

Version : <u>0.1</u>

TECHNICAL SPECIFICATION

MODEL NO: PD035QX2

The content of this information is subject to be changed without notice. Please contact PVI or its agent for further information.

Customer's Confirmation

Customer

Date

By

PVI's Confirmation

Dep	FAE	Panel Design	Electronic Design	Mechanical Design	Product Verification	Prepared by
SIGN	刻豐發	I TO PE	曹武福	田路教堂	そろれ	HARRING HARRING

PD035QX2

Revision HistoryRev.Eng.Issued DateRevisedContents0.1Sarah HuangNov 19, 2007Preliminary

PD035QX2

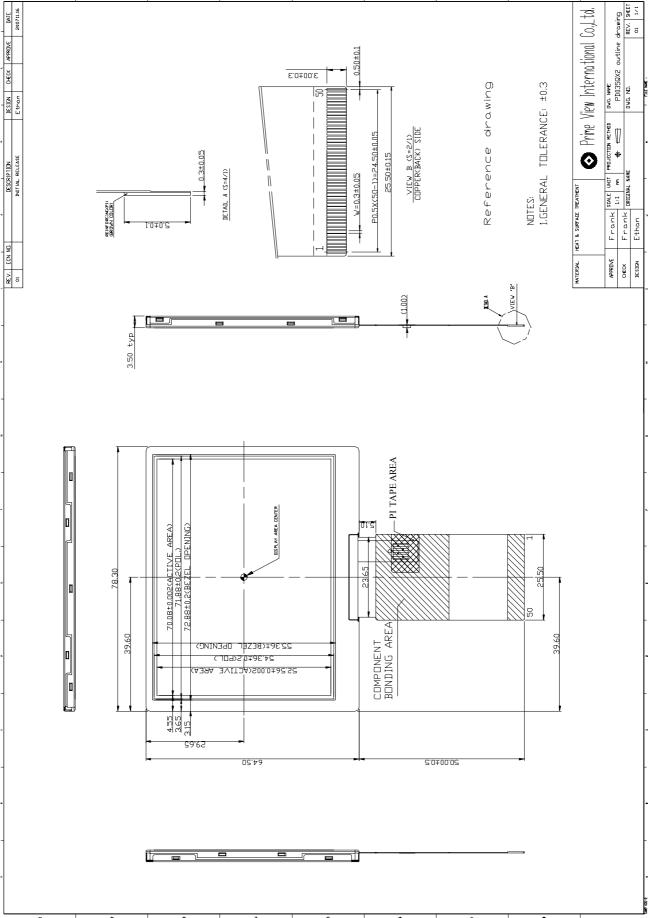
TECHNICAL SPECIFICATION CONTENTS

<i>NO</i> .	ITEM	PAGE
-	Cover	1
-	Revision History	2
-	Contents	3
1	Application	4
2	Features	4
3	Mechanical Specifications	4
4	Mechanical Drawing of TFT-LCD module	5
5	Input / Output Terminals	6
6	Absolute Maximum Ratings	7
7	Electrical Characteristics	7
8	Pixel Arrangement	8
9	Block Diagram	9
10	AC Characteristics	10
11	Power On Sequence	22
12	Optical Characteristics	22
13	Handling Cautions	25
14	Reliability Test	26
15	Packing Diagram	27

1.Application

This data sheet applies to a color TFT LCD module, PD035QX2. The module applies to OA product, GPS, which require high quality flat panel display. If you must use in high reliability environment can't over reliability test condition.

2. Features


- . Amorphous silicon TFT LCD panel with LED backlight unit
- . Pixel in stripe configuration
- . Thin and lightweight
- . Display Colors : 262K colors
- . Optimum Viewing Direction : 6 o'clock

3. Mechanical Specifications

Parameter	Specifications	Unit
Screen Size	3.5(diagonal)	inch
Display Format	320 X (R, G, B) X 40	dot
Display Colors	262K	
Active Area	70.08(H) >52.56(V)	mm
Pixel Pitch	0.219(H) ×0.219(V)	mm
Pixel Configuration	Stripe	
Outline Dimension	78.3(H) ×64.5(V) ×3.5(D)	mm
Weight	TBD	g
Back-light	9-LEDs	
Surface treatment	Anti-glare + EWV	
Display mode	Normally white	
Gray scale inversion direction	6 o'clock	
	[Note 12-1]	

