■Preliminary Specification
☐ Approval Specification

TFT-LCD Module

MODEL NO.: BI416ME REV.

	/ •
Customer: Model NO.: Part NO.:	
APPROVED BY	SIGNATURE
*Please return 1 copy for your confirmation	with your signature and comments.

Approved By	Checked By	Prepared By

Version 01 1 / 20

-CONTENTS -

	REVISION HISTORY	. 3
	1. GENERAL DESCRIPTION	4
	1.1 OVERVIEW	4
	1.2 CHARACTERISTICS	4
	1.3 MECHANICAL SPECIFICATIONS	4
	2. ABSOLUTE MAXIMUM RATINGS	4
	2.1ABSOLUTE RATINGS OF ENVIRONMENT	4
	3. ELECTRICAL CHARACTERISTICS	5
	3.1 LCD ELETRONICS SPECIFICATION	5
	3.2 LVDS INPUT SIGNAL SPECIFICATIONS	.7
	3.3 COLOR DATA INPUT ASSIGNMENT	8
	3.4 LED LIGHTBAR SPECIFICATION FOR BACKLIGHT	9
	4. INTERFACE PIN CONNECTION	.9
	4.1 PIN ASSIGNMENT	9
	4.2 BACKLIGHT INTERFACE CONNECTION	
	5. INTERFACE TIMING	.13
	5.1 INPUT SIGNAL TIMING SPECIFICATIONS13	3
	5.2 POWER ON/OFF SEQUENCE1	5
	6. OPTICAL CHARACTERISTICS	.16
	6.1 OPTICAL SPECIFICATION16	
	9. PRECAUTIONS	. •
	9.1 ASSEMBLY AND HANDLING PRECAUTIONS	
	9.2 SAFETY PRECAUTIONS	_
	10. RELIABILITY19	
1	II MECHANICAI DRAWING	a

Revision History

_		110110101111101019	
Issued Date	Page	Old Description	New Description
8/10/2015	\	Initial release	\
	Issued Date 8/10/2015	Date Page	Issued Date Page Old Description

Version 01 3 / 20

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V420DK1-KS1 is a 42" TFT Liquid Crystal Display product with driver ICs and 2ch-LVDS interface. This product supports 3840 x 2160 Full HDTV format and can display 16.7M colors (8-bit). The backlight unit is built

in. 1.2 CHARACTERISTICS

Item	Specification	Unit	Note
Screen Size	41.6 inch Diagonal	in	
Active Area	919.296 (H) x 517.104 (V)	mm	-
Pixel Number	3840 x R.G.B. x 2160	pixel	-
Sub-Pixel Pitch	$0.1596(H) \times 0.4788(V)$	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Glass thickness (Array / CF)	0.5 / 0.5	mm	-
Transmissive Mode	Normally Black	-	-
Polarizer Surface Treatment	Anti-Glare coating (Haze 1%)	-	-

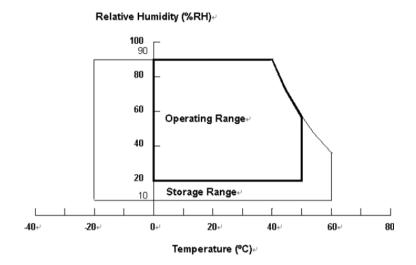
1.3 MECHANICAL SPECIFICATIONS

ľ	tem	Min.	Тур.	Max.	Unit	Remark
	Horizontal (H)	934.4	934.9	935.4	mm	
Module Size	Vertical (V)	539.05	539.55	540.05	mm	
iviodule Size	Donth (D)	10.22	10.72	11.22	mm	
	Depth (D)	13.97	14.47	14.97	mm	
Bezel Area	Horizontal (H)	922.6	923.1	923.6	mm	
Dezei Alea	Vertical (V)	521.15	521.65	522.15	mm	
Active Area	Horizontal (H)	-	919.296	-	mm	
Active Area	Vertical (V)	-	517.104	-	mm	
W		-		kg		

[Note 1] Please refer to the attached drawings for more information of front and back outline dimensions and the dimension of bosses are not included.

