

EL480.240-PR2/PR3 ICEBrite™ Small Graphics Display

USER'S MANUAL

www.planar.com

Contents

EL480.240-PR2 Display	3
Features	3
Installation and Handling	4
Mounting EL Displays	4
Cable Length	5
Cleaning	5
Avoiding Burn-In	5
Specifications	6
Power	6
Connector	7
Interface Information	
Self-Test Mode	10
Optical	10
Generating Grayscales	10
Environmental	11
Reliability	11
Safety and EMI Performance	11
Mechanical Characteristics	12
Component Envelope	12
Description of Warranty	14
Ordering Information	14
Support and Service	15
Figures	
Figure 1. Power supply and logic signal sequencing requirement	
Figure 2. Video Input Timing Diagram	8
Figure 3. Pixel Location versus Sequence of Data	
Figure 4. Display Dimensions	13
Tables	
Table 1. DC Input Voltage Requirements	6
Table 2. Video Input Requirements	7
Table 3. Connector Pinouts.	
Table 4. Video Input Descriptions.	
Table 5. Optical Characteristics.	
Table 6. Environmental Characteristics	
Table 7 Mechanical Characteristics	12

EL480.240-PR2/PR3 Display

The EL480.240-PR2 and EL480.240-PR3 thin film electroluminescent (EL) displays are low cost, high performance alternatives to industry-standard monochrome LCDs. The EL480.240-PR2/PR3 utilizes Planar's proprietary Integral Contrast and Brightness Enhancement (ICEBriteTM) technology to achieve unparalleled image quality without the use of expensive filters. This small graphics display excels in a wide range of ambient lighting environments while effectively eliminating the blooming common to other high-bright displays.

The EL480.240-PR2/PR3 consists of an EL glass panel and control electronics assembled into a space-saving, rugged package for easy mounting. The EL480.240-PR2/PR3 is easily interfaced using standard 4-bit LCD control signals. Each of the 115,200 pixels has an aspect ratio of 1:1 (V:H) and is individually addressable to clearly display high information content graphics and text.

The EL480.240-PR3 model is identical to the EL480.240-PR2 model with the exception of series resistors included on selected internal signals on the EL480.240-PR3. There are no fit, form, or function differences between the two models. The specifications in this manual apply to both the EL480.240-PR2 and the EL480.240-PR3.

Features and Benefits

- Excellent visual performance:
 High brightness and contrast
 Wide viewing angle > 160°
- Rapid display response < 1 ms
- Space efficient mechanical package
- Low EMI emissions
- Extremely rugged and durable
- Reliable, long operating life with > 100,000 MTBF
- 4-bit LCD-type interface

Installation and Handling

Do not drop, bend, or flex the display. Do not allow objects to strike the surface of the display.

CAUTION: The display uses CMOS and power MOS-FET devices. These components are electrostatic sensitive. Unpack, assemble, and examine this assembly in a static-controlled area only. When shipping, use packing materials designed for protection of electrostatic-sensitive components.

CAUTION: To prevent injury in the event of glass breakage, the use of an impact resistant shield or a protective overlay should be used on the viewer side of the display.

Mounting EL Displays

Properly mounted, EL displays can withstand high shock loads as well as severe vibration found in demanding applications. However the glass panel used in an EL display will break if subjected to bending stresses, high impact, or excessive loads.

Stresses are often introduced when a display is mounted into a product. Ideally, the mounting tabs of the display should be the only point of contact with the system. Use a spacer or boss for support; failure to do so will bend the display and cause the glass to break. The instrument enclosure or frame should not flex or distort in such a way that during use the bending loads might be transferred to the display. Mounting surfaces should be flat to within ± 0.6 mm (± 0.25 "). Use all the mounting holes provided. Failure to do so will impair the shock and vibration resistance of the final installation.

The EL480.240-PR2/PR3 is a tab mounted display. Use appropriate length standoffs to assure that screws through the mounting tabs do not introduce bending stresses into the display. Do not deflect the ECB out of its normal plane. The EL480.240-PR2/PR3 mounting tabs were designed for a 3 mm screw.

WARNING: These products generate voltages capable of causing personal injury (high voltage up to 230V_{ac}). Do not touch the display electronics during operation.

