LCD Module Technical Specification

Type No. T-51952D065J-FW-A-ABN

OPTREX CORPORATION

Shigeo Suzuki
Approved : QUALITY ASSURANCE DIVISION

Noboru Wada
Checked : ACI ENGINEERING DIVISION

Satoshi Sano
Prepared : ACI ENGINEERING DIVISION

APPROVED

By

Signature :
Date :

Please return this specification within two month with your signature.
If not returned within two month , specification will be considered
as having been accepted.
Table of Contents

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>CONTENTS</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>APPLICATION</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>OVERVIEW</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>ABSOLUTE MAXIMUM RATINGS</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>ELECTRICAL CHARACTERISTICS</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>INTERFACE PIN CONNECTION</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>INTERFACE TIMING</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>BLOCK DIAGRAM</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>MECHANICAL SPECIFICATION</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>OPTICAL CHARACTERISTICS</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>RELIABILITY TEST CONDITION</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>INSPECTION STANDARDS</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>OTHER FEATURE</td>
<td>21</td>
</tr>
<tr>
<td>13</td>
<td>HANDLING PRECAUTIONS FOR TFT-LCD MODULE</td>
<td>22</td>
</tr>
<tr>
<td>--</td>
<td>PACKAGING SPECIFICATION</td>
<td>25</td>
</tr>
<tr>
<td>--</td>
<td>PRODUCTS NUMBER LABELING FORMS</td>
<td>28</td>
</tr>
<tr>
<td>--</td>
<td>LAMP UNIT for 6.5"VGA</td>
<td>30</td>
</tr>
</tbody>
</table>

Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Comment</th>
</tr>
</thead>
</table>

T-51952D085J-FW-A-ABN (AB) OPTREX CORPORATION Page 2/36
1. APPLICATION

This specification applies to color TFT-LCD module. T-51952D065J-FW-A-ABN.

These specification papers are the proprietary product of OPTREX and include materials protected under copyright of OPTREX. No part of this document may be reproduced in any form or by any means without the express written permission of OPTREX.

OPTREX does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a product specified in this document. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of OPTREX or of others.

OPTREX classifies the usage of the TFT-LCD module as follows. Please confirm the usage before using the product.

(1) Standard Usage
Computers, office equipment, factory automation equipment, test and measurement equipment, communications, transportation equipment (automobiles, ships, trains, etc.), provided, however, that operation is not influenced by TFT-LCD directly.

(2) Special Usage
Medical equipment, safety equipment, transportation equipment, provided, however, that TFT-LCD is necessary to its operation.

(3) Specific Usage
Cockpit Equipment, military systems, aerospace equipment, nuclear reactor control systems, life support systems and any other equipment. OPTREX should make a contract that stipulate apportionment of responsibilities between OPTREX and our customer.

The product specified in this document is designed for “Standard Usage” unless otherwise specified in this document. If customers intend to use the product for applications other than those specified for “Standard Usage”, they should contact OPTREX sales representative in advance.

OPTREX has been making continuous effort to improve the reliability of its products. Customers should implement sufficient reliability design of their application equipments such as redundant system design, fail-safe functions, anti-failure features.

OPTREX assumes no responsibility for any damage resulting from the use of the product that does not comply with the instructions and the precautions specified in this document.

Please contact and consult a OPTREX sales representative for any questions regarding this product.
2. OVERVIEW

T-51952D065J-FW-A-ABN is 6.5” color TFT-LCD (Thin Film Transistor Liquid Crystal Display) module composed of LCD panel, driver ICs, control circuit, and backlight unit.

By applying 6 bit digital data 640 x 480, 262K-color images are displayed on the 6.5” diagonal screen. Input power voltages are 3.3 / 5.0V for LCD driving. The type of data and control signals are digital and transmitted via CMOS interface per Typ. 25 MHz clock cycle.

