TECHNICAL SPECIFICATION

MODEL NO: ED060XG1

Customer's Confirmation	
Customer	-
Date	-
By	
☐E Ink's Confirmation	

Dep	PM	FAE	Panel Design	Electronic Design	Mechanical Design	Product Verificatio n	Prepared By
Sign							

Revision History

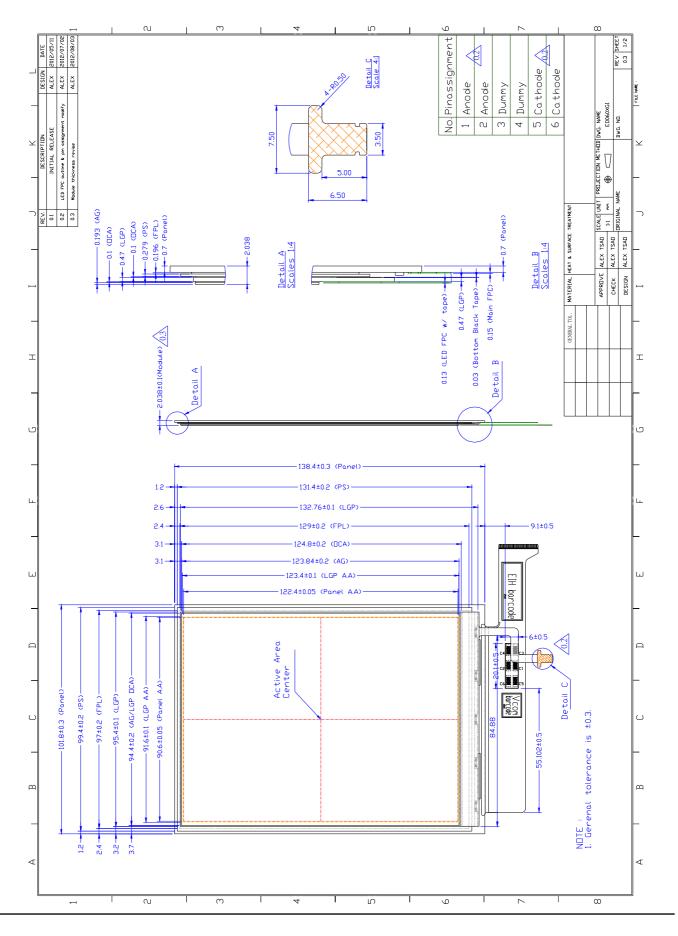
Rev.	Issued Date	Revised Contents
0.1	July 11 ,2012	Preliminary
0.2	August 7,2012	Modify
		Page 5 4. Mechanical Drawing of EPD module
		Add
		Page 20 9. Optical characteristics
		Change Uniformity, add CR
		Page 27 14. Block Diagram
		Page 28 15. Packing

TECHNICAL SPECIFICATION <u>CONTENTS</u>

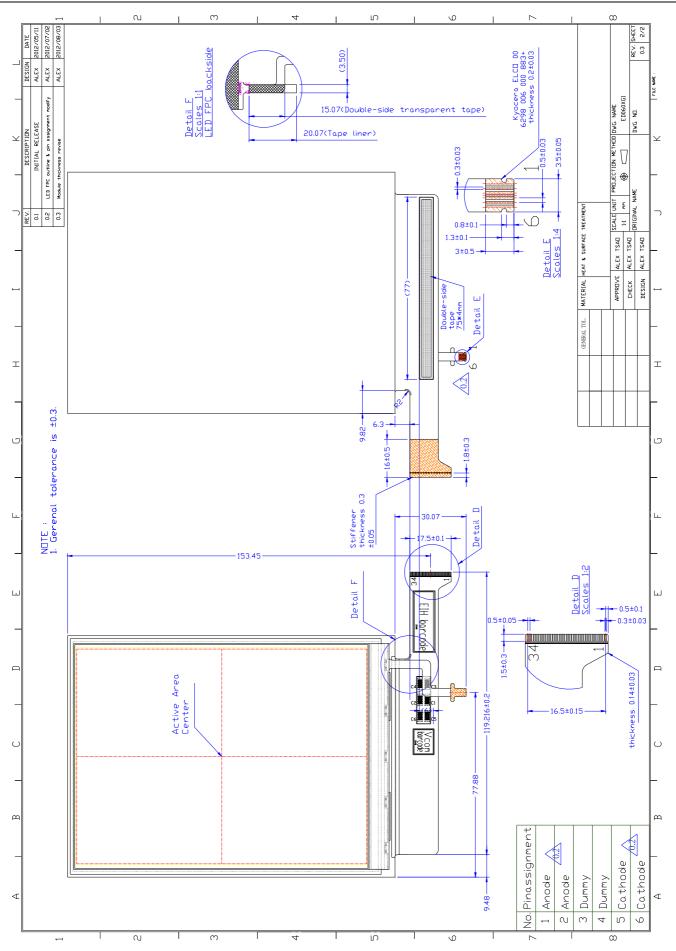
ITEM PAGE NO. Cover 1 **Revision History** 2 Contents 3 1 Application 4 2 Features 4 3 **Mechanical Specifications** 4 4 Mechanical Drawing of EPD module 5 5 Input/Output Terminals 7 6 **Electrical Characteristics** 9 7 Power on Sequence 14 8 Discharge time Sequence 16 9 17 **Optical Characteristics** 10 Handling, Safety and Environment Requirements 22 11 Reliability test 24 12 Bar Code definition 25 13 Border definition 26 14 **Block Diagram** 27 15 Packing 28