Cable Length

A maximum cable length of 600 mm (24 in.) is recommended. Longer cables may cause data transfer problems between the data transmitted and the display input connector. Excessive cable lengths can pick up unwanted EMI. There are third party products which allow this maximum cable length to be exceeded. Contact Planar Application Engineering for more information.

Cleaning

As with any glass or coated surface, care should be taken to minimize scratching. Clean the display glass with mild, water-based detergents only. Apply the cleaner sparingly to a soft cloth, then wipe the display. Disposable cleaning cloths are recommended to minimize the risk of inadvertently scratching the display with particles embedded in a re-used cloth.

Avoiding Burn-In

As with other light emitting displays, displaying fixed patterns on the screen can cause burn-in, where luminance variations can be noticed. Use a screen saver or image inversion to avoid causing burn-in on the display.

Specifications

The EL panel is a matrix structure with column and row electrodes arranged in an X-Y formation. Light is emitted when an AC voltage of sufficient amplitude is applied at a row-column intersection. The display operation is based on the symmetric, line-at-a-time data addressing scheme.

Power

This display requires both 12V and 5V in addition to video signals for proper operation. The display is designed to accept simultaneous application of V_L , V_H , and the input logic signals. If these signals are not simultaneous, they must meet the sequential timing shown in Figure 1 below.

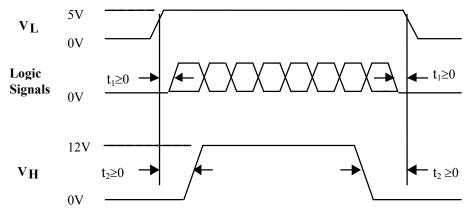


Figure 1. Data/Power Connector

The supply voltages are shown in Table 1. All internal high voltages are generated from the display supply voltage (VH). The logic supply voltage (VL) should be present whenever video input signals or VH is applied. The minimum and maximum specifications in this manual should be met, without exception, to ensure the long-term reliability of the display.

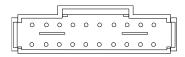
Performance characteristics are guaranteed when measured at 25°C with rated input voltage unless otherwise specified. Planar does not recommend operation of the display outside these specifications.

Table 1. DC Input Voltage Requirements.

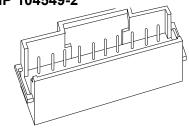
Parameter ¹	Symbol	Min	Тур	Max	Absolute Max
Logic supply voltage	V _L	4.75 V	5 V	5.25 V	6 V
Logic supply current at +5 V	ΙL			0.1 A	
Display supply voltage	V _H	10 V	12 V	15 V	15 V
Supply current at +10 V	I _H		0.5 A	1.05 A	
Power consumption 5 V/12 V			6.5 W	10.5 W	

¹ Operating conditions: ambient temperature 25°C, 120 Hz frame rate.

CAUTION: Absolute maximum ratings are those values beyond which damage to the device may occur.


Table 2. Video Input Requirements.

Description	Min	Max	Units	Notes
Absolute Input Voltage Range	-0.3	5.5	V	V _{L=} 5.0 V
Video logic high voltage	70%	100%	V _L	All input thresholds are CMOS
Video logic low voltage	0	20%	V_L	
Video logic input current	-	±10	μΑ	
Input capacitance	-	15	рF	


There is a fuse on the VH input to protect against catastrophic faults, and no overcurrent protection on the $\rm V_L$ input.

Connector

Video signals and DC power are connected to the display through a dual-row, 0.050-inch square-pin connector: AMP part number 104549-2. For flexible cable connection to the display, use AMP part number 111196-4.

Table 3. Connector Pinouts.

Pin	Signal	Description	Pin	Signal	Description
1	V _H	+12 V Power	2	V _H	+12 V Power
3	NC	No Connect	4	GND	Ground
5	V_L	+5 V Power	6	GND	Ground
7	VS	Vertical Sync	8	GND	Ground
9	HS	Horizontal Sync	10	GND	Ground
11	VCLK	Video Clock	12	GND	Ground
13	VID ₀	Video Data	14	GND	Ground
15	VID ₁	Video Data	16	GND	Ground
17	VID ₂	Video Data	18	GND	Ground
19	VID ₃	Video Data	20	GND	Ground

Interface Information

Planar EL Small Graphics Displays (SGD) incorporate an interface that is similar to many LCD interfaces. This interface is supported by a variety of off-the shelf chip sets which take care of all display control functionality, freeing the system processor for other tasks. Designers select the chip set that best suits their particular architecture and price point. This 4-bit LCD-type video interface provides a low cost, flexible method for controlling display brightness and power consumption.