Inverter for backlight is not included in this module. General specifications are summarized in the following table:

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Area (mm)</td>
<td>132.48(H) x 99.36(V) (6.5-inch diagonal)</td>
</tr>
<tr>
<td>Number of Dots</td>
<td>640 x 3 (H) x 480 (V)</td>
</tr>
<tr>
<td>Pixel Pitch (mm)</td>
<td>0.207 (H) x 0.207 (V)</td>
</tr>
<tr>
<td>Color Pixel Arrangement</td>
<td>RGB vertical stripe</td>
</tr>
<tr>
<td>Display Mode</td>
<td>Normally white TN</td>
</tr>
<tr>
<td>Number of Color</td>
<td>262K</td>
</tr>
<tr>
<td>Luminance (cd/m²)</td>
<td>600</td>
</tr>
<tr>
<td>Wide Viewing Angle Technology</td>
<td>Optical compensation film</td>
</tr>
<tr>
<td>Viewing Angle (CR ≥ 10)</td>
<td>-7070° (H) -6050° (V)</td>
</tr>
<tr>
<td>Surface Treatment</td>
<td>Anti-glare and hard-coating 3H</td>
</tr>
<tr>
<td>Electrical Interface</td>
<td>CMOS</td>
</tr>
<tr>
<td>Optimum Viewing Angle (Contrast ratio)</td>
<td>6 o’clock</td>
</tr>
<tr>
<td>Module Size (mm)</td>
<td>154.0 (W) x 121.0 (H) x 11.0 (D)</td>
</tr>
<tr>
<td>Module Mass (g)</td>
<td>205</td>
</tr>
<tr>
<td>Backlight Unit</td>
<td>CCFL, 2-tubes, edge-light, replaceable</td>
</tr>
</tbody>
</table>

Characteristic value without any note is typical value.
3. ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage for LCD</td>
<td>VCC</td>
<td>-0.3</td>
<td>6.5</td>
<td>V</td>
</tr>
<tr>
<td>Logic Input Voltage</td>
<td>VI</td>
<td>-0.3</td>
<td>6.5</td>
<td>V</td>
</tr>
<tr>
<td>Lamp Voltage</td>
<td>VL</td>
<td>0</td>
<td>2000</td>
<td>Vrms</td>
</tr>
<tr>
<td>Lamp Current</td>
<td>IL</td>
<td>0</td>
<td>9.0</td>
<td>mArms</td>
</tr>
<tr>
<td>Lamp Frequency</td>
<td>FL</td>
<td>40</td>
<td>100</td>
<td>kHz</td>
</tr>
<tr>
<td>Operation Temperature (Panel)</td>
<td>$T_{op(Panel)}$</td>
<td>-20</td>
<td>70</td>
<td>°C</td>
</tr>
<tr>
<td>Operation Temperature (Ambient)</td>
<td>$T_{op(Ambient)}$</td>
<td>-20</td>
<td>70</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td>-20</td>
<td>80</td>
<td>°C</td>
</tr>
</tbody>
</table>

[Note]
1) Measured at the center of active area and at the center of panel back surface
2) $T_{op} \leq 40^\circ C$: 90%RH max. without condensation
 $T_{stg} > 40^\circ C$: Absolute humidity shall be less than the value of 90%RH at 40°C without condensation.

4. ELECTRICAL CHARACTERISTICS

(1) TPT- LCD

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage for LCD</td>
<td>VCC</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
<td>*1)</td>
</tr>
<tr>
<td>5.0V powered</td>
<td>VCC</td>
<td>4.5</td>
<td>5.0</td>
<td>5.5</td>
<td>V</td>
<td>*1)</td>
</tr>
<tr>
<td>Power Supply Current for LCD</td>
<td>ICC</td>
<td>-</td>
<td>200</td>
<td>300</td>
<td>mA</td>
<td>*2)</td>
</tr>
<tr>
<td>5.0V powered</td>
<td>ICC</td>
<td>-</td>
<td>150</td>
<td>200</td>
<td>mA</td>
<td>*2)</td>
</tr>
<tr>
<td>Permissive Input Ripple Voltage</td>
<td>VRP</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>mVp-p</td>
<td>VCC = +3.3V/5.0V</td>
</tr>
<tr>
<td>Logic Input Voltage</td>
<td>VIH</td>
<td>2.0</td>
<td>-</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>VIL</td>
<td>0</td>
<td>-</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

*1) Power and signals sequence:
 $t_1 \leq 10$ ms
 $0 < t_2 \leq 50$ ms
 $t_3 \leq 50$ ms
 $0 < t_4 \leq 100$ ms
 $0 \leq t_6$

*2) $t_3 = 50$ ms
 200 ms t_4
VCC-dip conditions:
(a) 3.3 V powered
1) When 2.4 V ≤ VCC < 3.0 V, td ≤ 10 ms
2) When VCC < 2.4 V
VCC-dip conditions should also follow the power and signals sequence.

