Versio n: 1.0

TECHNICAL SPECIFICATION

MODEL NO.: ED050SC3

The content of this information is subject to be changed without notice. Please contact PVI or its agent for further information

Customer•s Confirmation				
Customer				
Date				
Ву				
PVI•s Confirmation				

Confirmed By

<u>Prepared By</u>

Revision History

Rev.	Issued Date	Revised	Contents
1.0	August.15.2008	New	

TECHNICAL SPECIFICATION <u>CONTENTS</u>

NO.	ITEM	PAGE		
-	Cover	1		
-	Revision History	2		
-	Contents	3		
1	Application	4		
2	Features	4		
3	3 Mechanical Specifications			
4	·			
5	Input/Ouput Terminals			
6	·			
7	Power on Sequence			
8	·			
9	9 Handling, Safety and Environment Requirements			
10				
11				
12	Packing	19		

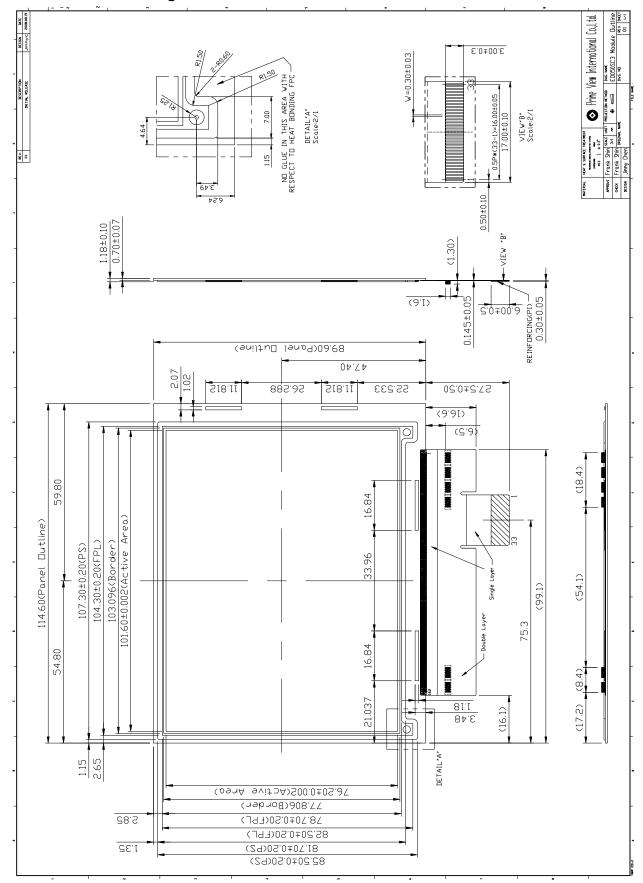
1. Application

The display is a TFT active matrix electrophoretic display, with associated interface and control logic, and a reference system design.

The 5" active area contains 800x600 pixels, and has full 1~4 bit display capabilities

An integrated circuit containing interface, timing and control logic is supplied with each panel.

2. Features


- ➤ High contrast TFT electrophoretic
- ➤ 800x600 display
- ➤ High reflectance
- > Ultra wide viewing angle
- > Ultra low power consumption
- > Pure reflective mode
- ➤ Bi-stable
- > Commercial temperature range
- ➤ Landscape, portrait mode
- ➤ Antiglare hard-coated front-surface

3. Mechanical Specifications

Parameter	Specifications		Remark
Screen Size	5	Inch	
Display Resolution	800 (H) ×600(V)	Dot	
Active Area	101.6 (H)x76.2 (V)	mm	
Pixel Pitch	0.127(H)x0.127(V)	mm	
Pixel Configuration	Rectangle		
Outline Dimension	114.6(H) ×89.6(V) ×1.18(D) (panel area height) 114.6(H) ×89.6(V) ×2.0(D) (FPC area height with capacitor)	mm	Panel height is measured without released film
Module Weight	24±2	g	

