

Version : 0.2

TECHNICAL SPECIFICATION

MODEL NO.: PA080XS1

Customer's Confirmation	
Customer	-
Date	-
Ву	PVI's Confirmation
	Confirmed By
	Prepared By

Date: Mar.22,2005

This technical specification is subject to change without notice. Please return 1 copy with your signature on this page for approval.

TECHNICAL SPECIFICATION <u>CONTENTS</u>

NO.	ITEM	PAGE
ı	Cover	1
ı	Contents	2
1	Application	3
2	Features	3
3	Mechanical Specifications	3
4	Mechanical Drawing of TFT-LCD module	4
5	Input / Output Terminals	5
6	Pixel Arrangement and input connector pin NO.	6
7	Absolute Maximum Ratings	6
8	Electrical Characteristics	7
9	Power Sequence	17
10	Optical Characteristics	17
11	Handling Cautions	21
12	Reliability Test	22
13	Block Diagram	23
14	Packing	24
=	Revision History	25

1. Application

This technical specification applies to 8" color TFT-LCD module, PA080XS1. The applications of the panel are car TV, portable DVD, GPS, multimedia applications and others AV system.

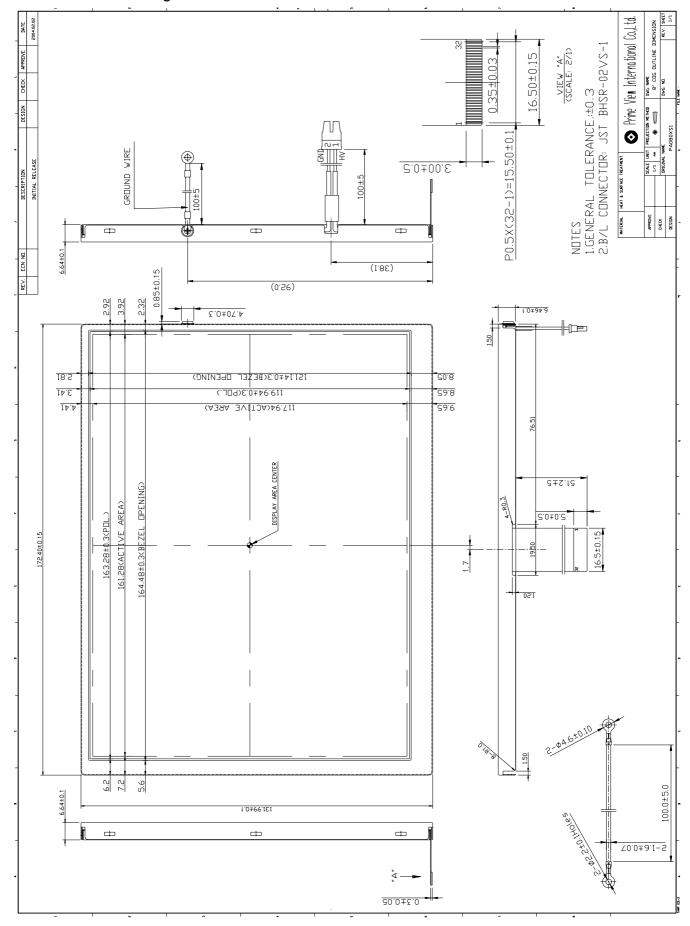
2. Features

. Pixel in stripe configuration

. Slim and compact

. High Brightness

. Image Reversion: Up/Down and Left/Right


. Column inversion driving

3. Mechanical Specifications

Parameter	Specifications	Unit
Screen Size	8(diagonal)	Inch
Display Format	1440×468	dot
Active Area	161.28 (H)×117.94 (V)	mm
Dot Pitch	0.112(H)×0.252(V)	mm
Pixel Configuration	Stripe	
Outline Dimension	172.4(W)× 131.99(H)× 6.64(D)(typ.)	mm
Surface Treatment	Anti-Glare	
Weight	TBD	g