(b) 5.0V powered
1) When 3.6 V ≤ VCC < 4.5 V, td ≤ 10 ms
2) When VCC < 3.6 V
VCC-dip conditions should also follow the power and signals sequence.

*2) Typical current condition:
64: gray·bar·pattern
480 line mode
VCC = +3.3 / 5.0 V, fT=31.5kHz, fV=60Hz, fCLK= 25MHz

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamp Voltage</td>
<td>VL</td>
<td>--</td>
<td>340</td>
<td>--</td>
<td>Vrms</td>
<td>IL=6.0mAmps</td>
</tr>
<tr>
<td>Lamp Current</td>
<td>IL</td>
<td>3.0</td>
<td>6.0</td>
<td>7.0</td>
<td>mArms</td>
<td>*1),*5)</td>
</tr>
<tr>
<td>Lamp Frequency</td>
<td>FL</td>
<td>40</td>
<td>--</td>
<td>80</td>
<td>kHz</td>
<td>*2)</td>
</tr>
<tr>
<td>Starting Lamp Voltage</td>
<td>VS</td>
<td>620</td>
<td>--</td>
<td>--</td>
<td>Vrms</td>
<td>Ta=25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>930</td>
<td>--</td>
<td>--</td>
<td>Vrms</td>
<td>Ta=0°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>--</td>
<td>--</td>
<td>Vrms</td>
<td>Ta= -20°C</td>
</tr>
<tr>
<td>Lamp Life Time</td>
<td>LT</td>
<td>50000</td>
<td>--</td>
<td>--</td>
<td>h</td>
<td>*3),*4) IL=6.0mAmps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Continuous Operation</td>
</tr>
</tbody>
</table>
*1) Lamp Current measurement method (The current meter is inserted in low voltage line.)

*2) Lamp frequency of inverter may produce interference with horizontal synchronous frequency, and this may cause horizontal beat on the display. Therefore, please adjust lamp frequency, and keep inverter as far from module as possible or use electronic shielding between inverter and module to avoid the interference.

*3) Lamp life time is defined as the time either when the brightness becomes 50% of the initial value, or when the starting lamp voltage does not meet the value specified in this table.

*4) The life time of the backlight depends on the ambient temperature. The life time will decrease under low/high temperature.

*5) Please use the inverter which has symmetrical current wave form as follows,
 \[\text{The degree of unbalance: less than } 10\% \]
 \[\text{The ratio of wave height: less than } \sqrt{2} \pm 10\% \]

\[
\begin{array}{c}
I_{PH} \\
|I_{PH} - I_{PL}| \\
I_{PL} \\
\end{array}
\]

\[I_{PH}: \text{High side peak} \]
\[I_{PL}: \text{Low side peak} \]

\[\text{The degree of unbalance} = \left| I_{PH} - I_{PL} \right| / I_{rms} \times 100\% \]

\[\text{The ratio of wave height} = I_{PH}(or \ I_{PL}) / I_{rms} \]
5. INTERFACE PIN CONNECTION