4. Mechanical Drawing of EPD Module

5. Input/Ouput Terminals

5-1)Pinout List

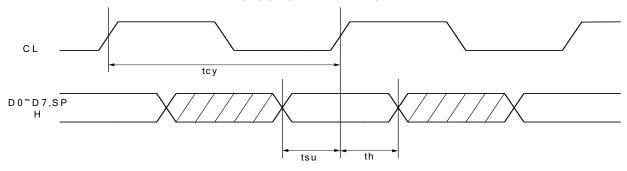
Pin#	Signal	Description		
1	VNEG	Negative power supply source driver		
2	NC	NO Connection		
3	VPOS	Positive power supply source driver		
4	NC	NO Connection		
5	VSS	Ground		
6	NC	NO Connection		
7	VDD	Digital power supply drivers		
8	XCL	Clock source driver		
9	XLE	Latch enable source driver		
10	XOE	Output enable source driver		
11	XSHR	Shift direction source driver		
12	XSTL2	Start pulse source driver		
13	D0	Data signal source driver		
14	D1	Data signal source driver		
15	D2	Data signal source driver		
16	D3	Data signal source driver		
17	D4	Data signal source driver		
18	D5	Data signal source driver		
19	D6	Data signal source driver		
20	D7	Data signal source driver		
21	NC	NO Connection		
22	VCOM	Common connection		
23	NC	NO Connection		
24	VGG	Positive power supply gate driver		
25	NC	NO Connection		
26	VEE	Negative power supply gate driver		
27	NC	NO Connection		
28	MODE2	Output mode selection gate driver		
29	MODE1	Output mode selection gate driver		
30	XRL	Shift direction gate driver		
31	SPV	Start pulse 1st gate driver		
32	CKV	Clock 1st gate driver		
33	BORDER	Border connection		

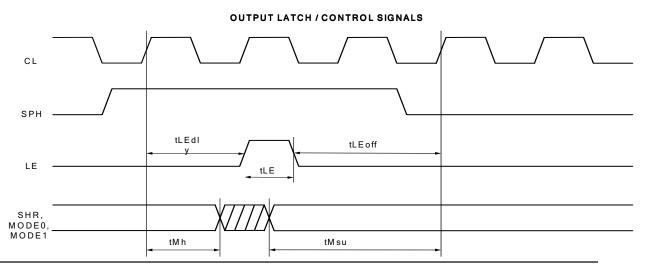
6.Electrical Characteristics

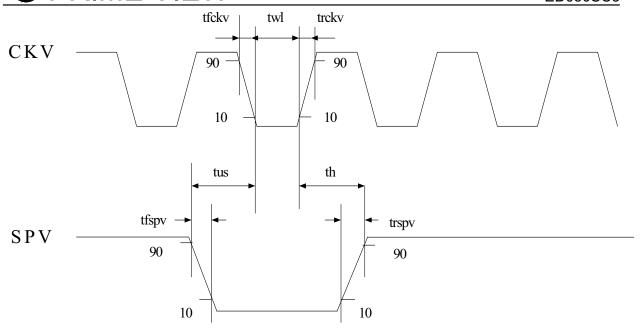
6-1) Panel interface description

This panel is driven by ASIC PVI-6001A or "Apollo" display controller ASIC. See control product specification for details. **6-2) Panel DC characteristics**

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Signal ground	V_{SS}		-	0	-	V
Y Y Y 1, 1	V_{DD}		3.0	3.3	3.6	V
Logic Voltage supply	I_{VDD}	$V_{DD}=3.3V$	-	2	4	mA
	$ m V_{EE}$		-21	-20	-19	V
Gate Negative supply	$I_{\rm EE}$	$V_{EE} = -20V$	-	1	3	mA
	V_{GG}		21	22	23	V
Gate Positive supply	I_{GG}	$V_{GG} = 22V$	-	0.82	2.46	mA
C N C 1	V_{NEG}		-15.4	-15	-14.6	V
Source Negative supply	I _{NEG}	$V_{NEG} = -15V$	-	21.6	43.2	mA
C D ::: 1	V_{POS}		14.6	15	15.4	V
Source Positive supply	I_{POS}	$V_{POS} = 15V$	-	24.1	48.2	mA
Asymmetry source	V _{Asym}	V _{POS} +V _{NEG}	-80	0	80	mV
C 1	V_{COM}		-2.5	Adjusted	-1.0	V
Common voltage	I_{COM}		-	0.19	-	mA
Maximum power panel	P_{MAX}		-	-	1600	mW
Standby power panel	P_{STBY}		-	-	0.4	mW
Typical power panel	P_{TYP}		-	750	ı	mW
Operating temperature			0	-	50	$^{\circ}\!\mathbb{C}$
Storage temperature			-25	-	70	$^{\circ}\!\mathbb{C}$
Maximum image update time at 25°C			-	1000	-	ms