2. ABSOLUTE MAXIMUM RATINGS

2.1ABSOLUTE RATINGS OF ENVIRONMENT


Ha ma	0	Val	ue	1.1	D
Item	Symbol	Min.	Max.	Unit	Remark
Storage Temperature	Tst	-20	+60	℃	[Note 1]
Operating Ambient Temperature	T_{OP}	0	50	ပ္	[Note 1,2]

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta < 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta < 40 °C).

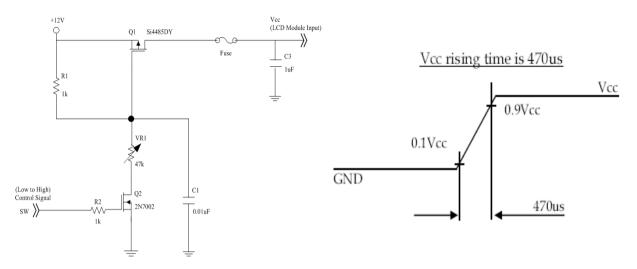
Note (2) Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.

Version 01 4 / 20

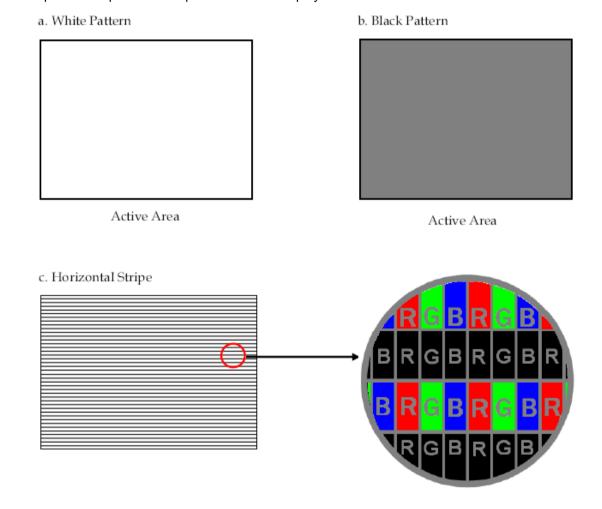
3. ELECTRICAL CHARACTERISTICS

3.1 LCD ELETRONICS SPECIFICATION

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

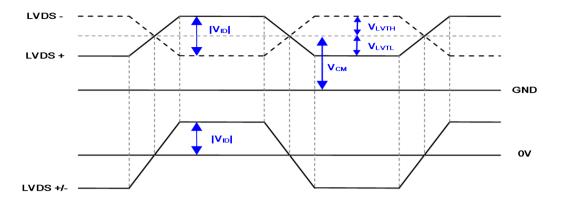

	Parameter S			Value		Unit	Note
rarameter		Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply V	oltage	V_{CC}	10.8	12	13.2	V	(1)
Rush Current		I_{RUSH}	_	_	3.5	Α	(2)
	White Pattern	Рт	_	4.2	5.2		
Power consumption	Black Pattern	Рт	_	4	4.9	W	
	Horizontal Stripe	Рт	_	7.4	9.1		(2)
	White Pattern	Рт	_	0.35	0.43		(3)
Power Supply Current	Black Pattern	PT	_	0.33	0.41	Α	
current	Horizontal Stripe	Рт	_	0.62	0.76		
	Differential Input High Threshold Voltage	$V_{ m LVTH}$	+100	_	+300	mV	
	Differential Input Low Threshold Voltage	V _{LVTL}	-300	_	-100	mV	
LVDS interface	Common Input Voltage	V_{CM}	1.0	1.2	1.4	V	(4)
	Differential input voltage	$ V_{\text{ID}} $	200	_	600	mV	
Terminating Resistor		R_{T}	_	100	_	ohm	
CMOS interface	Input High Threshold Voltage	V _{IH}	2.7	_	3.3	V	
CiviO5 interface	Voltage Input Low Threshold Voltage	$V_{\rm IL}$	0	_	0.7	V	

Note (1) The module should be always operated within the above ranges.