(1) CN1 (Interface Signal)
Used connector: DF9B-31P-1V32 (HIROSE)
Corresponding connector: DF9-31S-1V32 (HIROSE)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DCLK</td>
<td>Clock signal for sampling catch data signal</td>
</tr>
<tr>
<td>3</td>
<td>HD</td>
<td>Horizontal sync signal</td>
</tr>
<tr>
<td>4</td>
<td>VD</td>
<td>Vertical sync signal</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R0</td>
<td>Red data signal (LSB)</td>
</tr>
<tr>
<td>7</td>
<td>R1</td>
<td>Red data signal</td>
</tr>
<tr>
<td>8</td>
<td>R2</td>
<td>Red data signal</td>
</tr>
<tr>
<td>9</td>
<td>R3</td>
<td>Red data signal</td>
</tr>
<tr>
<td>10</td>
<td>R4</td>
<td>Red data signal</td>
</tr>
<tr>
<td>11</td>
<td>R5</td>
<td>Red data signal (MSB)</td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>G0</td>
<td>Green data signal (LSB)</td>
</tr>
<tr>
<td>14</td>
<td>G1</td>
<td>Green data signal</td>
</tr>
<tr>
<td>15</td>
<td>G2</td>
<td>Green data signal</td>
</tr>
<tr>
<td>16</td>
<td>G3</td>
<td>Green data signal</td>
</tr>
<tr>
<td>17</td>
<td>G4</td>
<td>Green data signal</td>
</tr>
<tr>
<td>18</td>
<td>G5</td>
<td>Green data signal (MSB)</td>
</tr>
<tr>
<td>19</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>B0</td>
<td>Blue data signal (LSB)</td>
</tr>
<tr>
<td>21</td>
<td>B1</td>
<td>Blue data signal</td>
</tr>
<tr>
<td>22</td>
<td>B2</td>
<td>Blue data signal</td>
</tr>
<tr>
<td>23</td>
<td>B3</td>
<td>Blue data signal</td>
</tr>
<tr>
<td>24</td>
<td>B4</td>
<td>Blue data signal</td>
</tr>
<tr>
<td>25</td>
<td>B5</td>
<td>Blue data signal (MSB)</td>
</tr>
<tr>
<td>26</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Dena</td>
<td>Data enable signal (to settle the viewing area)</td>
</tr>
<tr>
<td>28</td>
<td>VCC</td>
<td>3.3/5.0 V Power Supply</td>
</tr>
<tr>
<td>29</td>
<td>VCC</td>
<td>3.3/5.0 V Power Supply</td>
</tr>
<tr>
<td>30</td>
<td>TEST</td>
<td>This pin should be open. Test signal output for only internal test use.</td>
</tr>
<tr>
<td>31</td>
<td>SC</td>
<td>Scan direction control (Low=Normal, High=Reverse)</td>
</tr>
</tbody>
</table>

*) The shielding case is connected with GND

(2) CN2, CN3 (Backlight)
Backlight-side connector: BHR-02(8.0)VS-1N (JST)
Inverter-side connector: SM02(8.0)B-BHSLF(SN) (JST)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CTH</td>
<td>VBLH (High Voltage)</td>
</tr>
<tr>
<td>2</td>
<td>CTL</td>
<td>VBLL (Low Voltage)</td>
</tr>
</tbody>
</table>

[Note]
VBLH-VBLL=VL
6. INTERFACE TIMING

(1) Timing Specifications

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCLK</td>
<td>Frequency</td>
<td>fCLK</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Period</td>
<td>tCLK</td>
<td>33.3</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Low Width</td>
<td>tWCL</td>
<td>10</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>High Width</td>
<td>tWCH</td>
<td>10</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>DATA (R,G,B), DENA, HD, VD</td>
<td>Set up time</td>
<td>tDS</td>
<td>4</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Hold time</td>
<td>tDH</td>
<td>4</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>DENA</td>
<td>Horizontal Active Time</td>
<td>tHA</td>
<td>640</td>
<td>640</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td>Horizontal Front Porch</td>
<td>tHFP</td>
<td>0</td>
<td>16</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Horizontal Back Porch</td>
<td>tHBP</td>
<td>2</td>
<td>144</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Vertical Active Time</td>
<td>tVA</td>
<td>480</td>
<td>480</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>Vertical Front Porch</td>
<td>tVFP</td>
<td>3</td>
<td>10</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Vertical Back Porch</td>
<td>tVBP</td>
<td>35</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>HD</td>
<td>Frequency</td>
<td>fH</td>
<td>27</td>
<td>31.5</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Period</td>
<td>tH</td>
<td>26.3</td>
<td>31.7</td>
<td>37.0</td>
</tr>
<tr>
<td></td>
<td>Low Width</td>
<td>tWHL</td>
<td>2</td>
<td>96</td>
<td>--</td>
</tr>
<tr>
<td>VD</td>
<td>Frequency</td>
<td>fV</td>
<td>55</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Period</td>
<td>tV</td>
<td>14.3</td>
<td>16.7</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td>Low Width</td>
<td>tWVL</td>
<td>1</td>
<td>2</td>
<td>--</td>
</tr>
</tbody>
</table>

[Note]