1. Application

ED060XG1 is a reflective electrophoretic technology display module based on active matrix TFT substrate featuring capacitive touch panel. It has 6" active area with 758 x 1024 pixels, the display is capable to display images at 2-16 gray levels (1-4 bits) depending on the display controller and the associated waveform file it used.


2. Features

- ➤ High contrast reflective/electrophoretic technology
- > 758 x 1024 display
- ➤ High reflectance
- > Ultra wide viewing angle
- Ultra low power consumption
- > Pure reflective mode
- ➤ Bi-stable
- > Commercial temperature range
- ➤ Landscape, portrait mode
- > Front Light Module


3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	6.0 (3:4 diagonal)	Inch	
Display Resolution	758 (H)×1024(V)	Pixel	
Active Area	90.6 (H)×122.4 (V)	mm	
Pixel Pitch	0.1195 (H)×0.1195 (V)	mm	
Pixel Configuration	Square		
Outline Dimension	101.800(W)×138.400(H)×2.038(D)	mm	
Module Weight	46±4.6	g	
Number of Gray	16 Gray Level (monochrome)		
Display operating mode	Reflective mode		
Surface Treatment	Anti-glare treatment for protective sheet		

4. Mechanical Drawing of EPD Module

ED060XG1

5.Input/Output Interface 5-1) Connector type: FH34S-34S-0.5SH(50)-Hirose Pin Assignment

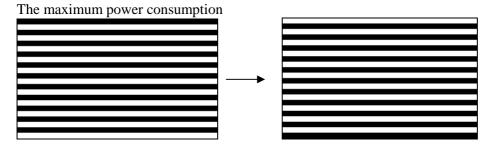
Pin #	Signal	Description	Remark	
1	VNEG	Negative power supply source driver		
2	VEE	Negative power supply gate driver		
3	VSS	Ground		
4	NC	NC		
5	NC	NC		
6	VDD	Digital power supply drivers (3.3V)		
7	VSS	Ground		
8	XCL	Clock source driver		
9	VSS	Ground		
10	XLE	Latch enable source driver		
11	XOE	Output enable source driver		
12	XSTL	Start pulse source driver		
13	D0	Data signal source driver		
14	D1	Data signal source driver		
15	D2	Data signal source driver		
16	D3	Data signal source driver		
17	D4	Data signal source driver		
18	D5	Data signal source driver		
19	D6	Data signal source driver		
20	D7	Data signal source driver		
21	VCOM	Common connection		
22	NC	NC		
23	NC	NC		
24	NC	NC		
25	NC	NC		
26	VSS	Ground		
27	MODE 1	Output mode selection gate driver		
28	CKV	Clock gate driver		
29	SPV	Start pulse gate driver		
30	NC	NC		
31	BORDER	Border connection		
32	VSS	Ground		
33	VPOS	Positive power supply source driver		
34	VGG	Positive power supply gate driver		

5-2) Pin assignment of LED circuit

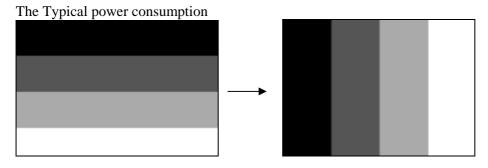
No.	Pin assignment			
1	Anode			
2	Anode			
3	Dummy			
4	Dummy			
5	Cathode			
6	Cathode			

6.Electrical Characteristics

6-1)Absolute Maximum Ratings:


