a host would not normally need to read the Manufacturer ID register provided by the RMI4 interface, reading this register is a good first step in verifying that the host and Touch Controller are communicating. The Manufacturer ID register belongs to the group of Function \$01 query registers. The addresses of these registers vary between different Synaptics RMI4-over-I2C Touch Controllers.

The Manufacturer ID register always returns data \$01. Figure A gives an example of the resulting bus transaction, in the format typically used to describe I2C transactions. The symbol meanings are listed in Table A. The shaded areas indicate bus activity by the Touch Controller. In this example, assume the slave address of the device is \$20, with the Manufacturer ID register at \$E1.

|   | 7 bits                   | 1 bit<br>←→ |   | 8 bits                      |   |    | 7 bits                   | 1 bit   | _ ( | 8 bits       |   |   |
|---|--------------------------|-------------|---|-----------------------------|---|----|--------------------------|---------|-----|--------------|---|---|
| S | Slave<br>Address<br>\$20 | Wr<br>0     | A | Register<br>Address<br>\$E1 | A | Sr | Slave<br>Address<br>\$20 | Rd<br>1 | A   | Data<br>\$01 | N | Р |

Figure A. Read Manufacturer ID command

#### Tabel A.

| Symbol | Meaning                                                                                                                                                         |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S      | I2C bus Start condition. This is a falling edge on SDA while SCL is high.                                                                                       |
| Sr N   | Repeated Start condition. Same as S. Note that hosts that cannot generate Repeated Starts may use a Stop condition (P) followed by a another Start (S) instead. |
| R      | 2C Stop condition. This is a rising edge on SDA while SCL is high.                                                                                              |
| A      | I2C acknowledge (ACK). The data receiver pulls SDA low during a high pulse on SCL driven by the transmitter.                                                    |
| N      | I2C not acknowledge (NACK). The data receiver lets SDA remain high during a high pulse on SCL driven by the transmitter.                                        |
| Wr     | Write' bit. This has a value of 0.                                                                                                                              |
| Rd     | 'Read' bit. This has a value of 1.                                                                                                                              |

### Using register:

### A. Page Select

| Addr        | Name        | Bit7 | Bit6    | Bit5  | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | Access |
|-------------|-------------|------|---------|-------|------|------|------|------|------|--------|
| 0x00FF      | Page Select |      | Page    |       |      |      |      |      |      | W      |
| Description |             | Set  | Page 0: | =0x00 |      |      |      |      |      |        |

## B. Communicating:

Address=0x0006 is used to read coordinate. It must continue to read 10 fingers data every time