4. Mechanical Drawing of TFT-LCD Module

5. Input / Output Terminals

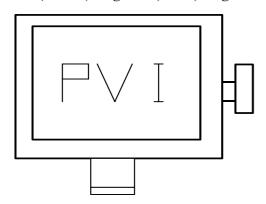
LCD Module Connector

FPC Down Connect, 32 Pins, Pitch: 0.5 mm

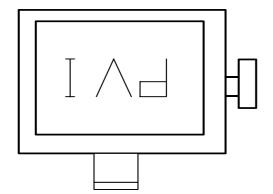
Pin No	Symbol	I/O	Description	Remark
1	STH2	I/O	Start pulse for source driver	Note 5-2
2	OEH	I	Output enable for source driver	
3	POL	I	P0larity control for column inversion	
4	MOD	_	Simultaneous/sequential mode select	
5	R/L	I	Left / Right Control for source driver	Note 5-2
6	V_{DD1}	-	Supply voltage of logic circuit for source driver	
7	CPH3	I	Sample and shift clock for source driver	
8	CPH2		Sample and shift clock for source driver	
9	CPH1		Sample and shift clock for source driver	
10	V_{SS1}		Ground of logic circuit for source driver	
11	V_{DD2}	-	Supply voltage of analog circuit for source driver	
12	VB-		Video input B for negative polarity	
13	VG-	I	Video input G for negative polarity	
14	VR-	I	Video input R for negative polarity	
15	V_{SS2}		Ground for analog circuit for source driver	
16	VB+		Video input B for positive polarity	
17	VG+		Video input G for positive polarity	
18	VR+	_	Video input R for positive polarity	
19	V_{SS2}	-	Ground for analog circuit for source driver	
20	STH1	I/O	Start pulse for source driver	Note 5-2
21	V_{COM}		Voltage for common electrode	
22	OE1	I	Output enable for gate driver	
23	OE2	I	Output enable for gate driver	
24	OE3	I	Output enable for gate driver	
25	U/D	I	Up / Down Control for gate driver	Note 5-1
26	CKV		Shift clock for gate driver	
27	STVD	I/O	Vertical start pulse	Note 5-1
28	STVU	I/O	Vertical start pulse	Note 5-3
29	V_{CC}	-	Power supply for gate driver circuit	
30	V_{EE}	-	Negative power gate driver	Note 5-4
31	V_{GH}	-	Positive power gate driver	Note 5-5
32	GND	-	Ground for gate driver	

Note 5-1

U/D	STVD	STVU	scanning direction
Vcc	Input	output	up todown
GND	Output	input	down to up


Note 5-2

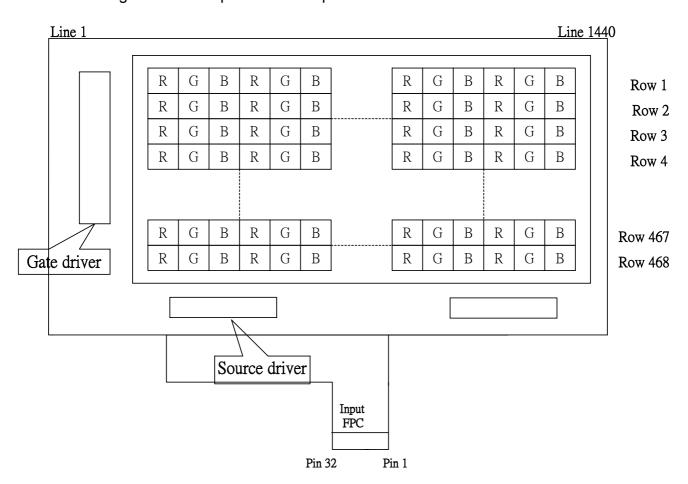
R/L	STH1	STH2	scanning direction
Vcc	input	output	left to right
GND	output	input	right to left


The definitions of Note 5-1,5-2

U/D(PIN 25)=High R/L(PIN 5)=High

U/D(PIN 25)=LowR/L(PIN 5)=Low

Note 5-3 : V_{CC} TYP. = +3.3V


Note 5-4: V_{EE} TYP.=-10V

Note 5-5: V_{GH} TYP.=+20V

Note 5-6 : V_{DD2} TYP. = +12V

Note 5-7 : V_{DD1} TYP. = +3.3V

6. Pixel Arrangement and input connector pin NO.

7. Absolute Maximum Ratings

The followings are maximum values , which if exceeded, may cause faulty operation or damage to the unit.

Parameter		Symbol	MIN.	MAX.	Unit	Remark
Supply Voltage For Source Drive	V_{DD2}	+9.0	+13.5	V		
Supply voltage For Source Drive	V_{DD1}	-0.3	+7.0	V		
		V _{CC}	-0.3	+6.0	V	
Supply Voltage For Gate Driver		V_{GH} - V_{EE}	-0.3	+40.0	V	
	H Level	V_{GH}	-0.3	+25.0	V	
	L Level	V _{EE}	-16	+0.3	V	
Analog Signal Input Loyal		V_R+,V_G+,V_B+	+4	+11	V	Note 7.1
Analog Signal Input Level		V_{R} -, V_{G} -, V_{B} -	0	5.5	V	Note 7-1
Storage Temperature			-30	+80	$^{\circ}\!\mathbb{C}$	
Operation Temperature			-20	+70	$^{\circ}\!\mathbb{C}$	Note 7-2

Notes 7-1 : Analog Input Voltage means V_R,V_G,V_B.

Notes 7-2 : Optical characteristics shown in Table 10-1 are measured under Ta=+25℃.