Parameter	Symbol	Rating	Unit	Remark
Logic Supply Voltage	VDD	-0.3 to +7	V	
Positive Supply Voltage	V_{POS}	-0.3 to +18	V	
Negative Supply Voltage	V _{NEG}	+0.3 to -18	V	
Max .Drive Voltage Range	V_{POS} - V_{NEG}	36	V	
Supply Voltage	VGG	-0.3 to +45	V	
Supply Voltage	VEE	-25.0 to +0.3	V	
Supply Range	VGG-VEE	-0.3 to +45	V	
Operating Temp. Range	TOTR	0 to +50	$^{\circ}\!\mathbb{C}$	
Storage Temperature	TSTG	-25 to +70	$^{\circ}\!\mathbb{C}$	

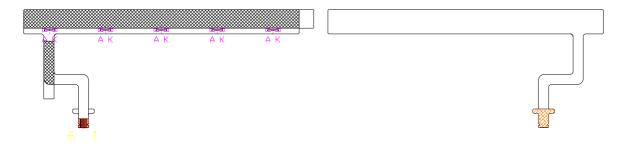
6-2) Panel DC characteristics


Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Signal ground	V_{SS}		-	0	-	V
Y Y Y 1. 1	V_{DD}		3.0	3.3	3.6	V
Logic Voltage supply	I_{VDD}	$V_{DD}=3.3V$	-	1.0	2.5	mA
Gate Negative supply	V_{EE}		-21	-20	-19	V
Gate Negative supply	I_{EE}	$V_{EE} = -20V$	-	0.7	5.3	mA
Gate Positive supply	V_{GG}		21	22	23	V
Cate I ositive supply	I_{GG}	$V_{GG} = 22V$	-	0.6	0.7	mA
Source Negative supply	V_{NEG}		-15.4	-15	-14.6	V
Source Negative suppry	I_{NEG}	$V_{NEG} = -15V$	-	5.7	52.3	mA
C	V_{POS}		14.6	15	15.4	V
Source Positive supply	I_{POS}	$V_{POS} = 15V$	-	5.4	57.3	mA
D 1 1	••	$V_{POS} = 15V$	14.6	15	15.4	V
Border supply	V_{Border}	$V_{NEG} = -15V$	-15.4	-15	-14.6	V
Asymmetry source	V_{Asym}	$V_{POS} + V_{NEG}$	-800	0	800	mV
Common voltage	V_{COM}		-4.0	Adjusted	-0.3	V
Common voltage	I_{COM}		-	0.2	-	mA
Panel Power	P		-	197	1770	mW
Standby power panel	P _{STBY}		-	-	0.4	mW
Operating temperature			0	-	50	$^{\circ}\!\mathbb{C}$
Storage temperature			-25	-	70	$^{\circ}\mathbb{C}$

- The maximum power consumption is measured using 85Hz waveform with following pattern transition: from pattern of repeated 1 consecutive black scan lines followed by 1 consecutive white scan line to that of repeated 1 consecutive white scan lines followed by 1 consecutive black scan lines. (Note 6-1)
- The Typical power consumption is measured using 85Hz waveform with following pattern transition: from horizontal 4 gray scale pattern to vertical 4 gray scale pattern. (Note 6-2)
- The standby power is the consumed power when the panel controller is in standby mode.
- Vcom is recommended to be set in the range of assigned value \pm 0.1V.
- The maximum I_{COM} inrush current is about 600 mA

Note 6-1

Note6-2

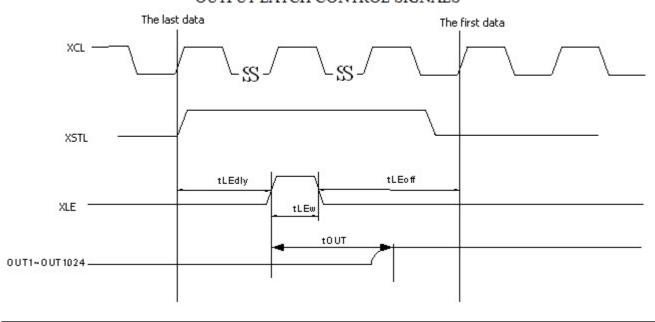


6-3) Recommended driving condition for Front light

GND = 0 V, $Ta = 25^{\circ}C$

Parameter	Symbol	Min	TYP	MAX	Unit	Remark
Supply voltage of LED Front light	V_{LED}	-	-	16.5	V	Serial 5 pcs
Supply current of LED Front light	I_{LED}	-	-	20	mA	
Front light Power Consumption	P_{LED}	-	ı	330	mW	Note 6-1