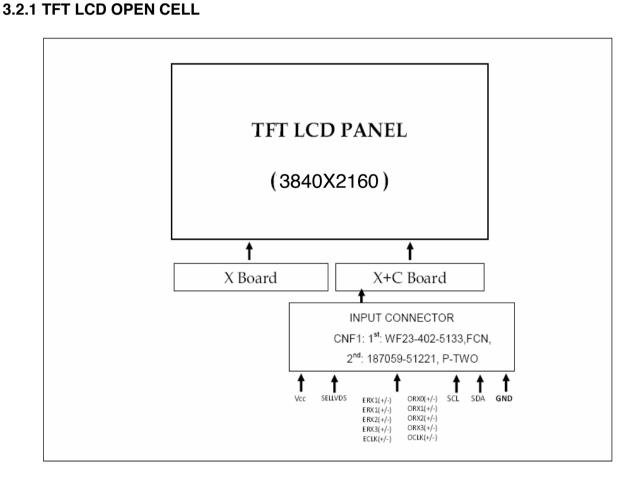

The ripple voltage should be controlled under 10% of Vcc (Typ.).

Note (2) Measurement condition:

Version 01 5 / 20



Note (3) The specified power supply current is under the conditions at Vcc = 12 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, fv = 60 Hz, whereas a power dissipation check pattern below is displayed.



Note (4) The LVDS input characteristics is shown as below:

Version 01 6 / 20

3.2 INPUT TERMINAL PIN ASSIGNMENT

Version 01 7 / 20

3.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

												Da		Sigr											
	Color				Re	ed							_	reer	1						Blu	ue			
	00.01	R7	R6	R5	R4	R3	R2	R1	R0	G 7	G 6	G 5	G 4	G3	G2	G1	G0	В 7	B6	B5	B4	ВЗ	B2	B 1	B 0
	Black Red	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)											:										:			
Scale	:				-	:		-	•	-	-	-	-	:	:		-	٠.		-		:		-	-
Of	Red(253)	1	1	1	1	1	1	0	1	0	0	0	:0	0	0	0	0	0	0	0	0	0	0	0	:0
Red	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:		:	:	:	:		-	:	-	-	:	:	:	:	:	:	:		:	:	:	
Of	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	Ó	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Crov	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Gray Scale	: ` ´	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Blue	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Version 01 8 / 20

3.4 LED LIGHTBAR SPECIFICATION FOR BACKLIGHT

Parameter	Symbol		Value			
Farameter	Syllibol	Min.	Тур.	Max	Unit	Note
Input Voltage	V_{pin}	43.5	48	49.5	VDC	Duty 100% [Note 1]
Input Current	lpin		440*2		mADC	Duty 100% Per Lightbar [Note 1]
LED Life Time	LT	(30,000)			Hrs	
Power Consumption	PBL		21.12*2		W	
Dimming Duty Ratio		20		100	%	

[Note 1] Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

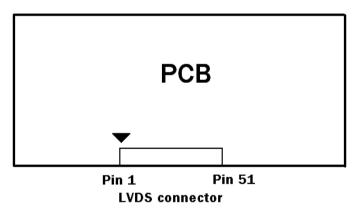
[Note 2] The life time of LED is defined as the time when it continues to operate under the condition at Ta = 25±2 C and Ipin = 440 mA(typ) *2 until the brightness becomes ≤ 50% of its original value.

4. INTERFACE CONNECTION

4.1 TFT LCD PIN ASSIGNMENT

CNF1 Connector Pin Assignment (FCN WF23-402-5133 OR P-TWO 187059-51221)

Matting connector: FI-RE51HL (JAE)

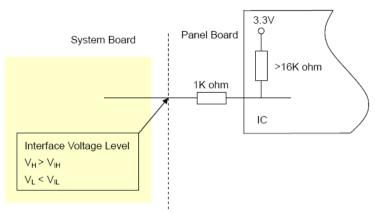

Pin	Name	Description	Note
1	GND	Ground	(2)
2	SCL	I2C clock (For Vcom tunning)	
3	SDA	I2C data (For Vcom tunning)	
4	NC	No connection	
5	NC	No connection	(2)
6	NC	No connection	7
7	SELLVDS	LVDS data format Selection	(3)(4)
8	NC	No Connection	
9	NC	No Connection	(2)
10	NC	No connection	
11	GND	Ground	
12	ERX0-	Even pixel Negative LVDS differential data input. Channel 0	
13	ERX0+	Even pixel Positive LVDS differential data input. Channel 0	
14	ERX1-	Even pixel Negative LVDS differential data input. Channel 1	(5)
15	ERX1+	Even pixel Positive LVDS differential data input. Channel 1	(5)
16	ERX2-	Even pixel Negative LVDS differential data input. Channel 2	
17	ERX2+	Even pixel Positive LVDS differential data input. Channel 2	
18	GND	Ground	
19	ECLK-	Even pixel Negative LVDS differential clock input	(F)
20	ECLK+	Even pixel Positive LVDS differential clock input	(5)
21	GND	Ground	
22	ERX3-	Even pixel Negative LVDS differential data input. Channel 3	(E)
23	ERX3+	Even pixel Positive LVDS differential data input. Channel 3	(5)
24	N.C.	No Connection	(2)
25	N.C.	No Connection	(2)
26	GND	Ground	
27	GND	Ground	