Video Input Signals

The end of the top line of a frame is marked by VS, vertical sync signal as shown in Figure 2. The end of each row of data is marked by HS.

The VS signal may be independently set to a CMOS low level at any time for longer than one frame period. During the time of VS inactivity the display is blank. Halting VS results in a standby condition to minimize power usage.

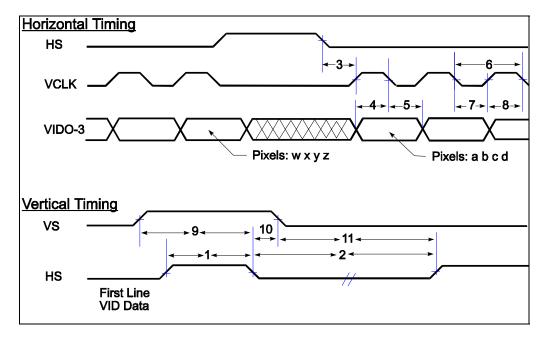


Figure 2. Video Input Timing Diagram.

Timing is compatible with LCD graphics controllers such as the SMOS display controller.

Table 4. Video Input Descriptions.

Num	Description	Symbol	Min.	Тур.	Max.	Units
1	HS high time	tHSh	100			nsec
2	HS low time	tHSI	120			tVCLK
3	HS to VCLK	tHSsu	130			nsec
4	VID setup to VCLK	tVIDsu	50			nsec
5	VID hold from VCLK	tVIDhd	50			nsec
6	Video clock period	tVCLK	140			nsec
	VCLK rise, fall time	tVCLKrf		10	15	nsec
7	VCLK low width	tVCLKI	15	70		nsec
8	VCLK high width	tVCLKh	15	70		nsec
9	VS high setup to HS low	tVShsu	140			nsec
10	VS hold after HS	tVShd	140			nsec
11	VS low setup to HS high	tVSlsu	140			nsec
12	HS period	tHS	34			μsec
	VS period	tVS	242			tHS
	Frame Rate	fVS	50		120	Hz

Input signals VID₀ through VID₃ contain the video data for the screen. Pixel information is supplied from left to right and from top to bottom four pixels at a time. Video data for one row is latched on the fall of HS.

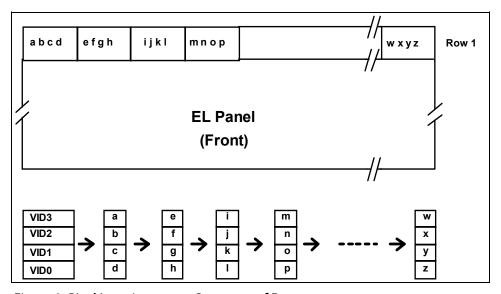


Figure 3. Pixel Location versus Sequence of Data.

Self-Test Mode

The display incorporates a self-test mode composed of two patterns displayed for approximately 30 seconds each, and then repeated. The patterns are as follows: Diagonal Lines, Diagonal Lines Inverted, Full On, 1 x 1 Checkerboard, and 1 x 1 Checkerboard Inverted. The self-test mode is entered by resetting or applying power to the display with the VCLK signal static. The display will remain in the self-test mode until two edges of VCLK are detected.

Optical

Table 5. Optical Characteristics.

Tubic 3. Optical C		
Luminance Lon (areal), min Lon (areal), typ Loff (pixel), max	30 cd/m² 50 cd/m² 0.3 cd/m²	screen center, 120 Hz frame rate screen center, 120 Hz frame rate 5 points: center plus four corners measured 1.0 \pm 0.25" from adjacent display edges, 120 Hz
Non-uniformity All pixels fully lit	26%	Maximum difference two of five points, using the formula: LNU%=[1- (min_lum/max_lum)] x 100
Luminance Variati	on (Temperature)	
Maximum	±15%	Across operating temperature range
Luminance Variati	on (Time)	
Maximum	<10%	15,000 hours at 25°C ambient
Viewing Angle		
Minimum	160°	
Contrast Ratio		
Minimum Typical	19:1 50:1	@ 500 lux ambient, 120 Hz frame rate

Generating Grayscales

Some applications may benefit by using grayscales. The PR2/PR3 has a maximum frame rate frequency of 120 Hz. Using the higher frame rate, combined with flat panel controllers designed for this faster display, it is possible to generate usable grays through frame rate control and dithering. Video controllers from manufacturers such as C&T and EPSON use these methods with proprietary algorithms to generate grayscales.