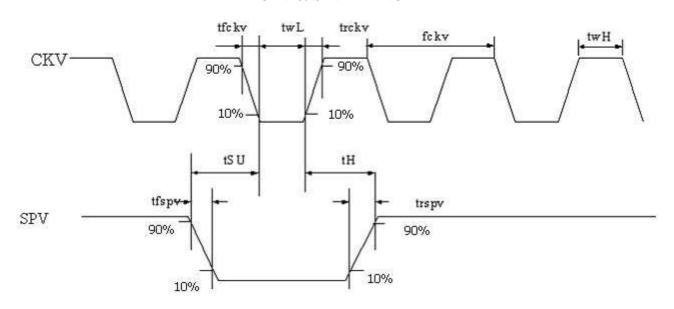
Note 6-1: I_{LED}=20 mA with 1-serial LED circuit(5 LEDs)

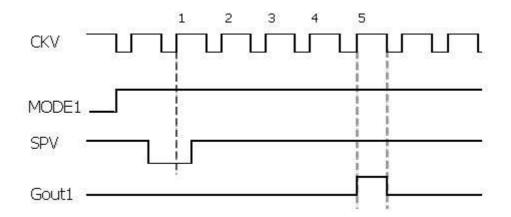


6-4)Panel AC characteristics

VDD=3.0V to 3.6V, unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max.	Unit
Clock frequency	fckv	-	-	200	kHz
Minimum "L" clock pulse width	twL	0.5	-	-	us
Minimum "H" clock pulse width	twH	0.5	-	-	us
Clock rise time	trckv	-	-	100	ns
Clock fall time	tfckv	-	-	100	ns
SPV setup time	tSU	100	-	twH-100	ns
SPV hold time	tH	100	-	twH-100	ns
Pulse rise time	trspv	-	-	100	ns
Pulse fall time	tfspv	-	-	100	ns
Clock XCL cycle time	tcy	25	-	-	ns
D0 D7 setup time	tsu	12	-	-	ns
D0 D7 hold time	th	12	-	-	ns
XSTL setup time	tstls	12	-	-	ns
XSTL hold time	tstlh	12	-	-	ns
XLE on delay time	tLEdly	40	-	-	ns
XLE high-level pulse width (When VCC=3.0V to 3.6V)	tLEw	150	-	-	ns
XLE off delay time	tLEoff	200	-	-	ns
Output setting time to +/- 30mV(C _{load} =200pF)	tout	-	-	12	us


OUTPUT LATCH CONTROL SIGNALS


CLOCK & DATA TIMING XSTL tstls tstlh 10% 10% SS XCL tcy 90% D0"D7 10% 10% th

CKV & SPV TIMING

tsu

GATE OUTPUT TIMING

Note: First gate line on timing After 5CKV, gate line is on .

7-4) Controller Timing for WJ-4BIT Waveform

This timing mode is depicted on Figure 1 and Figure 2 and it refers to timing of Source Driver Output Enable (SDOE) and Gate Driver Clock (GDCK). Note, that in this mode LGON follows GDCK timing.