1) DATA is latched at fall edge of DCLK in this specification.
2) Polarities of HD and VD are negative in this specification.
3) DENA (Data Enable) should always be positive polarity as shown in the timing specification.
4) DCLK should appear during all invalid period, and HD should appear during invalid period of frame cycle.
5) $t_{HFP} + t_{HBP} \geq 20 t_{CLK}$
(2) Timing Chart

a. Pixel Timing Chart

b. Horizontal Timing Chart

c. Vertical Timing Chart
(3) Color Data Assignment

<table>
<thead>
<tr>
<th>COLOR</th>
<th>R DATA</th>
<th>INPUT DATA</th>
<th>B DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R5</td>
<td>R4</td>
<td>R3</td>
</tr>
<tr>
<td></td>
<td>MSB</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td>BLACK</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RED(63)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GREEN(63)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BLUE(63)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CYAN</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAGENTA</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>YELLOW</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>WHITE</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RED(1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RED(2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RED(62)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RED(63)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GREEN(1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GREEN(2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GREEN(62)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GREEN(63)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BLUE(1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BLUE(2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BLUE(62)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BLUE(63)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

[Note]

1) Definition of gray scale
 - Color (n) ... n indicates gray scale level.
 - Higher n means brighter level.

2) Data
 - 1: High, 0: Low
(4) Display Position and Scan Direction

D(X,Y) shows the data number of input signal for LCD panel signal processing PCB.

SC: Low

D(1,1) → D(640,1)
D(1,480) ← D(640,480)

SC: High

D(640,480) ← D(1,480)
D(640,1) → D(1,1)
7. BLOCK DIAGRAM
8. MECHANICAL SPECIFICATIONS

(1) Front Side

(Unit: mm)
(2) Rear Side

[Unit:mm]

[Note]
We recommend you referring to the detailed drawing for your design.
Please contact our company sales representative when you need the detailed drawing.
9. OPTICAL CHARACTERISTICS

Ta=25°C, VCC=3.3 / 5.0 V, Input Signals: Typ. Values shown in Section 6

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SYMBOL</th>
<th>CONDITION</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast Ratio</td>
<td>CR</td>
<td>$\theta_v=0^\circ$, $\theta_h=0^\circ$</td>
<td>500</td>
<td>700</td>
<td>--</td>
<td>--</td>
<td>*1)*2)*5)</td>
</tr>
<tr>
<td>Luminance</td>
<td>Lw</td>
<td>$\theta_v=0^\circ$, $\theta_h=0^\circ$</td>
<td>500</td>
<td>600</td>
<td>--</td>
<td>cd/m2</td>
<td>*1)*5)</td>
</tr>
<tr>
<td>Luminance Uniformity</td>
<td>ΔL_w</td>
<td>$\theta_v=0^\circ$, $\theta_h=0^\circ$</td>
<td>--</td>
<td>--</td>
<td>30</td>
<td>%</td>
<td>*1)*3)*5)</td>
</tr>
<tr>
<td>Response Time</td>
<td>tr</td>
<td>$\theta_v=0^\circ$, $\theta_h=0^\circ$</td>
<td>--</td>
<td>6</td>
<td>--</td>
<td>ms</td>
<td>*1)*4)*5)</td>
</tr>
<tr>
<td></td>
<td>tf</td>
<td>$\theta_v=0^\circ$, $\theta_h=0^\circ$</td>
<td>--</td>
<td>19</td>
<td>--</td>
<td>ms</td>
<td>*1)*4)*5)</td>
</tr>
<tr>
<td>Viewing Angle</td>
<td>Horizontal θ_H</td>
<td>CR ≥ 10</td>
<td>-50</td>
<td>-70</td>
<td>--</td>
<td>°</td>
<td>*1)*5)</td>
</tr>
<tr>
<td></td>
<td>Vertical θ_V</td>
<td>-40</td>
<td>-60</td>
<td>--</td>
<td>°</td>
<td>*1)*5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horizontal θ_H</td>
<td>CR ≥ 5</td>
<td>-70</td>
<td>-80</td>
<td>--</td>
<td>°</td>
<td>*1)*5)</td>
</tr>
<tr>
<td></td>
<td>Vertical θ_V</td>
<td>-70</td>
<td>-80</td>
<td>--</td>
<td>°</td>
<td>*1)*5)</td>
<td></td>
</tr>
<tr>
<td>Image Sticking</td>
<td>tis</td>
<td>2 h</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td>s</td>
<td>*6)</td>
</tr>
<tr>
<td>Color Coordinates</td>
<td>Red Rx</td>
<td>$\theta_v=0^\circ$, $\theta_h=0^\circ$</td>
<td>0.553</td>
<td>0.583</td>
<td>0.613</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Red Ry</td>
<td></td>
<td>0.303</td>
<td>0.333</td>
<td>0.363</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Green Gx</td>
<td></td>
<td>0.300</td>
<td>0.330</td>
<td>0.380</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Green Gy</td>
<td></td>
<td>0.509</td>
<td>0.539</td>
<td>0.569</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blue Bx</td>
<td></td>
<td>0.135</td>
<td>0.165</td>
<td>0.195</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blue By</td>
<td></td>
<td>0.143</td>
<td>0.173</td>
<td>0.203</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>White Wx</td>
<td></td>
<td>0.292</td>
<td>0.322</td>
<td>0.352</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>White Wy</td>
<td></td>
<td>0.308</td>
<td>0.338</td>
<td>0.368</td>
<td></td>
<td>*1)*5)</td>
</tr>
</tbody>
</table>