- The maximum power and maximum currents are specified for the worse case power consumption. This occurs when 2 horizontal inverted stripped images are displayed
- The typical power is the consumed power when "typical images" are displayed.
- The standby power is the consumed power when the panel controller is in standby mode.
- The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by PVI

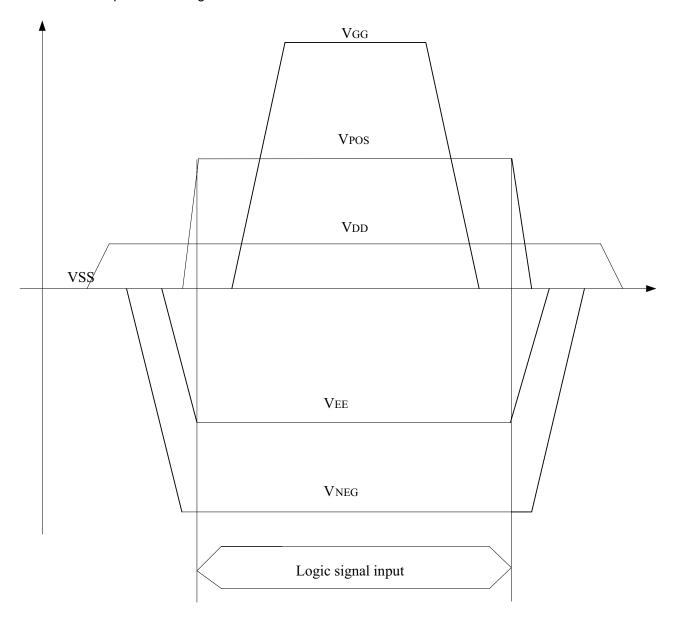

6-3)Panel AC characteristics

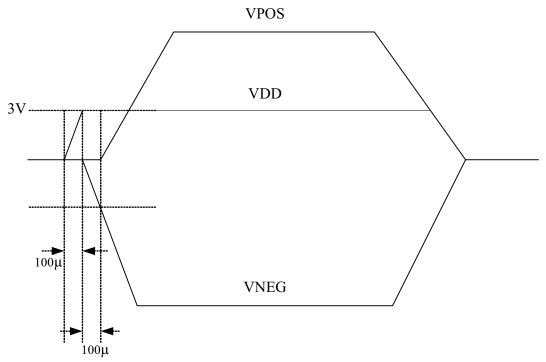

VDD=3.0V to 3.6V, unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max.	Unit	App Pin
Clock frequency	fckv			200	kHz	
Minimum "L" clock pulse width	twL	0.5			us	CKA
Clock rise time	trckv			100	ns	CKV
Clock fall time	tfckv			100	ns	
Data setup time	tSU	100			ns	CIVIL CDI
Data hold time	tH	100			ns	CKV, SPV
Pulse rise time	trspv			100	ns	CDII
Pulse fall time	tfspv			100	ns	SPV
Clock CL cycle time	tcy	50		DC	ns	
D0 D7, SPH setup time	tsu	8			ns	
D0 D7, SPH hold time	th	1			ns	Below
LE on delay time	tLEdly	40			ns	table
LE high-level pulse width	tLEw	40			ns	
LE off delay time	tLEoff	40			ns	