Version 01 9 / 20

28	ORX0-	Odd pixel Negative LVDS differential data input. Channel 0	
29	ORX0+	Odd pixel Positive LVDS differential data input. Channel 0	
30	ORX1-	Odd pixel Negative LVDS differential data input. Channel 1	(5)
31	ORX1+	Odd pixel Positive LVDS differential data input. Channel 1	(5)
32	ORX2-	Odd pixel Negative LVDS differential data input. Channel 2	
33	ORX2+	Odd pixel Positive LVDS differential data input. Channel 2	
34	GND	Ground	
35	OCLK-	Odd pixel Negative LVDS differential clock input.	(5)
36	OCLK+	Odd pixel Positive LVDS differential clock input.	(3)
37	GND	Ground	
38	ORX3-	Odd pixel Negative LVDS differential data input. Channel 3	(5)
39	ORX3+	Odd pixel Positive LVDS differential data input. Channel 3	(3)
40	N.C.	No Connection	(2)
41	N.C.	No Connection	(2)
42	GND	Ground	
43	GND	Ground	
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	N.C.	No Connection	(2)
48	VCC	Power input (+12V)	
49	VCC	Power input (+12V)	
50	VCC	Power input (+12V)	
51	VCC	Power input (+12V)	

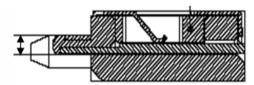
Note (1)LVDS connector pin order defined as below

Note (2) Reserved for internal use. Please leave it open.

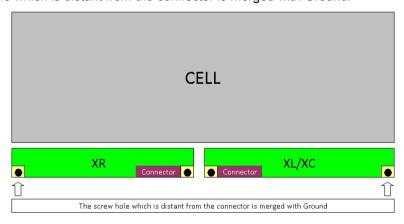

Note (3) LVDS format selection. Connect to Open or +3.3V: VESA Format, connect to GND: JEIDA Format.

SELLVDS	Mode
H(default)	VESA
L	JEIDA

L: Connect to GND, H: Connect to +3.3V

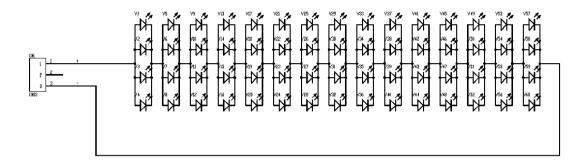

Version 01 10 / 20

Note (4) Interface optional pin has internal scheme as following diagram. Customer should keep the interface voltage level requirement which including Panel board loading as below.



Note (5) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.

Note (6) LVDS connector mating dimension range request is 0.93mm~1.0mm as below.


Note (7) The screw hole which is distant from the connector is merged with Ground.

Version 01 11 / 20

4.2 BACKLIGHT INTERFACE CONNECTION

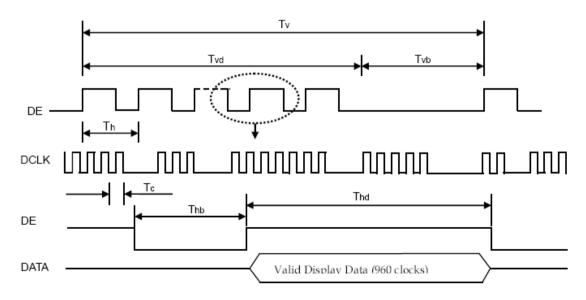
The backlight unit contains two lightbars. The next figure is electrical circuit of single lightbar. LED lightbar connector type: A1009AWV-03. It connect to output connector PH1.0-3 on supply converter PCB.