| Addr      | Name                                    | Bit7                                                                                               | Bit6     | Bit5      | Bit4     | Bit3    | Bit2     | Bit1     | Bit0    | Access |  |
|-----------|-----------------------------------------|----------------------------------------------------------------------------------------------------|----------|-----------|----------|---------|----------|----------|---------|--------|--|
|           | F12_2D_DATA01(00)/00                    |                                                                                                    |          |           |          |         |          |          |         |        |  |
|           | Object Type and                         | Object Type and Status                                                                             |          |           |          |         |          |          |         | RW     |  |
|           | Status 0                                |                                                                                                    |          |           |          |         |          |          |         |        |  |
|           | F12_2D_DATA01(00)/01                    |                                                                                                    |          |           | v        | LSB     |          |          |         | RW     |  |
|           | Object Data 0                           | 1                                                                                                  |          |           | Λ        | מכנו    |          |          |         | I VV   |  |
|           | F12_2D_DATA01(00)/02                    |                                                                                                    |          |           | V        | MCD     |          |          |         | RW     |  |
|           | Object Data 0                           | X MSB                                                                                              |          |           |          |         |          |          |         |        |  |
|           | F12_2D_DATA01(00)/03                    |                                                                                                    | W 100    |           |          |         |          |          |         |        |  |
| 0x0006    | Object Data 0                           | Y LSB                                                                                              |          |           |          |         |          |          |         |        |  |
|           | F12_2D_DATA01(00)/04                    |                                                                                                    |          |           | V I      | MCD     |          | 0        | 1/1     | RW     |  |
|           | Object Data 0                           | Y MSB                                                                                              |          |           |          |         |          |          |         | W. A.  |  |
|           | F12_2D_DATA01(00)/05                    | 11 (D) (D) (I) 1 n                                                                                 |          |           |          |         |          |          |         | RW     |  |
|           | Object Data 0                           | 11,11 11810                                                                                        |          |           |          |         |          |          |         |        |  |
|           | F12_2D_DATA01(00)/06                    |                                                                                                    |          |           | ( )      | ) x     | 1/10     | 2)/~     |         | RW     |  |
|           | Object Data 0                           |                                                                                                    | 1        | My        | 1/17 /   |         | $\Theta$ |          |         | H VV   |  |
|           | F12_2D_DATA01(00)/07                    | 0                                                                                                  | - 5/2 (( | 2][[ ,    | 11/16    | 1////   |          |          | :       | RW     |  |
|           | Object Data 0                           | 1101111011110                                                                                      |          |           |          |         |          |          |         |        |  |
| 35        |                                         | Obje                                                                                               | ct Type  | and S     | atus (F  | 12_20   | _Data    | 1(N)/0)  |         |        |  |
|           |                                         | 0x00 ≠ No object                                                                                   |          |           |          |         |          |          |         |        |  |
|           |                                         | 0x01 = Finger                                                                                      |          |           |          |         |          |          |         |        |  |
| 0         | W 1/1/1/1/10                            | ○ 0x0                                                                                              | 02 = St  | ylus      |          |         |          |          |         |        |  |
|           | U/// /L///                              | ○ 0x03 = Palm                                                                                      |          |           |          |         |          |          |         |        |  |
| 1         | 3////////////////////////////////////// | ○ 0x04 = Unclassified                                                                              |          |           |          |         |          |          |         |        |  |
| )         | // 60 ,                                 | 0x0                                                                                                | 05 = Re  | eserved   | l        |         |          |          |         |        |  |
|           | 7                                       | ○ 0x0                                                                                              | 06 = GI  | oved F    | inger    |         |          |          |         |        |  |
| Descripti | on                                      | X and Y position data (MSB)                                                                        |          |           |          |         |          |          |         |        |  |
| Descripti | OII                                     | Thes                                                                                               | e regis  | sters re  | eport th | ne mos  | st-signi | ficant I | bits of |        |  |
|           |                                         | the a                                                                                              | bsolute  | X and     | Y posi   | tion da | ıta.     |          |         |        |  |
|           |                                         | X and                                                                                              | d Y pos  | sition da | ata (LS  | B)      |          |          |         |        |  |
|           |                                         | This register contains the least-significant bits for                                              |          |           |          |         |          |          |         |        |  |
|           |                                         | both                                                                                               | the X a  | ind Y a   | bsolute  | positi  | on info  | rmation  | 1.      |        |  |
|           |                                         | Z                                                                                                  |          |           |          |         |          |          |         |        |  |
|           |                                         | This field reports the amount of finger contact or finger signal strength, which often serves as a |          |           |          |         |          |          |         |        |  |
|           |                                         |                                                                                                    |          |           |          |         |          |          |         |        |  |
|           |                                         | rough estimate of finger pressure. When Z = 0, the                                                 |          |           |          |         |          |          |         |        |  |

position cannot be measured and the X and Y Position registers are left unchanged. By default Z is taken as 0 whenever the device's built-in algorithms determine that no finger is present. Wx, Wy

These fields report the estimated finger width as an unsigned integer, where 0 represents an extremely narrow finger and 15 represents an extremely wide contact such as a palm laid flat on the sensor. The ratio of Wx and Wy provides an estimate of the finger contact aspect ratio.