8. Electrical Characteristics

8-1) Recommended Driving condition for TFT-LCD panel

Parameter			MIN.	Тур.	MAX.	Unit	Remark
Supply Voltage For Source	Analog	V_{DD2}	+9	+10	+11	V	
Driver	Logic	V_{DD1}	+4.5	+5.0	+5.5	V	
	H level	V_{GH}	+18	+20	+22	V	
Supply Voltage For Gate Driver	L level	V _{EE DC}	-11	-10	-9	V	
	Logic	V _{CC}	+4.5	+5.0	+5.5	V	
	V_R +, V_G +, V_B +	$V_{+, AC}$	-	+4.0	-	O_{P-P}	
Analog Signal input Level	(Analog video+)	$V_{+,DC}$		7.5	7.8	V	
Analog Signal Input Level	V_R -, V_G -, V_B - (Analog video-)	$V_{-,AC}$	-	+4.0-	-	O_{P-P}	
		$V_{-,DC}$	2.2	2.5	2.8	V	
Digital input valtage	H level	V_{IH}	0.7	-	V _{DD1}	V	
Digital input voltage	L level	V_{IL}	-0.3	-	0.3	V	
Digital output voltage	H level	V_{OH}	0.7	-	V _{DD1}	V	
Digital output voltage	L level	V_{OL}	-0.3	-	0.3	V	
Vcom			4.5	5.0	5.5	,	DC Component of V _{COM} Note 8-1

Note 8-1 : PVI strongly suggests that the $V_{\text{COM DC}}$ level shall be adjustable , and the adjustable level range is $5.0V\pm0.5V$, every module's $V_{\text{COM DC}}$ level shall be carefully adjusted to show a best image performance.

8-2) Back Light driving (JST BHSR-02VS-1, Pin No. : 2)

Pin No	Symbol	Description	Remark
1	VL1	Input terminal (Hi voltage side)	Wire color: pink
2	VL2	Input terminal (Low voltage side)	Wire color: white Note 8-2

Note 8-2: Low voltage side of back light inverter connects with Ground of inverter circuits.

Recommended driving condition for back light

Ta= 25 ℃

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Lamp voltage	V_L	TBD	TBD	TBD	Vrms	
Lamp current	IL	TBD	TBD	TBD	mA	Note 8-3
Lamp frequency	P _L	TBD	TBD	TBD	KHz	Note 8-4
Starting voltage(25 [°] C) (Reference Value)	Vs			TBD	Vrms	Note 8-5
Starting voltage(0°ℂ) (Reference Value)	Vs			TBD	Vrms	Note 8-5

Note 8-3 : In order to satisfy the quality of B/L , no matter use what kind of inverter , the output lamp current must between Min. and Max. to avoid the abnormal display image caused by B/L.

Note 8-4: The waveform of lamp driving voltage should be as closed to a perfect sine wave as possible.

Note 8-5: This value is not output voltage of inverter.

The voltage of inverter must larger than the starting voltage.

The kick-off time must larger than 1 second.

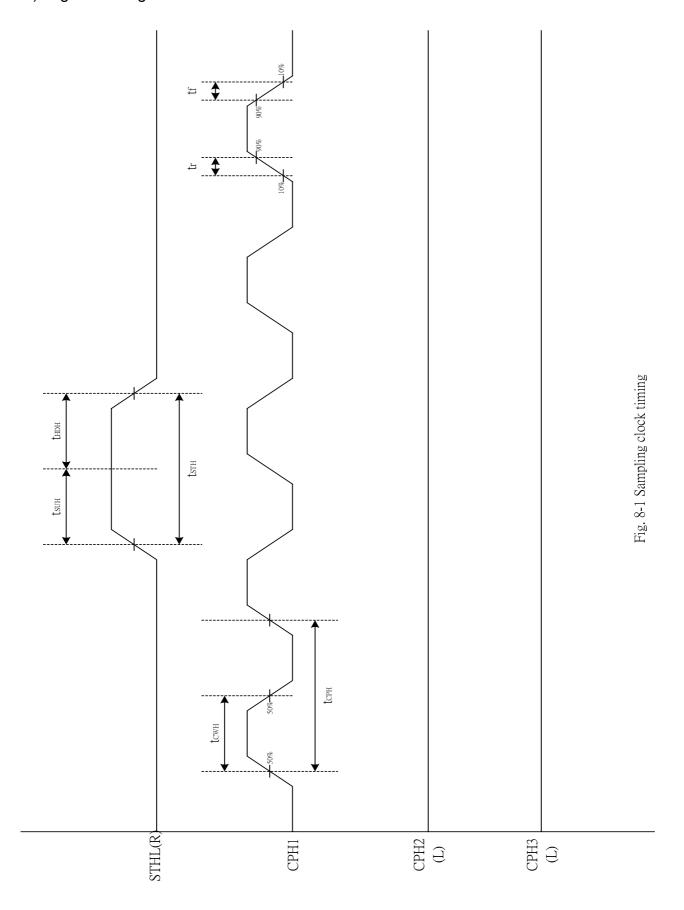
8-3) Power Consumption

Ta= 25 [℃]

Parameter	Symbol	Conditions	TYP.	MAX	Unit	Remark
Supply current for Gate Driver (Hi level)	I _{GH}	$V_{GH} = +20V$	TBD	TBD	mA	
Supply current for Gate Driver (Low level)	I _{EE}	$V_{EE} = -10V$	TBD	TBD	mA	
Supply current for Source Driver(Digital)	I _{DD1}	$V_{DD1} = +3.3V$	TBD	TBD	mA	
Supply current for Source Driver(Analog)	I _{DD2}	$V_{DD2} = +12V$	TBD	TBD	mA	
Supply current for Gate Driver (Digital)	I _{CC}	$V_{CC} = +3.3V$	TBD	TBD	mA	
LCD Panel Power Consumption			TBD	TBD	mW	Note 8-6
Back Light Lamp Power Consumption			TBD		W	Note 8-7

Note 8-6: The power consumption for back light is not included.