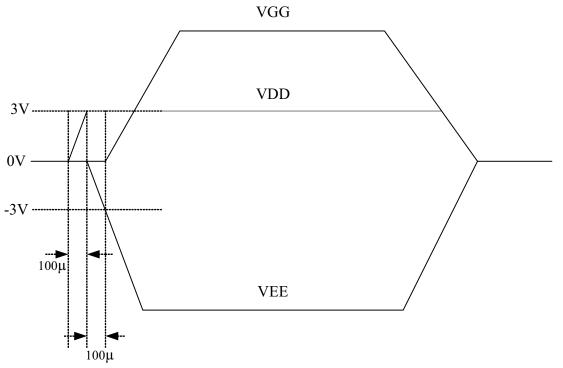
CLOCK & DATA TIMING

6-4) Power Consumption

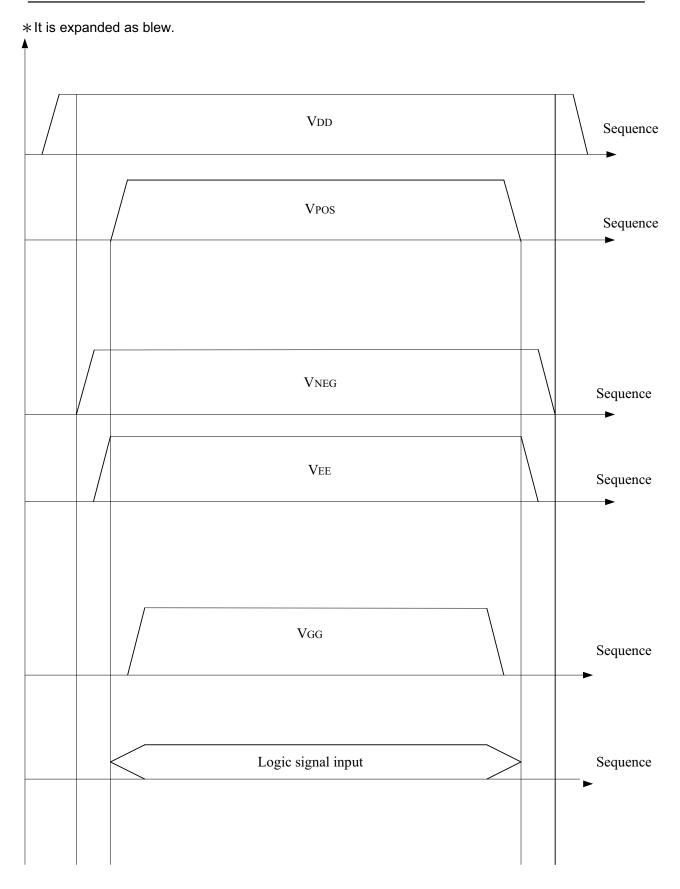

Parameter	Symbol	Conditions	TYP	Max	Unit	Remark
Maximum panel power consumption during update.	-	-	ı	1600	mW	
Power consumption in standby mode	-	-	1	0.4	mW	
Typical panel power	-	-	750	-	mW	



7. Power on Sequence


- 1. VSS → VDD → VNEG → VPOS (Source driver)
- 2. VEE → VGG(Gate driver)

* Power on sequence's timing chart as blew :



Power Ramp rate:3V/100 μ S(Max)

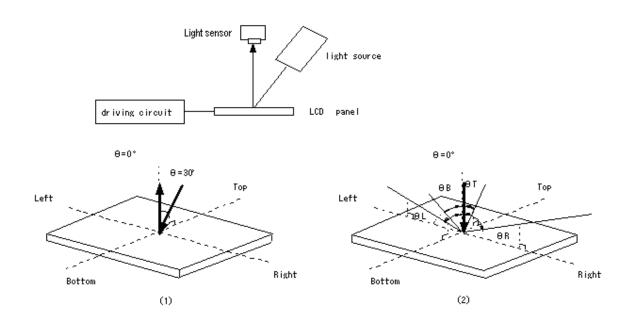
Power Ramp rate:3V/100 μ S(Max)

8. Optical characteristics

8-1) Specifications

Measurements are made with that the illumination is under an angle of 30 degrees, the detection is perpendicular unless otherwise specified.