The response time of electroluminescent displays is much faster than LCDs, therefore not all possible grayscales generated by the video controller are actually usable. Many of the grayscales may flicker or swim. Careful testing is necessary to select appropriate grayscales for an application, especially when the electroluminescent displays are driven at less than their maximum frame rate. For additional information, refer to Planar Application Note 119 or contact Planar's Application Engineers.

Environmental

Table 6. Environmental Characteristics.

	Operating	Non-operating	
Temperature	-25°C to +65°C	-40°C to +75°C	
Survival	-25°C to +75°C		
Humidity			
Non-condensing	to 93% RH max @ 40°C, p€	er IEC 68-2-3	
Condensing		to 95% RH max @ 55°C, per IEC 68-2-30	
Altitude			
Tested per IEC 68-2-13	-1000 to 16,000 ft	-1000 to 58,000 ft	
·	(-3048 to 48,768 m)	(-3048 to 176,784 m)	
Vibration			
Random	0.02q ² /Hz, 20-500 Hz, 30 minutes on each axis, per IEC 68-2-36,		
Operating/non-operating	test Fdb.		
Shock			
Operating/non-operating	100 g, 6 ms, half sine wave per IEC 68-2-27, test Ea.		

Reliability

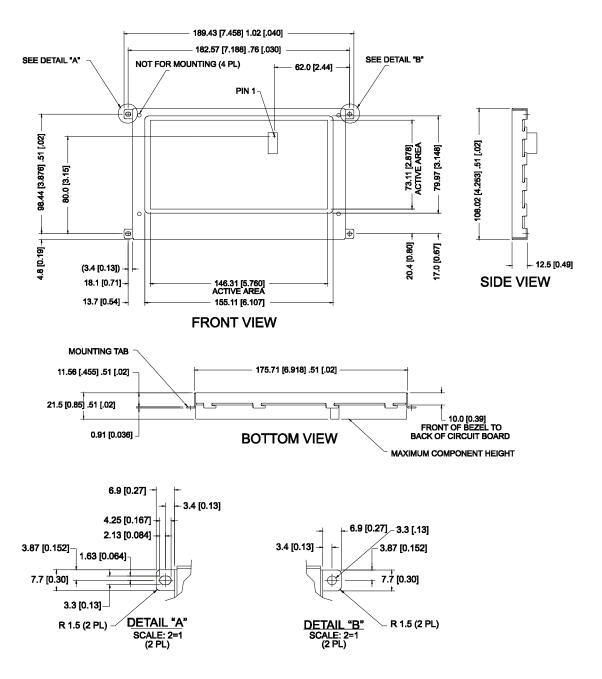
The display MTBF is demonstrated to be greater than 100,000 hours at 25°C with a 90% confidence level.

Safety and EMI Performance

The display will not inhibit the end product from obtaining these safety certifications: IEC 601-1, UL544 or CSA 22.2 #601-M89.

The display will not inhibit the end product from complying with FCC Docket, Part 15, Subpart J, Class B; CISPR 11, Class B; and VDE 871/VFG 243, Class B when housed in a suitable enclosure.

Mechanical Characteristics


Table 7. Mechanical Characteristics.

Display External Dimensions millimeters (inches)	width height depth	189.4 (6.91) nominal 108.0 (4.14) nominal 21.5 (0.85) nominal		
Weight (typical)	310 g (10.9 oz), nominal			
Fill Factor	50.2%			
Display Active Area millimeters (inches)	width height	146.31 (5.76) nominal 73.11 (2.88) nominal		
Pixel Size	width height	0.22 (0.0085) nominal 0.22 (0.0085) nominal		
Pixel Pitch	horizontal vertical	.31 (0.012) nominal .31 (0.012) nominal		

Component Envelope

The component envelope shown in Figure 4 illustrates the distance components extend behind the display. Tall components do not necessarily fill this area. Planar reserves the right to relocate components *within* the constraints of the component envelope without prior customer notification. For this reason, Planar advises users to design enclosure components to be outside the component envelope.