Note 8-7: Back light lamp power consumption is calculated by ILXVL.



8-4) Timing Characteristics Of Input Signals

Characteristics	Symbol	Min.	Тур.	Max.	Unit	Remark
Rising time	t _r	-	ı	10	ns	
Falling time	t_{\scriptscriptstylef}	-	1	10	ns	
High and low level pulse width	t _{CPH}	9.2	9.6	10.0	MHz	CPH1~CPH3
CPH pulse duty	t _{CWH}	30	50	70	%	CPH1~CPH3
STH setup time	t _{suh}	20	1	-	ns	STH1,STH2
STH hold time	t _{HDH}	20	1	-	ns	STH1,STH2
STH pulse width	t _{STH}	-	1	ı	t_{CPH}	STH1,STH2
STH period	t _H	61.5	63.5	65.5	μ s	STH1,STH2
OEH pulse width	t _{OEH}	-	1.40	-	μ s	OEH
Sample and hold disable time	t _{DIS1}	-	7.43	-	μ s	
OEV pulse width	t _{OEV}	-	18	-	μ s	OEV
CKV pulse width	t _{CKV}	-	31.75	-	μ s	CKV
Clean enable time	t _{DIS2}	-	9.0	-	μ s	
Horizontal display start	t _{sh}	-	0	-	t _{CPH} /3	
Horizontal display timing range	t_{DH}	-	480	-	t _{CPH}	
STV setup time	t _{suv}	400	-	-	Ns	STVD,STVU
STV hold time	t _{HDV}	400	ı	ı	Ns	STVD,STVU
STV pulse width	t _{STV}	-	1	1	t_{\scriptscriptstyleH}	STVD,STVU
Horizontal lines per field	t_v	256	262	268	t_{\scriptscriptstyleH}	
Vertical display start	t _{sv}	·	3	-	t_{\scriptscriptstyleH}	
Vertical display timing range	t _{DV}		234	-	t_{\scriptscriptstyleH}	