\mathbf{T}	_	250	
1	_	23	u

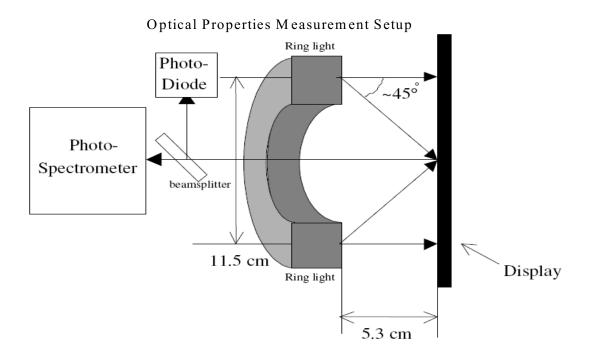

					-	-	
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNIT	Note
R	Reflectance	White	30	35	-	%	8-1
Gn	N _{th} Grey Level	-	-	DS+(WS-DS)×n/(m-1)	-	L*	-
CR	Contrast Ratio	-	6	-	-		-
T _{update}	Update time	2~4-bit mode 1-bit mode		1000 540	-	ms ms	-

WS: White state, DS: Dark state, Gray state from Dark to White: DS \ G1 \ G2... \ Gn... \ Gm-2 \ WS m:4 \ 8 \ 16 \ when 2 \ 3 \ 4 bits mode

8-2) Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (Rl) and the reflectance in a dark area (Rd):

CR = R1/Rd



Note 8-1

Luminance meter: Eye-One Pro Spectrophotometer

Only reflectivity effect is counted when using above optical measurement with Eye-One Pro Spectrophotometer .Some scattering effect will be counted in actual visual conditions and the measurement data will be higher. A second optical measurement method and related data by which scattering effect counted are listed for reference.

Method	SYMBOL	PARAMETER	CONDITIONS	MIN.	Luminance meter	UNIT
Reflectivity only	R	Reflectance	White	30	Eye-One Pro Spectrophotometer	%
Reflectivity & scattering	R	Reflectance	White	35	EOTS	70

8-3)Reflection Ratio

The reflection ratio is expressed as:

 $R = Reflectance \ Factor_{white \ board} \quad x \quad \left(\ L_{center} \ / \ L_{white \ board} \right)$

 L_{center} is the luminance measured at center in a white area (R=G=B=1). $L_{white\ board}$ is the luminance of a standard white board. Both are measured with equivalent illumination source (see figure 8.3). The viewing angle shall be no more than 2 degrees.

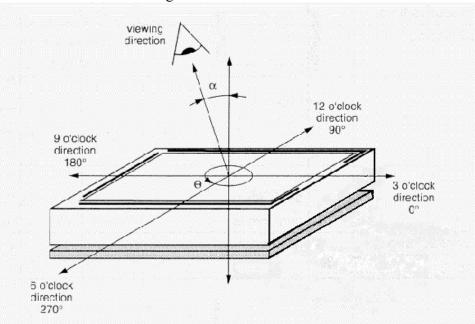


figure 8.3

 $\alpha = declination / \theta = azimuth$

9. HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

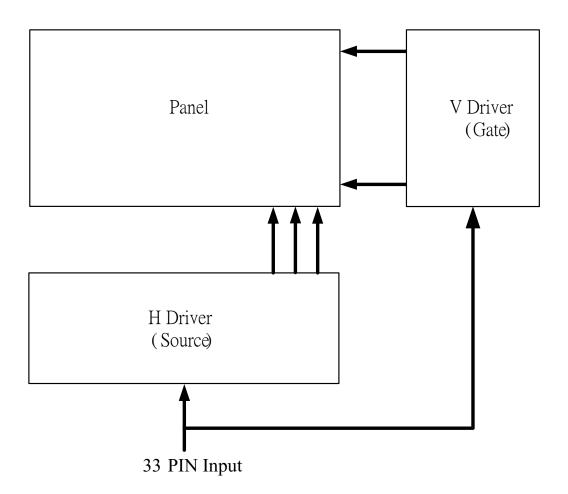
Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