[Note]

These items are measured using CS1000(MINOLTA) for color coordinates, EZContrast(ELDIM) for viewing angle and CS1000 or BM-5A(TOPCON) for others under the dark room condition (no ambient light) after more than 30 minutes from turning on the lamp unless noted.

Condition: IL=6.0 mA rms, FL=55 kHz
Measurement method for luminance and color coordinates is as follows.

![Photodetector diagram](image)

The luminance is measured according to FLAT PANEL DISPLAY MEASUREMENTS STANDARD (VESA Standard).
*1) Measurement Point
Contrast Ratio, Luminance, Response Time, Viewing Angle, Color Coordinates: Display Center
Luminance Uniformity: point 1~5 shown in a figure below

*2) Definition of Contrast Ratio
CR=Luminance with all white pixels / Luminance with all black pixels

*3) Definition of Luminance Uniformity
$\Delta L_w = \frac{|L_w(\text{MAX}) - L_w(\text{MIN})|}{2} \times 100$

*4) Definition of Response Time

*5) Definition of Viewing Angle (θ_V, θ_H)
*6) Image Sticking
Continuously display the test pattern shown in the figure below for two hours. Then display a completely white screen. The previous image shall not persist more than two seconds at 25°C.

TEST PATTERN FOR IMAGE STICKING TEST
10. RELIABILITY TEST CONDITION

(1) Temperature and Humidity

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH TEMPERATURE</td>
<td>40°C, 90%RH, 240 h</td>
</tr>
<tr>
<td>HIGH HUMIDITY OPERATION</td>
<td>(No condensation)</td>
</tr>
<tr>
<td>HIGH TEMPERATURE OPERATION</td>
<td>70°C, 240 h</td>
</tr>
<tr>
<td>LOW TEMPERATURE OPERATION</td>
<td>−20°C, 240 h</td>
</tr>
<tr>
<td>HIGH TEMPERATURE STORAGE</td>
<td>80°C, 240 h</td>
</tr>
<tr>
<td>LOW TEMPERATURE STORAGE</td>
<td>−20°C, 240 h</td>
</tr>
<tr>
<td>THERMAL SHOCK (NON-OPERATION)</td>
<td>BETWEEN −20°C (1h) and 80°C (1h), 100 CYCLES</td>
</tr>
</tbody>
</table>

(2) Shock & Vibration

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHOCK (NON-OPERATION)</td>
<td>Shock level: 1470m/s² (150G)</td>
</tr>
<tr>
<td></td>
<td>Waveform: half sinusoidal wave, 2ms</td>
</tr>
<tr>
<td></td>
<td>Number of shocks: one shock input in each direction of three mutually</td>
</tr>
<tr>
<td></td>
<td>perpendicular axis for a total of six shock inputs</td>
</tr>
<tr>
<td>VIBRATION (NON-OPERATION)</td>
<td>Vibration level: 9.8m/s² (1.0G)</td>
</tr>
<tr>
<td></td>
<td>Waveform: sinusoidal</td>
</tr>
<tr>
<td></td>
<td>Frequency range: 5 to 500Hz</td>
</tr>
<tr>
<td></td>
<td>Frequency sweep rate: 0.5 octave/min</td>
</tr>
<tr>
<td></td>
<td>Duration: one sweep from 5 to 500 Hz in each of three mutually</td>
</tr>
<tr>
<td></td>
<td>perpendicular axis (total 3 hours)</td>
</tr>
</tbody>
</table>

(3) Judgment standard

The judgment of the above tests should be made as follow:

Pass: Normal display image, no damage of the display function. (ex. no line defect)

Partial transformation of the module parts should be ignored.

Fail: No display image, damage of the display function. (ex. line defect)