Version 01 12 / 20

5. INTERFACE TIMING

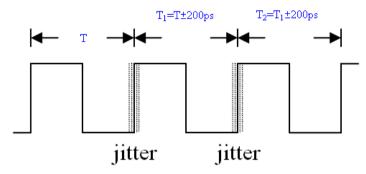
5.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

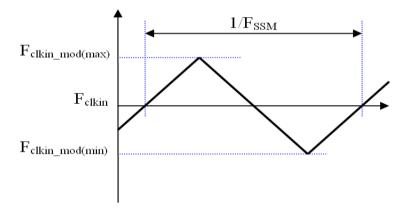

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz		
LVDS	Input cycle to cycle jitter	T_{rc1}	-	_	200	ps	(3)	
Receiver Clock	Spread spectrum modulation range	Fclkin_mod	F _{clkin} -2%	_	F _{clkin} +2%	MHz		
	Spread spectrum modulation frequency	F_{SSM}	I	_	200	KHz	(4)	
LVDS Receiver Data	Receiver Skew Margin	$T_{\rm RSKM}$	-400	_	400	ps	(5)	
Vertical Active Display Term	Frame Rate	F_{r5}	47	50	53	Hz	(6)	
		F_{r6}	57	60	63	Hz	(0)	
	Total	Tv	1090	1125	1480	Th	Tv=Tvd+Tvb	
	Display	Tvd	1080	1080	1080	Th	_	
	Blank	Tvb	10	45	400	Th	_	
Horizontal Active Display Term	Total	Th	1030	1100	1325	Тс	Th=Thd+Thb	
	Display	Thd	960	960	960	Тс	_	
	Blank	Thb	70	140	365	Тс	_	

Note (1) Please make sure the range of pixel clock has follow the below equation:

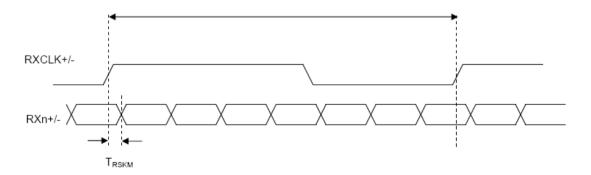
$$\text{Fclkin(max)} \, \geq \, \text{Fr6} \, \times \, \text{Tv} \, \times \, \text{Th}$$


$$Fr5 \times Tv \times Th > Fclkin (min)$$

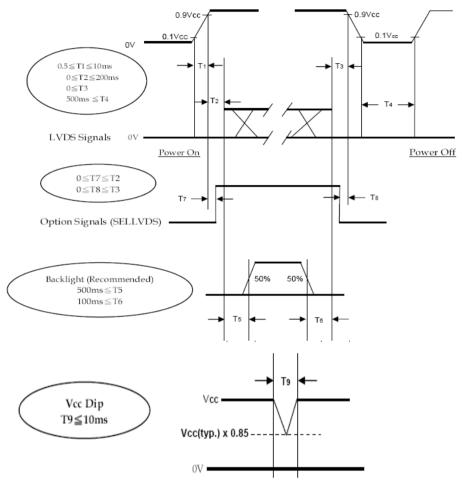
Fr5 \times Tv \times Th \ge Fclkin (min) Note (2) This module is operated in DE only mode and please follow the input signal timing diagram below :



Version 01 13/20


Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = I T1 - TI

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.


Note (5) The LVDS timing diagram and the receiver skew margin is defined and shown in following figure.

Version 01 14 / 20

5.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.

Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or

the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.

Note (3) In case of VCC is in off level, please keep the level of input signals on the low or high impedance.

If T2<0,that maybe cause electrical overstress failure.

Note (4) T4 should be measured after the module has been fully discharged between power off and on period.

Note (5) Interface signal shall not be kept at high impedance when the power is on.

Note (6) Vcc must decay smoothly when power-off.

Version 01 15 / 20

6. OPTICAL CHARACTERISTICS

6.1 TEST CONDITIONS

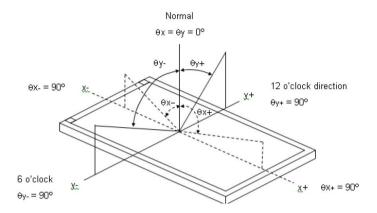
Item	Symbol	Value	Unit	
Ambient Temperature	Та	25 ±2	°C	
Ambient Humidity	На	50 ±10	%RH	
Vertical Frame Rate	Fr	60	Hz	
Supply Voltage	V _{CC}	12.0 ±1.2	V	
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"			

6.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 6.2. The following items should be measured under the test conditions described in 6.1 and stable environment shown in 6.1.

Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark				
Luminance	Central Luminance	Lwc	Center	250	280		nit					
	Uniformity	ΔLw	Min/Max	75			%					
Viewing angle	Horizontal	θχ-+θχ+	CR>10		178		Deg.	(1),(2)				
range	Vertical	θy-+θy+			178	-	Deg.	/ //(-/				
Contra	st ratio	CR		2800	4000	-	-	(1),(3)				
Response time	Gray to Gray	T _{GtG_AVE}			9.5	18	ms	(1),(4)				
Chromotic	Chromaticity of white		(Center)	-	0.311		-					
Ciliomatic					0.351]	ı					
Chromati	city of red	X			Normal				0.660		ı	
Cilioinati	Chromaticity of red		Viewing	TYP0.03	0.327	0.327 TYP.+0.03	ı	(0)				
Chromaticity of green		X A	Angei -	Angel	Angei	Angel		0.278	111.10.03	-	(0)	
		у		-	0.585		-					
Chromaticity of blue		X			0.136		-					
		у			0.105		-					
Center Transmittance		Т%		-	5.9	-	%	(1),(5)				

Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltage are based on suitable gamma voltages. The calculating method is as following:


- 1. Measure Module's and BLU's spectrum at center point. W, R,G, B are with signal input.
- 2. Calculate cell's spectrum.
- 3. Calculate cell's chromaticity by using the spectrum of standard light source "C".

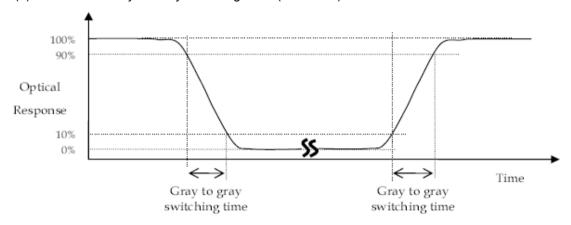
Note (1) Light source is the BLU which supplied by DSBJ and driving voltage are based on suitable gamma voltages.

Note (2) Definition of Viewing Angle (x, y):

Viewing angles are measured by Autronic Conoscope Cono-80 (or Eldim EZ-Contrast 160R)

Version 01 16 / 20

Note (3) Definition of Contrast Ratio (CR):


The contrast ratio can be calculated by the following expression.

$$T(X) = \frac{L1023 (X) \text{ of LCD module}}{Luminance (X) \text{ of BLU}} \times 100\%$$

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6). Note (4) Definition of Gray-to-Gray Switching Time (VA Model):

The driving signal means the signal of gray level 0, 31, 63, 95, 127, 159, 191, 223 and 255.

Gray to gray average time means the average switching time of gray level 0, 31, 63, 95, 127, 159, 191, 223 and 255 to each other.

Note (5) Definition of Transmittance (T%): (VA Model)

Measure the luminance of gray level 1023 of LCD module and the luminance of BLU at 5 points.

$$\text{Transmittance (T\%) = } \frac{\text{average } \left[L\left(1\right), L\left(2\right), L\left(3\right), L\left(4\right), L\left(5\right) \right] \text{ of LCD module}}{\text{average } \left[L\left(1\right), L\left(2\right), L\left(3\right), L\left(4\right), L\left(5\right) \right] \text{ of BLU}} \times 100\%$$

Version 01 17 / 20

9. PRECAUTIONS

9.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (a) Do not apply rough force such as bending or twisting to the module during assembly.
- (b) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (c) Since the LCM consists of TFT and electronic circuits with CMOS-ICs, which are very weak to electrostatic discharge, person who is handling an LCM should be grounded though adequate methods such as an anti-static wrist band. Connector pins should not be touched directly with bare hands.