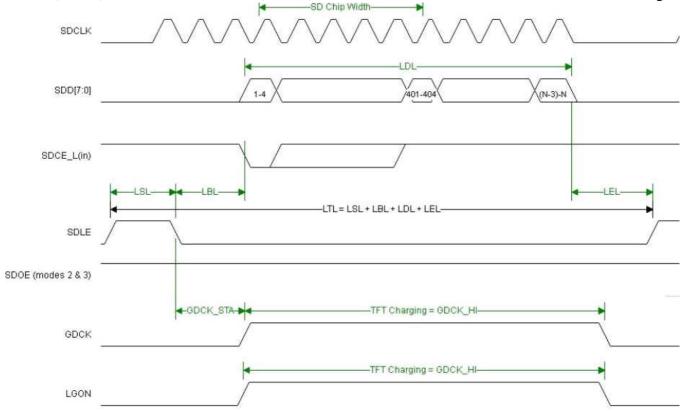


Figure 1 Line Timing in Mode 3

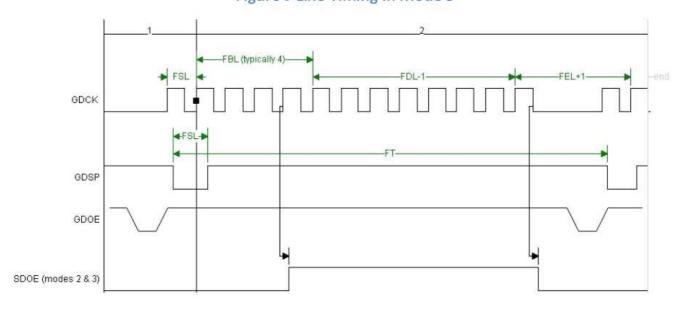


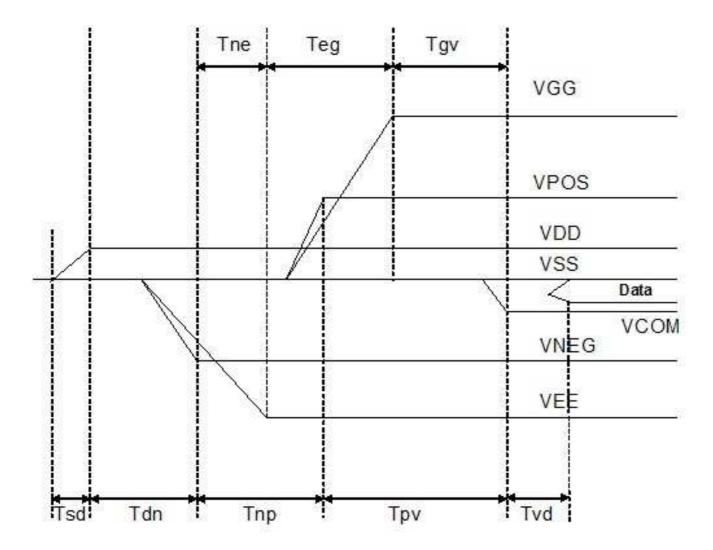
Figure 2 Frame Timing in Mode 3

Table Timing Parameters Table

Mode	3		Resolution					
SDCK [MHz]	20		1024x758					
Pixels Per SDCK	4							
Line	LSL	LBL	LBL LDL LEL GDCK STA LGONL					
Parameters[SDCK]	6	6	256	38	4	262		
Line	•	ı	-	•	-	•		
Parameters[us]	0.3	0.3	12.8	1.9	0.2	13.10		
Frame	FSL	FBL	FDL	FEL	-	FR [Hz]		
Parameters [lines]	2	4 758 5 - 84.99						
Frame								
Parameters [us]	30.60	61.20	11597.4	76.50	-	-		

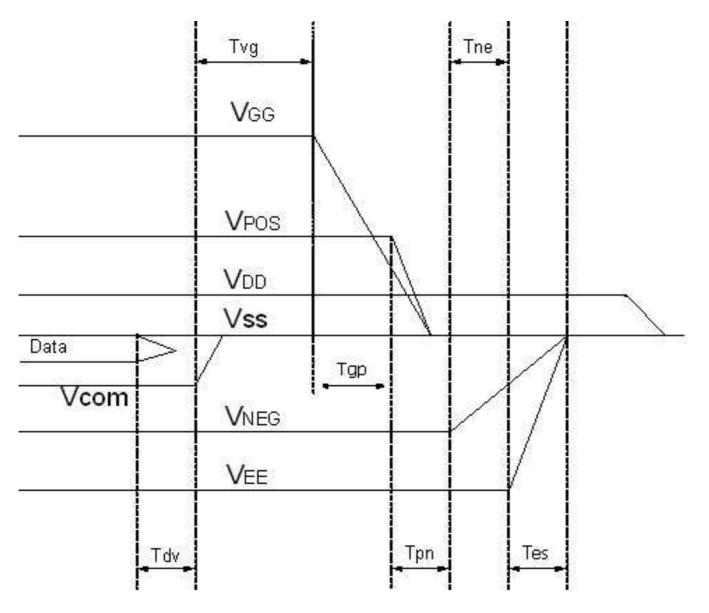
Note 1: For parameters definition, see Section 6. Active Matrix Electronic Paper Display Timings

Note 2: For Isis Controller GDCK_STA and LGONL are not settable parameters; GDCK_STA = LBL, LGONL = LDL+0.5


Note 3: For Freescale SoC GDOE Low pulse represent FSL and GDSP pulses with the first period of FBL

8. Power Sequence

Power Rails must be sequenced in the following order:


- 1. VSS \rightarrow VDD \rightarrow VNEG \rightarrow VPOS (Source driver) \rightarrow VCOM
- 2. VSS \rightarrow VDD \rightarrow VEE \rightarrow VGG (Gate driver)

POWER ON

	Min	Max
Tsd	30us	-
Tdn	100us	-
Tnp	1000us	-
Tpv	100us	-
Tvd	100us	-
Tne	0us	-
Teg	1000us	-
Tgv	100us	-

POWER DOWN

	Min	Max
Tdv	$100 \mu\mathrm{s}$	-
Tvg	0 μ s	-
Tgp	0 μ s	-
Tpn	0 μ s	-
Tne	0 μ s	-
Tes	0.5s	-

9. Discharge time Sequence

Note9-1: Supply voltages decay through pulldown resistors.