An air gap of at least 5 mm is recommended to dissipate heat from display components. Device designers will need to consider their specific system requirements to determine the necessary spacing.

Dimensions are in millimeters; inches in brackets. Some hidden lines omitted for clarity.

Tolerances unless specified:

.x +/10.50 [0.02]

.xx +/-0.25 [0.01]

Figure 4. Display Dimensions.

Note: The dimensions in this drawing are approximate. Please contact Planar Applications Engineering and request the actual drawing prior to beginning your design.

Description of Warranty

Seller warrants that the Goods will conform to published specifications and be free from defects in material for 12 months from delivery. To the extent that Goods incorporate third-party-owned software, Seller shall pass on Seller's licensor's warranty to Buyer subject to the terms and conditions of Seller's license.

Warranty repairs shall be warranted for the remainder of the original warranty period. Buyer shall report defect claims in writing to Seller immediately upon discovery, and in any event, within the warranty period. Buyer must return Goods to Seller within 30 days of Seller's receipt of a warranty claim notice and only after receiving Seller's Return Goods Authorization. Seller shall, at its sole option, repair or replace the Goods.

If Goods were repaired, altered or modified by persons other than Seller, this warranty is void. Conditions resulting from normal wear and tear and Buyer's failure to properly store, install, operate, handle or maintain the Goods are not within this warranty. Repair or replacement of Goods is Seller's sole obligation and Buyer's exclusive remedy for all claims of defects. If that remedy is adjudicated insufficient, Seller shall refund Buyer's paid price for the Goods and have no other liability to Buyer.

All warranty repairs must be performed at Seller's authorized service center using parts approved by Seller. Buyer shall pay costs of sending Goods to Seller on a warranty claim and Seller shall pay costs of returning Goods to Buyer. The turnaround time on repairs will usually be 30 working days or less. Seller accepts no added liability for additional days for repair or replacement.

If Seller offers technical support relating to the Goods, such support shall neither modify the warranty nor create an obligation of Seller. Buyer is not relying on Seller's skill or judgment to select Goods for Buyer's purposes. Seller's software, if included with Goods, is sold as is, and this warranty is inapplicable to such software.

SELLER DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Ordering Information

Product	Part Number	Description
EL480.240-PR2	996-0247-02	EL480.240 flat panel display assembly with integrated power supply and 4-bit FPD interface.
EL480.240-PR2 CC	996-0247-03	EL480.240-PR2 with conformal coating
EL480.240-PR3	996-0247-05	Same as PR2 but with internal resistors added

Design and specifications are subject to change without notice.

Planar Systems continues to provide optional, and in many cases custom, features to address the specific customer requirements. Consult Planar Sales for pricing, lead time and minimum quantity requirements.

Support and Service

Planar Systems, Inc. is a US company based in Beaverton, Oregon and Espoo, Finland, with a world-wide sales distribution network. Full application engineering support and service are available to make the integration of Planar displays as simple and quick as possible for our customers.

RMA Procedure: For a *Returned Material Authorization* number, please contact Planar Systems, Inc. with the model number(s) and serial number(s). When returning goods for repair, please include a brief description of the problem, and mark the outside of the shipping container with the RMA number.

Planar Systems, Inc.

Customer Service

24x7 Online Technical Support: http://www.planar.com/support

Americas Support

1195 NW Compton Drive Beaverton, OR 97006-1992

Tel: 1-866-PLANAR1 (866) 752-6271

Hours: M-F, 5am - 5pm Pacific Time

Europe and Asia-Pacific Support

Olarinluoma 9 P.O. Box 46 FIN-02201 Espoo, Finland

Tel: +358-9-420-01

Hours: M-F, 7:00am - 4pm CET

© 2004 **Planar Systems, Inc. 06/04** Planar is a registered trademark of Planar Systems, Inc.

ICE, ICEBrite, and ICEPlus are trademarks of Planar Systems, Inc.

Other brands and names are the property of their respective owners.

Technical information in this document is subject to change without notice.

020-0347-00B