4.Mechanical Drawing of TFT-LCD Module

PD035QX2

5.Input / Output Terminals 5-1) TFT-LCD Panel Driving

Pin No.	Symbol	Function	Remark	
1	LED+	Supply voltage for LED Backlight		
2	LED1	Cathode of LED Backlight		
3	LED2	Cathode of LED Backlight		
4	LED3	Cathode of LED Backlight		
5	VSS	System Ground		
6	RESB	System Reset	Note 5-1	
7	CSB	SPI enable		
8	SCK	SPI clock	Note 5-2	
9	SDI	SPI data input		
10	BB0	Blue Data (LSB)		
11	BB1	Blue Data		
12	BB2	Blue Data		
13	BB3	Blue Data		
14	BB4	Blue Data		
15	BB5	Blue Data		
16	BB6	Blue Data		
17	BB7	Blue Data (MSB)		
18	VSS	System Ground		
19	GG0	Green Data (LSB)		
20	GG1	Green Data		
21	GG2	Green Data		
22	GG3	Green Data		
23	GG4	Green Data		
24	GG5	Green Data		
25	GG6	Green Data		
26	GG7	Green Data (MSB)		
20	VSS	System Ground		
28	RR0	Red Data (LSB)		
20	RR1	Red Data		
30	RR2	Red Data		
31	RR3	Red Data		
32	RR4	Red Data		
33	RR5	Red Data		
34	RR6	Red Data		
35	RR7	Red Data (MSB)		
36	VSS	System Ground		
37	DEN	Data enable	Note 5-3	
38	HSYNC	Line synchronization signal		
39	VSYNC	Frame synchronization signal	Note 5-4	
40	VSS	System Ground		
40	DOTCLK	Clock in		
41	VSS	System Ground		
42	SHUT	Sleep mode work on HI	Noto 5 5	
43	TB	$HI : G0 \sim G239 \qquad Low : G239 \sim G0$	Note 5-5 Note 5-6	
44	RL	HI : 60~6259 Low : 6259~60 HI : First RGB data at S0~S2 Low : First RGB data at S959~S957	Note 5-7	
45	VSS	System Ground	inote 3-7	
			Noto 5 9	
47	VDD	Power supply for Logic Circuit	Note 5-8	
48	VSSA	Grounding for analog circuit	N.4.50	
49	VDDA VSSA	Voltage supply pin for analog circuit Grounding for analog circuit	Note 5-9	

Note 5-1: Low active, connect to VDD when not used

Note 5-2: Refer to Serial Interface block. Leave it OPEN when not used.

Note 5-3: Connect to VDD or floating if not used

Note 5-4: Fixed to VDD or floating if not used

Note 5-5: Connect to VDD for sleep mode, VSS for normal operation mode

Note 5-6: Connect to VDD for scan from G0 to G239(normal scan), VSS for G239 to G0(reverse scan)

Note 5-7: Connect to VDD for display first RGB data at S0-S2, VSS for S959-S957

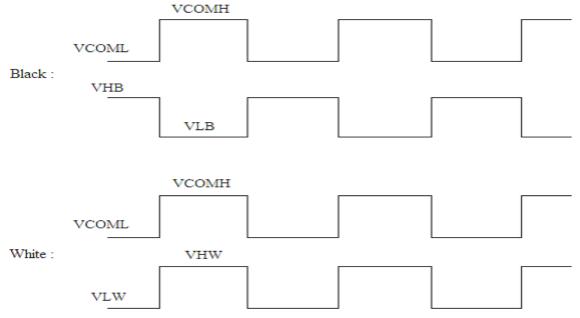
Note 5-8: VDD (Typ.) = +3.3V

Note 5-90: VDDA (Typ.) = +3.3V.Requires a noise free path for providing accurate LCD driving voltage

6.Absolute Maximum Ratings:

The followings are maximum values, which if exceeded, may cause faulty operation or damage to the unit.

Item	Symbol	Value	Unit
Supply voltage (Analog)	VDDA	VSS- 0.3 to 3.6	V
Supply voltage (Logic)	VDD	-0.3 ~ +3.6	V


7.Electrical Characteristics

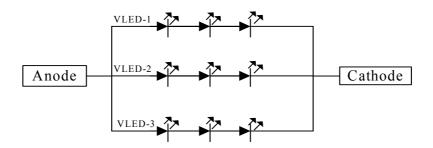
7-1) Recommended Operating Conditions:

Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Supply voltage (Analog)	VDDA	-	TBD	-	V	
Supply voltage (Logic)	VDD	-	TBD	-	V	
TFT Common Electrode Voltage	VCOMH	-	TBD	-	V	Note 7-1
IFI Common Electrode voltage	VCOML	-	TBD	-	V	Note /-1
Black of Video Low Voltage	VLB	-	TBD	-	V	
Black of Video High Voltage	VHB	-	TBD	-	V	Note 7-2
White of Video Low Voltage	VLW	-	TBD	-	V	note 7-2
White of Video High Voltage	VHW	-	TBD	-	V	

Note7-1 : VCOM must be adjusted optimize display quality, crosstalk, contrast ration and etc.