# 7. Optical Characteristics

| Items                | }             | Symbol         | Condition    | Min.  | Тур.  | Max.  | Unit  | Remark           | Note  |  |
|----------------------|---------------|----------------|--------------|-------|-------|-------|-------|------------------|-------|--|
| Response time        |               | Tr+Tf          |              | -     | -     | 1     | ms    | FIG.1            | Note4 |  |
| Contrast Ratio       |               | CR             | -            | 10000 | -     | -     | -     | FIG.2            | Note1 |  |
| Surface<br>luminance |               | LV             | θ <b>=0°</b> | 250   | 300   | -     | cd/m2 | FIG.2            | Note2 |  |
| Luminance uniformity |               | Yu             | θ <b>=0°</b> | 70    | ı     | ı     | %     | FIG.2            | Note3 |  |
| NTSC                 | ;             | -              | θ <b>=0°</b> | 80    | 100   | -     | %     | FIG.2            | Note5 |  |
|                      |               | $\theta_{T}$   |              | 80    | -     | -     | deg   | FIG.3            | Note6 |  |
| Viowing              | nalo          | $\theta_{B}$   | Center       | 80    | -     | -     | deg   | FIG.3            |       |  |
| viewing a            | Viewing angle |                | CR≥10        | 80    | -     | -     | deg   | FIG.3            | Noteo |  |
|                      |               | $\theta_{R}$   |              | 80    | -     | -     | deg   | FIG.3            |       |  |
|                      | Red           | R <sub>X</sub> |              | 0.645 | 0.675 | 0.705 | -     | FIG.2<br>CIE1931 | Note5 |  |
|                      |               | R <sub>Y</sub> | θ <b>=0°</b> | 0.295 | 0.325 | 0.355 | -     |                  |       |  |
| Chromaticity         | Green         | G <sub>X</sub> |              | 0.186 | 0.236 | 0.286 | -     |                  |       |  |
|                      |               | $G_Y$          | ∅=0°         | 0.661 | 0.711 | 0.761 | -     |                  |       |  |
|                      | Blue          | B <sub>X</sub> | Ta=25°       | 0.090 | 0.130 | 0.170 | -     |                  |       |  |
|                      |               | B <sub>Y</sub> |              | 0.025 | 0.065 | 0.105 | -     |                  |       |  |
|                      | White         | W <sub>X</sub> |              | 0.28  | 0.30  | 0.32  | -     |                  |       |  |
|                      |               | $W_{Y}$        |              | 0.29  | 0.31  | 0.33  | -     |                  |       |  |

#### Note1. Definition of contrast ratio

Contrast ratio(Cr) is defined mathematically by the following formula. For more information see FIG.2.

Luminance measured when LCD on the "White" state

Contrast ratio=

Luminance measured when LCD on the "Black" state

For contrast ratio, Surface Luminance, Luminance uniformity and CIE, the testing data is base on TOPCON's BM-5 or BM-7 photo detector or compatible.

#### Note2. Definition of surface luminance.

Surface luminance is the luminance with all pixels displaying white. For more information see FIG.2.

Lv = Average Surface Luminance with all white pixels(P1,P2,P3, .....,Pn)

### **Note3. Definition of luminance uniformity**

The luminance uniformity in surface luminance is determined by measuring luminance at each test position 1 through n, and then dividing the maximum luminance of n points luminance by minimum luminance of n points luminance. For more information see FIG.2.

Minimum surface luminance with all white pixels (P1,P2,P3,.....,Pn)

Maximum surface luminance with all white pixels (P1,P2,P3,.....,Pn)

### **Note4. Definition of response time**

The response time is defined as the LCD optical switching time interval between "White" state and "Black"state. Rise time (Tr) is the time between photo detector output intensity changed from 90% to 10%. And fall time (Tf) is the time between photo detector output intensity changed from 10% to 90%.

For additional information see FIG1.

#### Note5. Definition of color chromaticity (CIE1931)

CIE (x,y) chromaticity, The x,y value is determined by screen active area center position P5. For more information see FIG.2.

#### **Note6. Definition of viewing angle**

Viewing angle is the angle at which the contrast ratio is greater than 10. Angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG.3.

For viewing angle and response time testing, the testing data is base on Autronic-Melchers's ConoScope or DMS series Instruments or compatible.

### FIG.1.The definition of response Time

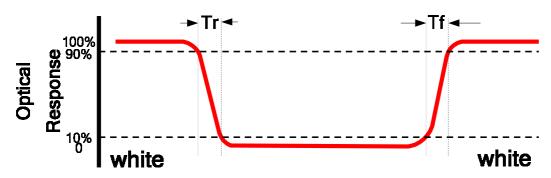



FIG.2. Measuring method for contrast ratio, surface luminance,

### luminance uniformity, CIE (x,y) chromaticity

Size: S≤5"(see Figure a) A: 5 mm B: 5 mm

H,V: Active area

Light spot size  $\oslash$ =5mm(BM-5) or  $\oslash$ =7.7mm (BM-7)50cm distance or compatible distance from the LCD surface to detector lens.