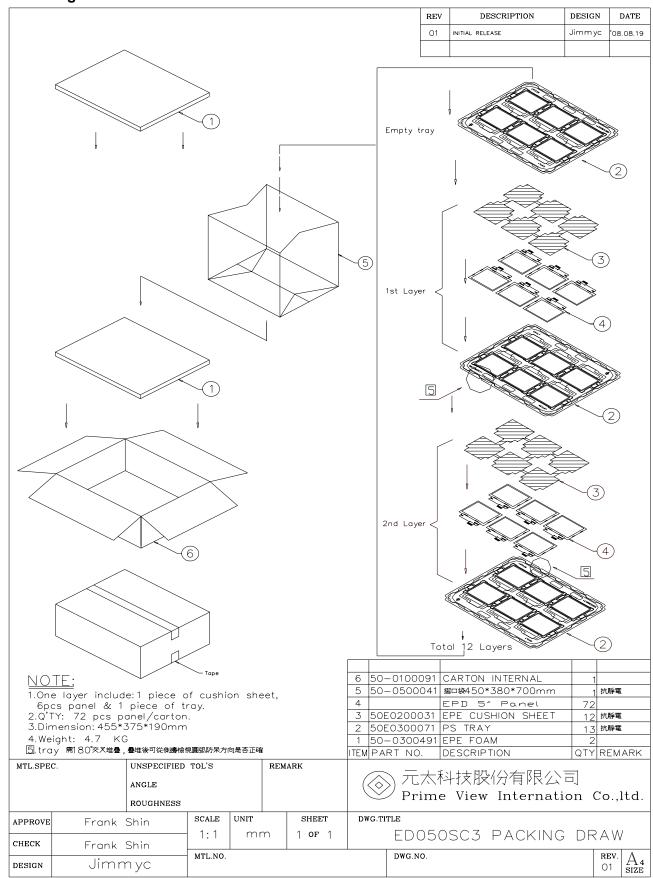
Data sheet st	Data sheet status				
Preliminary This data sheet contains preliminary data; supplementary data may be					
specification	published later.				
Product This data sheet contains final product specifications.					
specification					

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information


Where application information is given, it is advisory and does not form part of the specification.


10. Reliability test				
	TEST	CONDITION	METHOD	REMARK
1	High-Temperature Operation	T = +50°C, RH = 30% for 240 hrs	IEC 60 068-2-2Bp	At the end of the test, electric, mechanical, and optical specifications shall be satisfied.
2	Low-Temperature Operation	T = 0°C for 240 hrs	IEC 60 068-2-2Ab	At the end of the test, electric, mechanical, and optical specifications shall be satisfied.
3	High-Temperature Storage	T = +70°C, RH=23% for 240 hrs	IEC 60 068-2-2Bp	At the end of the test, electric, mechanical, and optical specifications shall be satisfied.
4	Low-Temperature Storage	T = -25°C for 240 hrs	IEC 60 068-2-1Ab	At the end of the test, electric, mechanical, and optical specifications shall be satisfied.
5	High-Temperature, High-Humidity Operation	T = +40°C, RH = 90% for 168 hrs	IEC 60 068-2-3CA	At the end of the test, electric, mechanical, specifications shall be satisfied.
6	High Temperature, High- Humidity Storage	T = +50℃, RH=80% for 240hrs	IEC 60 068-2-3CA	At the end of the test, electric, mechanical, specifications shall be satisfied.
7	Temperature Cycle	1 cycle:[-25°C 30min]→[+70°C 30 min] :100 cycles	IEC 60 068-2-14	At the end of the test, electric, mechanical, specifications shall be satisfied.
8	UV exposure Resistance	765 W/m² for 168hrs,40℃	IEC60 068-2-5Sa	Optical characteristics shall be satisfied.
9	Package Vibration	1.04G, Frequency: 10~500Hz Direction: X,Y,Z Duration: 1 hours in each direction	Full packed for shipment	At the end of the test, electric, mechanical, and optical specifications shall be satisfied.
10	Package Drop Impact	Drop from height of 122 cm on concrete surface. Drop sequence: 1 corner, 3 edges, 6 faces One drop for each.	full packed for shipment	At the end of the test, electric, mechanical, and optical specifications shall be satisfied.
11	Electrostatic Effect (non-operating)	(Machine model)+/- 250V 0Ω, 200pF	IEC 62179, IEC 62180	At the end of the test, electric, mechanical, specifications shall be satisfied.
12	Altitude test Operation	700hPa (= 3000m)48Hr		At the end of the test, electric, mechanical, specifications shall be satisfied.
13	Altitude test Storage	260hPa (= 10000m)48Hr		At the end of the test, electric, mechanical, specifications shall be satisfied.
16	Stylus Tapping	POLYACETAL Pen: Top R:0.4mm Load: 300gf Speed: 5times/sec Total 13,500times,		Pass criteria – no glass breakage or damage to microcapsules.

Actual EMC level to be measured on customer application

11.Block Diagram

12.Packing