Reference: Process control standard is shown as follow.

	item	Management standard value and performance standard
1	Anti-static mat(shelf)	1to50 [Mega ohm]
2	Anti-static mat(floor, desk)	1to100 [Mega ohm]
3	Ionizer	Attenuate from ±1000V to ±100V within two seconds.
4	Anti-static wrist band	0.8 to 10 [Mega ohm]
5	Anti-static wrist band entry and ground resistance	Below 1000 [ohm]
6	Temperature	22 to 26 [°C]
7	Humidity	60 to 70 [%]

- (d) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (e) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (f) Be sure to turn off the power supply when inserting or disconnecting the cable.
- (g) Do not disassemble the module.
- (h) Front polarizer can easily be damaged, so please pay attention on it.
- (i) Using a absorbent cotton or other soft cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (j) Since long contact with drops of water may cause discoloration or spots, please wipe off them as soon as possible.
- (k) The Panel will be broken or chipped when it is dropped or bumped against a hard substance.
- (I) Applying too much force and stress to PWBs and drivers may cause a malfunction electrically and mechanically.
- (m) Please be careful since image retention may occur when a fixed pattern is displayed for a long time.
- (n) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (o) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (p) This LCM is corresponded to ROHS.
- (q) When any question or issue occurs, it shall be solved by mutual discussion.

9.2 SAFETY PRECAUTIONS

- (a) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (b) After the module's end of life, it is not harmful in case of normal operation and storage.

Version 01 18 / 20

10. RELIABILITY

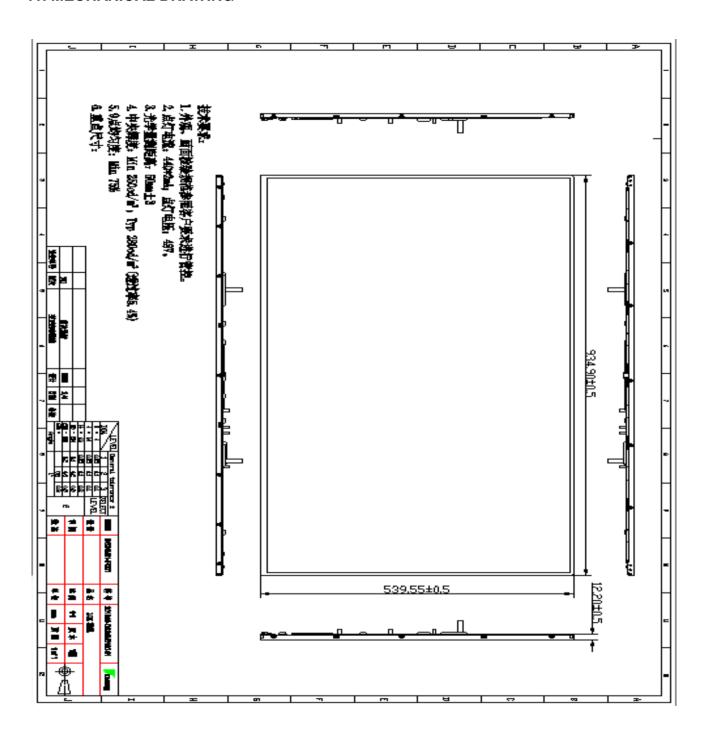
(a) Environment test condition

Test item	Condition
High temperature storage test	Ta= 60 C, 240h
Low temperature storage test	Ta= -20 C, 240h
High temperature and high humidity storage test	Ta= 50 C, 80%RH, 240h (No condensation)
High temperature operation test	Ta= 50 C, 240h
Low temperature operation test	Ta= 0 C,240h

(b) Shock & Vibration (TBD)

Test item	Condition
Shock (Non-Operation)	Shock level: 50 Grms Waveform: half sine wave, 11ms
	Direction: ±X,±Y,±Z
	One time each direction
Vibration	Wave form: Random
(Non-Operation)	Vibration level: 1.0 Grms
	Bandwidth: 10-300 Hz
	Duration: X,Y,Z, 30 min
	Each direction per 10 min

(c) ESD test


Test item	Condition
Connector	$200~\text{pF}$, $0~\Omega$, $\pm 250~\text{V}$ By using contact-mode to discharge each pin one time and then check the module frame.
Module	 50pF, 330Ω, ±8KV(contact-mode),±15KV(air-mode) 1. Under test conditions, by using air-mode to discharge each test point 25 times continuously and then check the module frame. 2. Under test conditions, by using contact-mode to discharge each test point of panel frame 25 times continuously and then check the module frame.

[Result evaluation criteria]

Under the display quality test condition with normal operation state, there shall be no change, which may affect practical display function.

Version 01 19 / 20

11. MECHANICAL DRAWING

Version 01 20 / 20