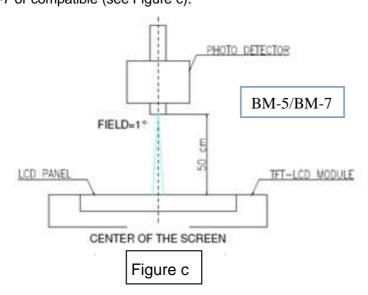
test spot position : see Figure a.

measurement instrument: TOPCON's luminance meter BM-5 or

BM-7 or compatible (see Figure c).



Figure a


### Size: 5" < S≤12.3" (see Figure b) H,V: Active area

Light spot size  $\oslash$ =5mm(BM-5) or  $\oslash$ =7.7mm (BM-7)50cm distance or compatible distance from the LCD surface to detector lens.

test spot position : see Figure b.

measurement instrument: TOPCON's luminance meter BM-5 or

BM-7 or compatible (see Figure c).



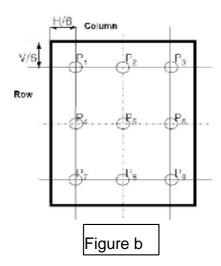
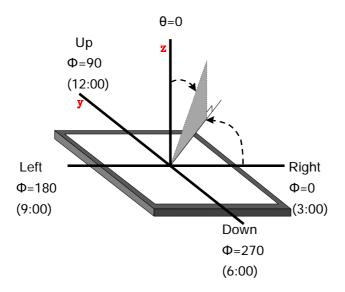
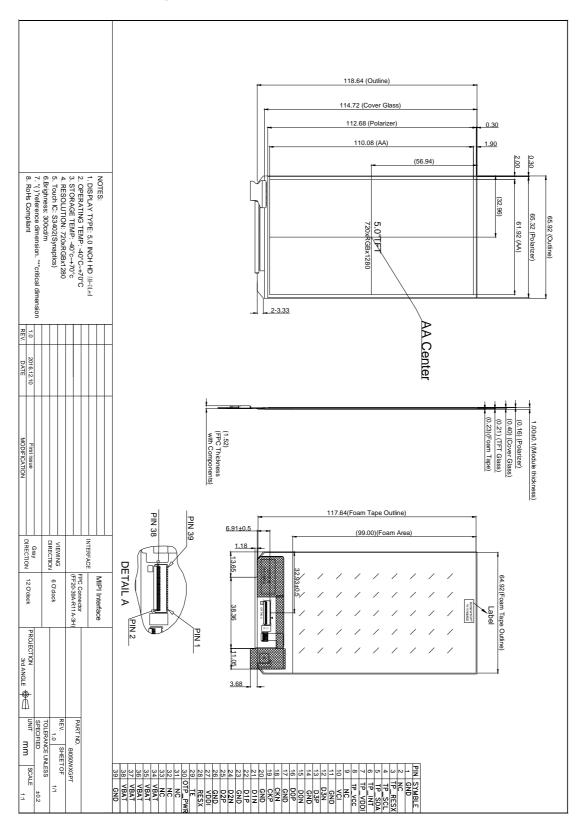