Note9-2: VEE must remain negative of Vcom during decay period.

8-1) Refresh Rate

The module ED060XG1 is applied at a maximum screen refresh rate of 85Hz.

	Min	Max
Refresh Rate	-	85Hz

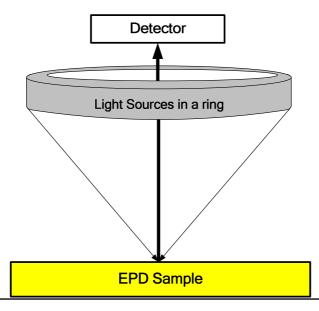
9. Optical characteristics

9-1) Specifications

Measurements are made by PR655 with MS-75 or equivalent SepctaScan Colorimeter with that the illumination is at an angle 45° from the perpendicular at the center of sample surface, and the detector is perpendicular unless otherwise specified

T	=	25	$^{\circ}C$

Symbol	Paran	neter	Conditions		Min	Тур.	Max	Unit	Note
R	Reflec	tance	White		(32)	(40)	-	%	Note 9-1
Gn	N _{th} C	Grey		Front Light		DS+(WS-DS)×n			
	Lev	vel	-	off	-	/(m-1)	-	L*	-
CR	Cont Rat		-		(8)	(12)	-	-	Note 9-2
Brightness		θ=0°		20	100	-	cd/m²	Note 9-4	
William Cl.		X	0.00		-	0.31	-	-	
White Chron	у	y	θ=0	θ=0° Front Light On	-	0.33	-	-	_
Luminance Uniformity		θ=0°		(75)	(80)	-	%	Note 9-5	
CR	Cont Rat		θ=0°		(7)	(10)	-	-	Note 9-6


^{*():}reference only

WS: White state, DS: Dark state, Gray state from Dark to White: DS \ G1 \ G2... \ Gn... \ Gm-2 \ WS m: 4 \ 8 \ 16 \ when 2 \ 3 \ 4 bits mode

9-2) Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (Rl) and the reflectance in a dark area (Rd):

CR = Rl/Rd

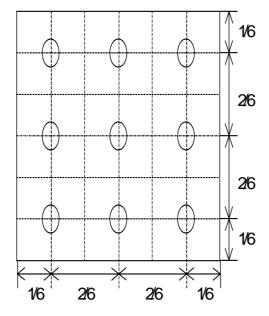
9-3) Reflection Ratio

The reflection ratio is expressed as:

$$R = Reflectance \; Factor_{white \; board} \quad x \quad \left(\; L_{center} \, / \, L_{white \; board} \, \right)$$

 L_{center} is the luminance measured at center in a white area (R=G=B=1). $L_{white\ board}$ is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

- 9-4) Optical characteristics are determined after the front light has been 'ON' and stable for approximately 60 minutes in a dark environment at 25° C. The values specified are at an approximate distance 50cm from the EPD display surface at a viewing angle of Φ and θ equal to 0° .
- 9-5) The uniformity is defined as


U = The Minimum Brightness of the 9 testing Points

The Maximum Brightness of the 9 testing Points

Ambient illumination : < 1 Lux

Measuring direction: Perpendicular to the surface of module

The test pattern is white

Note 9-6:

Luminance when Testing point is White

CR =

Luminance when Testing point is Black

10.HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Mounting Precautions

- (1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.
- (2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.
- (3) You should adopt radiation structure to satisfy the temperature specification.
- (4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.
- (5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)
- (6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.
- (7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Data sheet status

Product specification This data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress

Data sheet status

ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

11. Reliability test

	TEST	CONDITION	METHOD	REMARK
1	High-Temperature Operation	T = +50°C, RH = 30% for 240 hrs	IEC 60 068-2-2Bp	
2	Low-Temperature Operation	T = 0°C for 240 hrs	IEC 60 068-2-2Ab	
3	High-Temperature Storage	T = +70°C, RH=23% for 240 hrs Test in white pattern	IEC 60 068-2-2Bp	
4	Low-Temperature Storage	T = -25°C for 240 hrs Test in white pattern	IEC 60 068-2-1Ab	
5	High-Temperature, High-Humidity Operation	T = +40°C, RH = 90% for 168 hrs	IEC 60 068-2-3CA	
6	High Temperature, High- Humidity Storage	$T = +60^{\circ}\text{C}$, RH=80% for 240hrs Test in white pattern	IEC 60 068-2-3CA	
7	Temperature Cycle	-25°C →+70°C, 100 Cycles 30min 30min Test in white pattern	IEC 60 068-2-14	
8	Solar radiation test	765 W/m² for 168hrs,40°C Test in white pattern	IEC60 068-2-5Sa	
9	Package Vibration	1.04G, Frequency: 10~500Hz ration Direction: X,Y,Z Duration: 1 hours in each direction		
10	Package Drop Impact	Drop from height of 122 cm on concrete surface. Drop sequence: 1 corner, 3 edges, 6 faces One drop for each.	Full packed for shipment	
11	Electrostatic Effect (non-operating)	(Machine model)+/- 250V 0Ω, 200pF	IEC 62179, IEC 62180	
12	Altitude test Operation	700hPa (= 3000m),48Hr		
13	Altitude test Storage	260hPa (= 10000m),48Hr Test in white pattern		
14	Stylus Tapping	POLYACETAL Pen: Top R:0.8mm Load: 300gf Speed: 2 times/sec Total 13,500times,		Test with bezel and device to simulate full product test.

Actual EMC level to be measured on customer application

Note: The protective film must be removed before temperature test.

< Criteria >

In the standard conditions, there is not display function NG issue occurred. (including : line defect ,no image). All the cosmetic specification is judged before the reliability stress.

12.Bar Code definition

1 : EPD model code:

ED060XG1: E7B / E7G

2 : Internal control codes: Do not care

3 : FPL reversion code

V220:6 V220E:8

4 : FPL batch code:

01~99	001~099	G0~G9	160~169	Q0~Q9	230~239	X0~X9	300~309
A0~A9	100~109	H0~H9	170~179	R0~R9	240~249	Y0~Y9	310~319
B0~B9	110~119	J0~J9	180~189	S0~S9	250~259	Z0~Z9	320~329
C0~C9	120~129	K0~K9	190~199	T0~T9	260~269		
D0~D9	130~139	L0~L9	200~209	U0~U9	270~279		
E0~E9	140~149	M0~M9	210~219	V0~V9	280~289		
F0~F9	150~159	N0~N9	220~229	W0~W9	290~299		

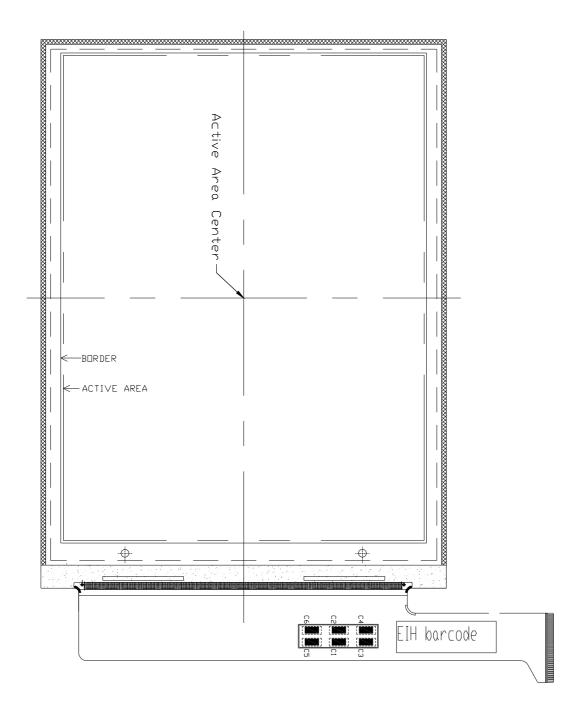
5 : Year:

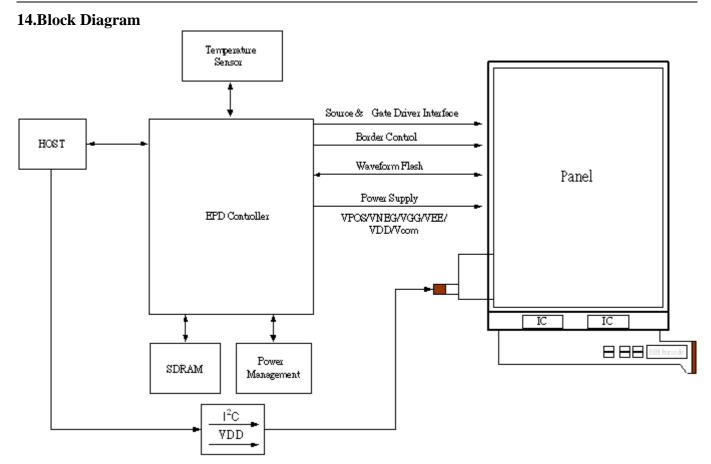
F: 2005 / G: 2006 / H: 2007 / I: 2008 /... / Z: 2024