8-5) Signal Timing Waveforms

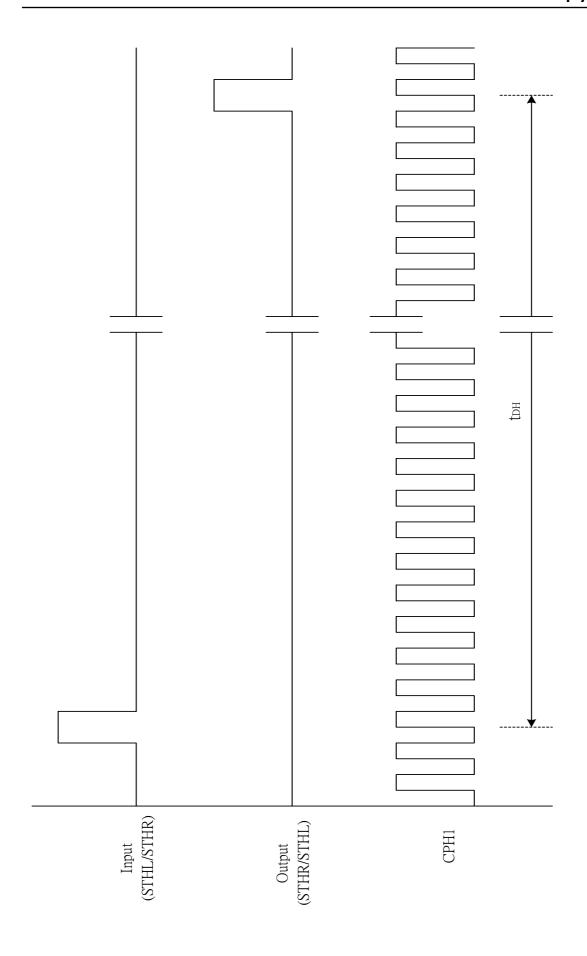


Fig. 8-2 Horizontal display timing range

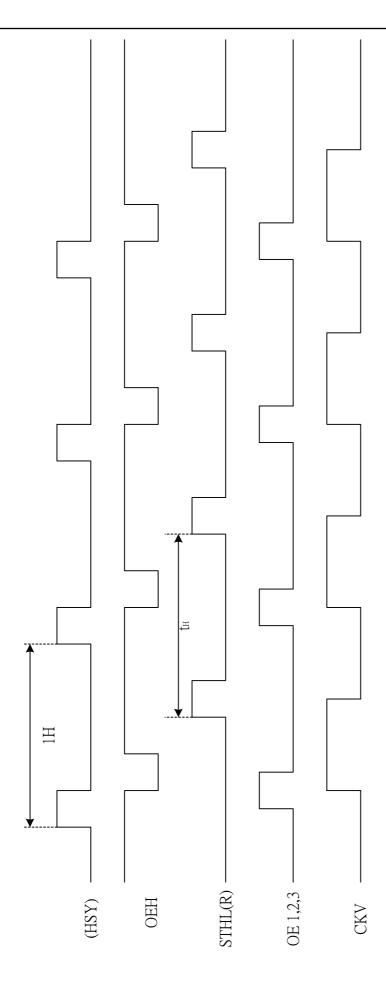
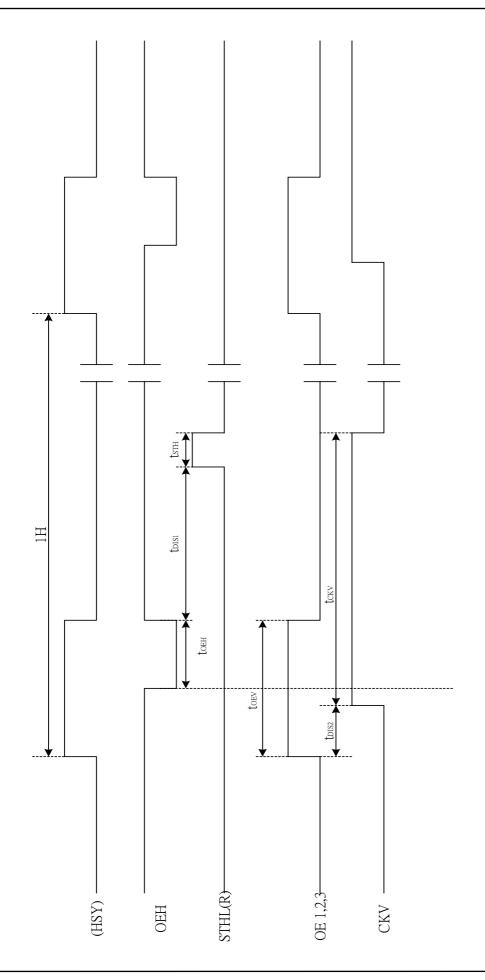