FIG.3.The definition of viewing angle



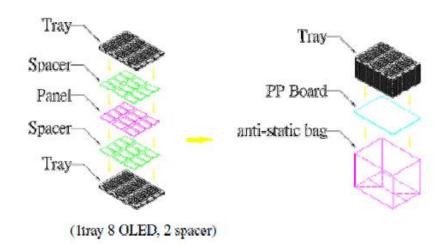

# 8. Environmental / Reliability Tests

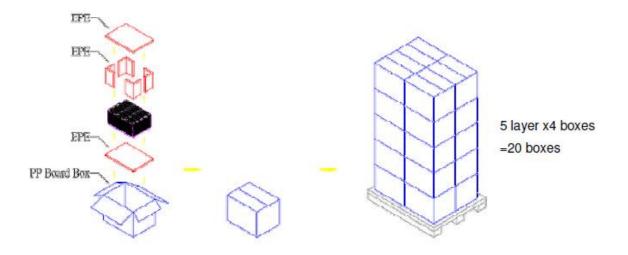
| No | Test Item                | Condition                              | Remarks                 |  |
|----|--------------------------|----------------------------------------|-------------------------|--|
| 1  | High Temperature         | Ts= +70°C, 96hrs                       | Note 1<br>IEC60068-2-2, |  |
| '  | Operation                | 13= +70 €, 301113                      | GB2423. 2-89            |  |
| 2  | Low Temperature          | Ta= -40°C, 96hrs                       | Note 2 IEC60068-2-1     |  |
| _  | Operation                | 10 0,001110                            | GB2423.1-89             |  |
| 3  | High Temperature         | Ta= +70°C, 120hrs                      | IEC60068-2-2            |  |
|    | Storage                  | 14-1700, 1201113                       | GB2423. 2-89            |  |
| 4  | Low Temperature          | Ta= -40°C, 120hrs                      | IEC60068-2-1            |  |
|    | Storage                  | 1a= -40 C, 1201113                     | GB/T2423.1-89           |  |
| 5  | High Temperature &       | Ta= +60°C, 90% RH max,120 hours        | IEC60068-2-3            |  |
| 5  | Humidity Storage         | 1a = +00 C, 90 % KIT IIIax, 120 II0ui3 | GB/T2423.3-2006         |  |
|    | Thermal Shock            |                                        | Start with cold         |  |
|    |                          | -20℃ 30 min ~ +60℃ 30 min              | temperature, end with   |  |
| 6  |                          | Change time: 5min, 30 Cycle            | high temperature        |  |
|    | (Non-operation)          | Change time. Smin, 30 Cycle            | IEC60068-2-14,          |  |
|    |                          |                                        | GB2423.22-87            |  |
|    |                          | C=150pF, R=330 Ω, 5 points/panel       |                         |  |
| 7  | Electro Static Discharge | Air:±8KV, 5 times; Contact: ±4KV, 5    | IEC61000-4-2            |  |
| /  | (Operation)              | times; (Environment: 15°C ~            | GB/T17626.2-1998        |  |
|    |                          | 35℃, 30% ~ 60%, 86Kpa ~ 106Kpa)        |                         |  |
|    |                          | Frequency range: 10~55Hz, Stroke:      |                         |  |
|    | Vibration                | 1.mm Sweep: 10Hz~55Hz~10Hz             | IEC60068-2-6            |  |
| 8  | (Non-operation)          | 2 hours for each direction of X .Y. Z. | GB/T2423.5-1995         |  |
|    | , ,                      | (package condition)                    |                         |  |
| 0  | Chook (Non anarotics)    | 60G 6ms, ± X, ±Y , ± Z                 | IEC60068-2-27           |  |
| 9  | Shock (Non-operation)    | 3 times for each direction             | GB/T2423.5-1995         |  |
| 10 | Dookogo Dran Tast        | Height: 80 cm, 1 corner, 3 edges,      | IEC60068-2-32           |  |
| 10 | Package Drop Test        | 6 surfaces                             | GB/T2423.8-1995         |  |

Note: 1. Ts is the temperature of panel's surface.

- 2. Ta is the ambient temperature of sample.
- 3. The size of sample is 5pcs.

# 9. Mechanical Drawing





# 10. Packing

## **Packing Method**

紙箱尺寸:546mm x 406mm x 278mm 棧板尺寸:1150mmx840mmx132mm

1set for 20 tray (8pcs) +1 tray(空) =160pcs module





## 11. TFT-LCD Module Inspection Criteria

### **11.1 Scope**

The incoming inspection standards shall be applied to TFT - LCD Modules (hereinafter Called "Modules") that supplied by factory.

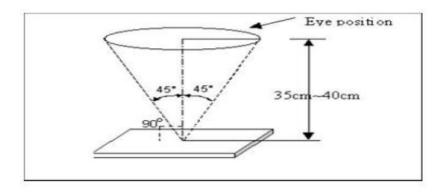
### 11.2 Incoming Inspection

The customer shall inspect the modules within twenty calendar days of the delivery date (the "inspection period) at its own cost. The result of the inspection (acceptance or rejection) shall be recorded in writing, and a copy of this writing will be promptly sent to The seller, If the results of the inspecting from buyer does not send to the seller within twenty Calendar days of the delivery date. The modules shall be regards as acceptance. Should the customer fail to notify the seller within the inspection period, the buyers Right to reject the modules shall be lapsed and the modules shall be deemed to have Been accepted by the buyer