6 : Month:

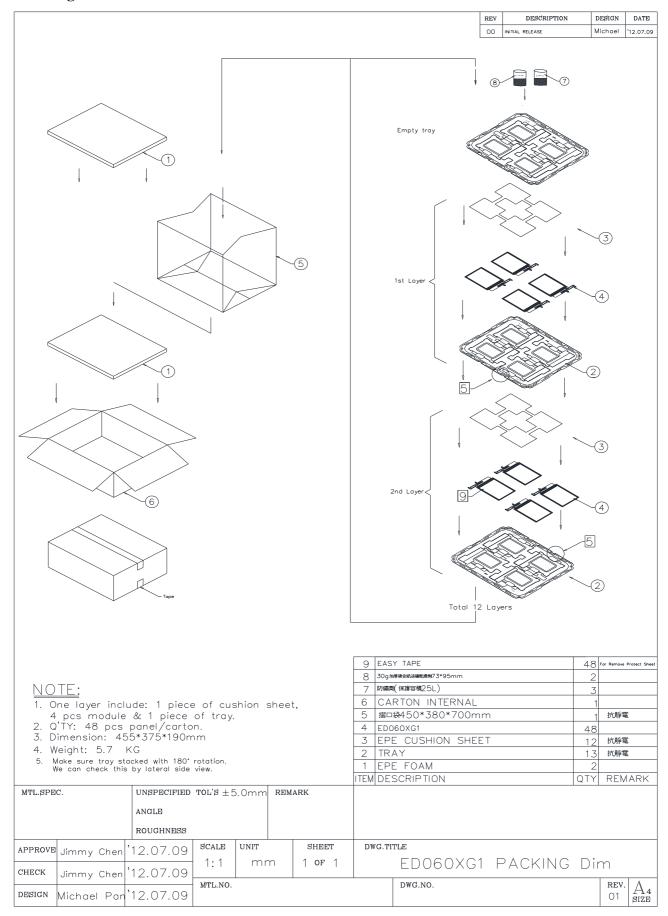
1:Jan. 2:Feb. ... 9:Sep. A:Oct. B:Nov. C:Dec.

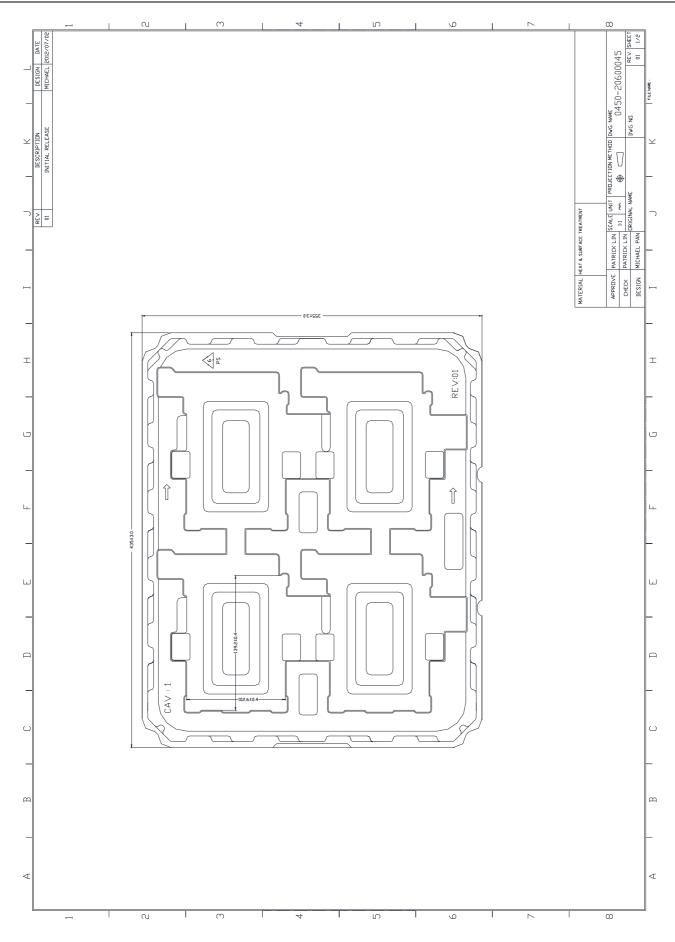
7 : Serial number


00000-99999


8 : MFG code:

TOC FAB3: T; TOC FAB2: Y; TOC FAB1: K; EIH: P; MOS: S; Microveiw: G;


TYT FAB5: G; TYT FAB4: L


13. Border definition

15.Packing