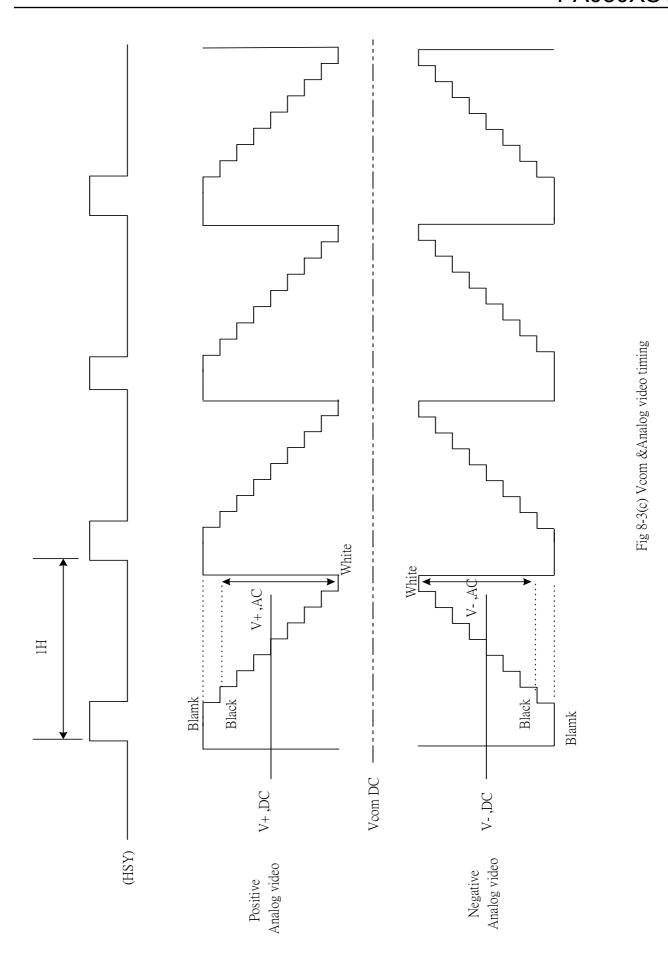
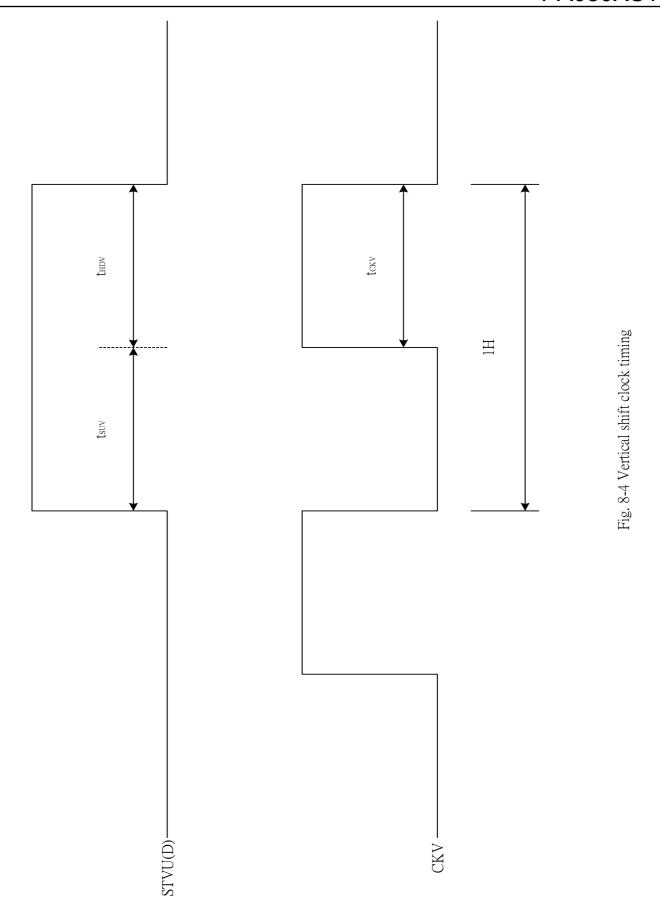
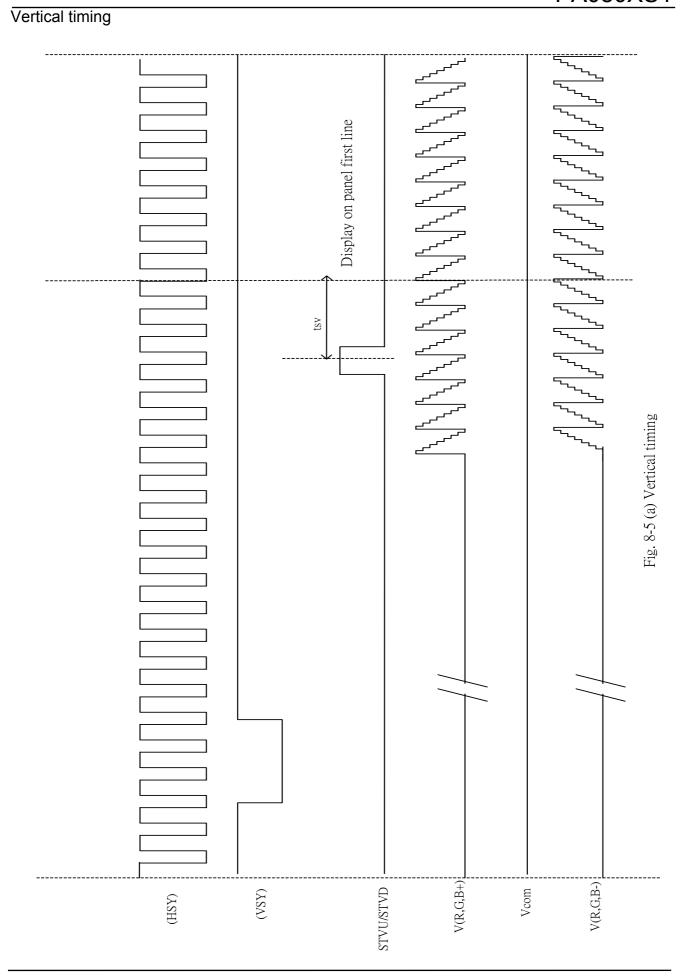
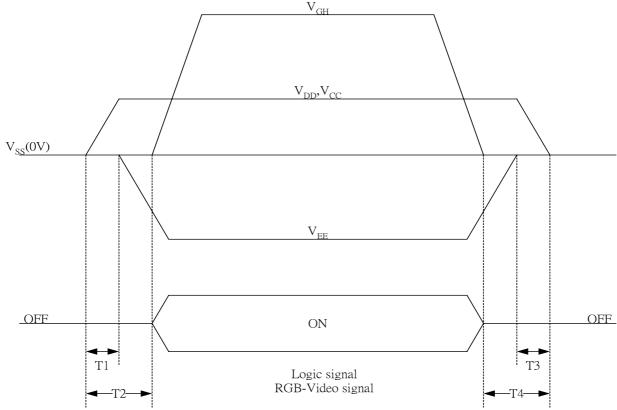