### 11.3 Inspection Sampling

- 3.1. Lot size: Quantity per shipment lot per model
- 3.2. Sampling type: Normal inspection, Single sampling
- 3.3. Inspection level: II
- 3.4. Sampling table: MIL-STD-105E
- 3.5. Acceptable quality level (AQL)

Major defect: AQL=0.65 Minor defect: AQL=1.00


### 11.4 Inspection Conditions

- 4.1 Ambient conditions:
- a. Temperature: Room temperature  $25\pm5^{\circ}$ C
- b. Humidity:  $(60\pm10)$  %RH
- c. Illumination: Single fluorescent lamp non-directive (300 to 700 Lux)
- 4.2 Viewing distance

The distance between the LCD and the inspector's eyes shall be at least  $35\pm5$  cm.

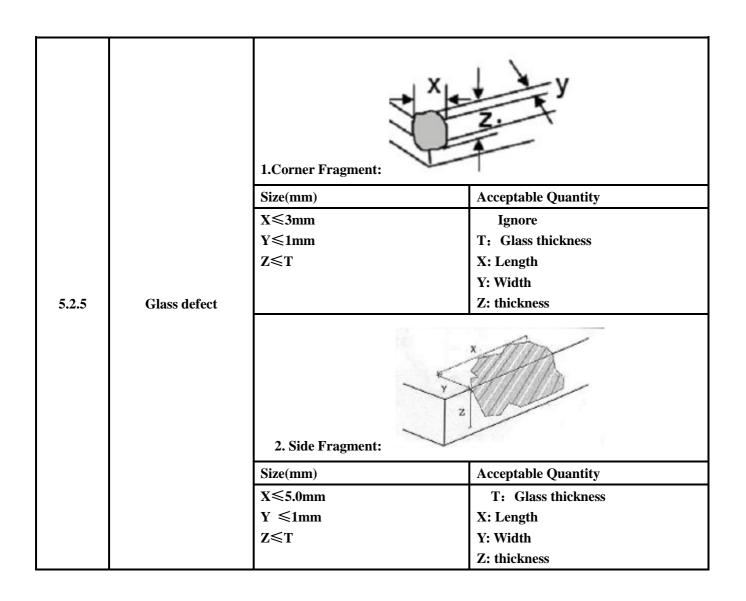
4.3 Viewing Angle

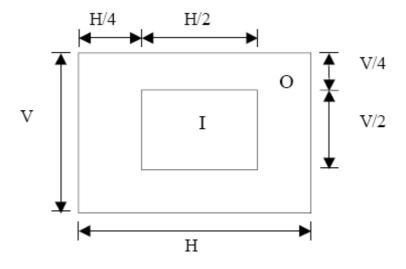
U/D: 45 ° /45° , L/R: 45° /45°



# 11.5 Inspection Criteria

Defects are classified as major defects and minor defects according to the degree of Defectiveness defined herein.


### 11.5.1 Major defect


| Item No | Items to be inspected  | Inspection Standard                                                                                    |  |  |
|---------|------------------------|--------------------------------------------------------------------------------------------------------|--|--|
| 5.1.1   | All functional defects | <ol> <li>No display</li> <li>Display abnormally</li> <li>Short circuit</li> <li>line defect</li> </ol> |  |  |
| `5.1.2  | Missing                | Missing function component                                                                             |  |  |
| 5.1.3   | Crack                  | Glass Crack                                                                                            |  |  |

## 11.5.2 Minor defect

| Item No | Items to be inspected                                                                              | Inspection standard                                                                                                      |                     |  |  |
|---------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|
| 5.2.1   | Spot Defect<br>Including Black<br>spot White spot<br>Pinhole Foreign<br>particle<br>Polarizer dirt | For dark/white spot is defined $\varphi = (x+y) / 2$ $\longrightarrow \begin{array}{c} X \\ \downarrow \\ X \end{array}$ |                     |  |  |
|         |                                                                                                    | Size φ(mm)                                                                                                               | Acceptable Quantity |  |  |
|         |                                                                                                    | φ≤0.2                                                                                                                    | Ignore              |  |  |
|         |                                                                                                    | 0.2 < φ≤0.5                                                                                                              | 3                   |  |  |
|         |                                                                                                    | 0.5 < ф                                                                                                                  | Not allowed         |  |  |