Fig. 8-3 (a) Horizontal timing

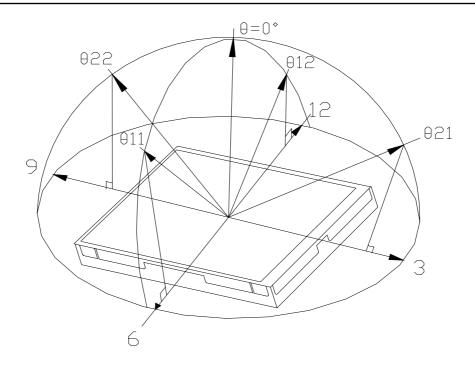

Fig. 8-3 (b) Detail horizontal timing


Note: The falling edge of OEV should be synchronized with the falling edge of OEH

9. Power on Sequence

The Power on Sequence only effect by $V_{\text{CC}},\,V_{\text{DD}},V_{\text{EE}}$ and V_{GH} , the others do not care.

- 1) 10ms≦T1<T2
- 2) 0ms<T3≦T4≦10ms

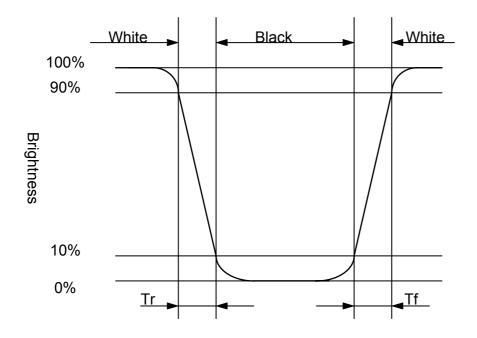

10. Optical Characteristics

10-1) Specification

Ta = 25[°]C

Parameter		Symbol	Condition	MIN.	TYP.	MAX.	Unit	Remarks
Viewing	Horizontal	θ 21, θ 22		45	55		deg	
Angle	Vertical	heta 12	CR≧10	10	15		deg	Note 10-1
		θ 11		30	35		deg	
Contrast Ratio		CR	At optimized Viewing angle	200	350			Note 10-2
Response time	Rise	Tr	<i>θ</i> =0°		15	30	ms	Note 10-4
Response une	Fall	Tf			25	50	ms	
Brightness				TBD	TBD		cd/m²	Note 10-3
Uniformity		U		TBD	TBD		%	Note 10-5
White		Х	$\theta = 0^{\circ}$	TBD	TBD	TBD		Note 10-3
Chromaticity		у	0 -0	TBD	TBD	TBD	_	
Lamp Life Time +25℃					TBD		hrs	

Note 10-1: The definitions of viewing angles


Note 10-2 : CR = Luminance when Testing point is White Luminance when Testing point is Black (Testing configuration see 10-2)

Contrast Ratio is measured in optimum common electrode voltage.

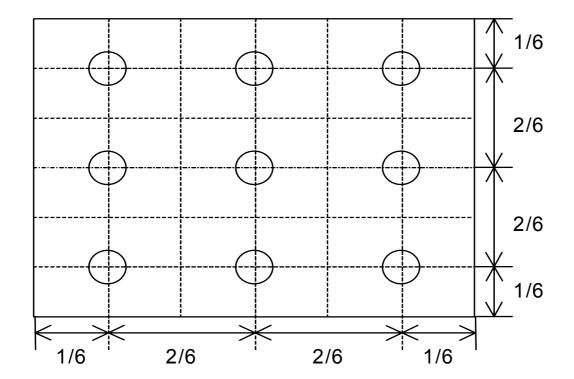
Note 10-3 : 1. Topcon BM-7(fast) luminance meter 2° field of view is used in the testing (after 20~30 minutes operation).

0. Lamp current : 6 mA0. Inverter model : TDK-347.

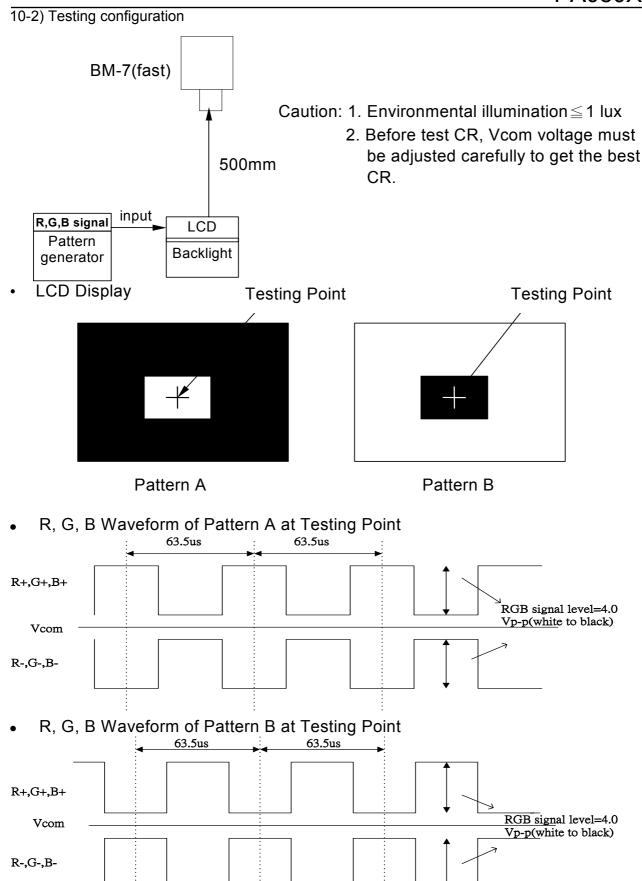
Note 10-4: The definition of response time:

Note 10-5: The uniformity of LCD is defined as

U = The Minimum Brightness of the 9 testing Points


The Maximum Brightness of the 9 testing Points
Luminance meter: BM-5A or BM-7 fast (TOPCON)

Measurement distance: 500 mm +/- 50 mm


Ambient illumination: < 1 Lux

Measuring direction: Perpendicular to the surface of module

The test pattern is white (Gray Level 63).

11. Handling Cautions

11-1) Mounting of module

- a) Please power off the module when you connect the input/output connector.
- b) Please connect the ground pattern of the inverter circuit surely. If the connection is not perfect, some following problems may happen possibly.
 - 1. The noise from the backlight unit will increase.
 - 2. The output from inverter circuit will be unstable.
 - 3.In some cases a part of module will heat.
- c) Polarizer which is made of soft material and susceptible to flaw must be handled carefully.
- d) Protective film (Laminator) is applied on surface to protect it against scratches and dirt. It is recommended to peel off the laminator before use and taking care of static electricity.

11-2) Precautions in mounting

- a) When metal part of the TFT-LCD module (shielding lid and rear case) is soiled, wipe it with soft dry cloth.
- b) Wipe off water drops or finger grease immediately. Long contact with water may cause discoloration or spots.
- c) TFT-LCD module uses glass which breaks or cracks easily if dropped or bumped on hard surface. Please handle with care.
- d) Since CMOS LSI is used in the module. So take care of static electricity and earth yourself when handling.

11-3) Others

- a) Do not expose the module to direct sunlight or intensive ultraviolet rays for many
- b) Store the module at a room temperature place.
- c) The voltage of beginning electric discharge may over the normal voltage because of leakage current from approach conductor by to draw lump read lead line around.
- d) If LCD panel breaks, it is possibly that the liquid crystal escapes from the panel.

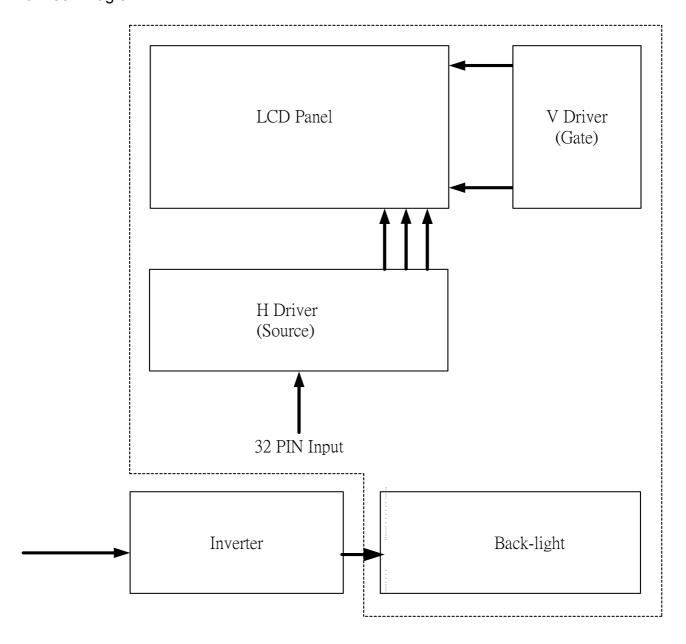
 Avoid putting it into eyes or mouth. When liquid crystal sticks on hands, clothes or feet.

 Wash it out immediately with soap.
- e) Observe all other precautionary requirements in handling general electronic components

12. Reliability Test

No	Test Item	Test Condition		
1	High Temperature Storage Test	Ta = +80°C, 240 hrs		
2	Low Temperature Storage Test	Ta = -30℃, 240 hrs		
3	High Temperature Operation Test	Ta = +70°ℂ, 240 hrs		
4	Low Temperature Operation Test	Ta = -20℃, 240 hrs		
5	High Temperature & High Humidity Operation Test	Ta = +60°C, 90%RH, 240 hrs		
6	Thermal Cycling Test	-10°C→+70°C, 200 Cycles		
0	(non-operating)	30 min 30 min		
7		Frequency: 10 ~ 55 H _z		
	Vibration Test	Amplitude: 1 mm		
'	(non-operating)	Sweep time: 11 mins		
		Test Period: 6 Cycles for each direction of X, Y, Z		
8	Shock Test	100G, 6ms		
	(non-operating)	Direction: ±X, ±Y, ±Z		
	(non-operating)	Cycle: 3 times		
9	Clastrostatio Discharge Tast	200 pF , 0 Ω		
	Electrostatic Discharge Test	±200V		
	(non-operating)	1 time / each terminal		

Ta: ambient temperature


Note: All about temperature test before must remove polarizer 's protective film.

[Criteria]

Under the display quality test conditions with normal operation state, there should be no change which may affect practical display function.

13.Block Diagram

14 Packing

TBD

Revision History

Rev.	Issued Date	Revised Contents
0.1	Nov 12,2004	NEW
0.2	Mar.22,2005	Modify
		Page8: 8-3) Power Consumption