|       | Line Defect<br>Including Black line<br>White line Scratch | Define:  Width  Length                                                  |                     |                                                      |  |  |
|-------|-----------------------------------------------------------|-------------------------------------------------------------------------|---------------------|------------------------------------------------------|--|--|
| 5.2.2 |                                                           | Width(mm) Length(mm)                                                    | Acceptable Quantity |                                                      |  |  |
|       |                                                           | W≤0.05                                                                  | Ignore              |                                                      |  |  |
|       |                                                           | 0.05 < W≤0.1<br>L≤2.5                                                   | 3                   |                                                      |  |  |
|       |                                                           | 0.1 < W, or L>2.5                                                       | Not allowed         |                                                      |  |  |
|       |                                                           | Sizeφ(mm)                                                               | Acceptable Quantity |                                                      |  |  |
|       | Polarizer<br>Dent/Bubble                                  | φ≤0.2                                                                   | Ig                  | Ignore                                               |  |  |
| 5.2.3 |                                                           | 0.2 < φ≤0.3                                                             | 2                   |                                                      |  |  |
| 3.2.3 |                                                           | 0.3 < φ≤0.5                                                             | 1                   |                                                      |  |  |
|       |                                                           | <b>0.5</b> < Φ                                                          | Not allowed         |                                                      |  |  |
|       |                                                           | Total QTY 3                                                             |                     |                                                      |  |  |
|       | Electrical Dot<br>Defect                                  | Bright and Black dot define:                                            |                     |                                                      |  |  |
| 5.2.4 |                                                           | and and                                                                 |                     |                                                      |  |  |
|       |                                                           |                                                                         |                     |                                                      |  |  |
|       |                                                           | Two Adjacent Dot                                                        |                     |                                                      |  |  |
|       |                                                           | Inspection pattern: Full white, Full black, Red, green and blue screens |                     |                                                      |  |  |
|       |                                                           | Item                                                                    | _                   | le Quantity                                          |  |  |
|       |                                                           |                                                                         | I 0                 | Note                                                 |  |  |
|       |                                                           | Black dot defect                                                        | 2                   | $\phi \leqslant 0.15$ (5 mm \leftar \text{Distance}) |  |  |
|       |                                                           | Bright dot defect                                                       | 1                   | (5mm≤Distance)                                       |  |  |
|       |                                                           | Total Dot                                                               | 1                   |                                                      |  |  |





I area & O area

Note: 1). Dot defect is defined as the defective area of the dot area is larger than 50% of the dot area.

- 2). The distance between two bright dot defects (red, green, blue, and white) should be larger than 15mm.
- 3). The distance between black dot defects or black and bright dot defects should be more than 5mm apart.
- 4). Polarizer bubble is defined as the bubble appears on active display area. The defect of polarizer bubble shall be ignored if the polarizer bubble appears on the outside of active display area.

## 11.6 Mechanics specification

As for the outside dimension, weight of the modules, please refer to product specification For more details

### 12. Precautions for Use of LCD modules

### 12.1 Handling Precautions

- 12.1.1. The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 12.1.2. If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 12.1.3. Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 12.1.4. The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 12.1.5. If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
  - Isopropyl alcohol
  - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketene
- Aromatic solvents
- 12.1.6. Do not attempt to disassemble the LCD Module.
- 12.1.7. If the logic circuit power is off, do not apply the input signals.
- 12.1.8. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- 12.1.8.1. Be sure to ground the body when handling the LCD Modules.
- 12.1.8.2. Tools required for assembly, such as soldering irons, must be properly ground.
- 12.1.8.3. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 12.1.8.4. The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

## 12.2 Storage Precautions

- 12.2.1. When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 12.2.2. The LCD modules should be stored under the storage temperature range If the LCD modules will be stored for a long time, the recommend condition is:

Temperature :  $0^{\circ}$ C ~  $40^{\circ}$ C Relatively humidity: ≤80%

12.2.3. The LCD modules should be stored in the room without acid, alkali and harmful gas.

# **12.3 Transportation Precautions**

The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.