Note7-2:

PD035QX2


7-2) Recommended Driving Condition for Back Light

						Ta = 25°C
Parameter	Symbol	Min	TYP	MAX	Unit	Remark
Supply voltage of LED backlight	V _{LED}	-	-	(10.5)	V	Note 7-3
Supply current of LED backlight	I _{LED}	-	20	-	mA	Note 7-4
Backlight Power Consumption	P _{LED}	-	-	630	mW	Note 7-3/7-5

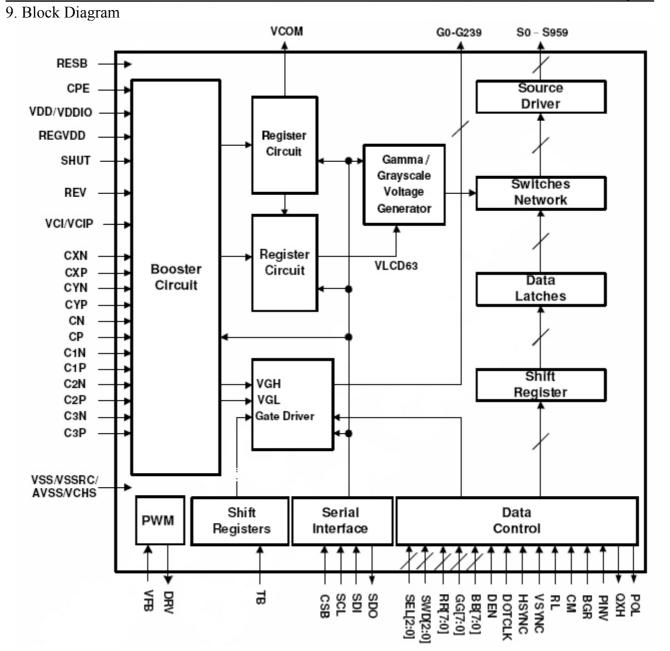
Note 7-3 : I_{LED} = 20mA, constant current

Note 7-4 : The LED driving condition is defined for each LED module. (3 LED Serial) Input current = 20mA * 3 = 60mA

Note 7-5 : $P_{LED} = V_{LED-1} * I_{LED-1} + V_{LED-2} * I_{LED-2} \dots + V_{LED-3} * I_{LED-3}$

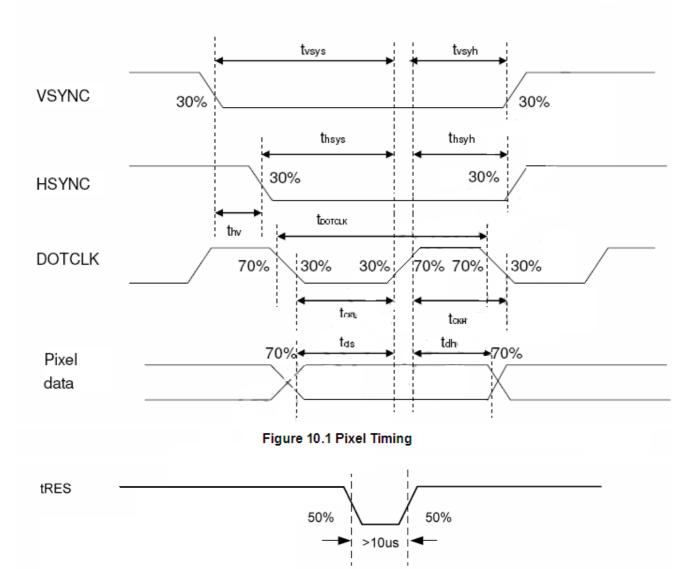
7-3) Power Consumption

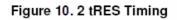
Parameter	Symbol	Condition	Тур.	Max.	Unit	Remark
Supply current for source driver and gate driver	I _{DD}	$V_{DD} = TBD V$	-	TBD	mА	
Back Light Power Consumption			-	630	mW	
Total Power Consumption			-	TBD	mW	Note 7-6


Note 7-6: Back light power consumption is calculated by $I_L \aleph_L$.

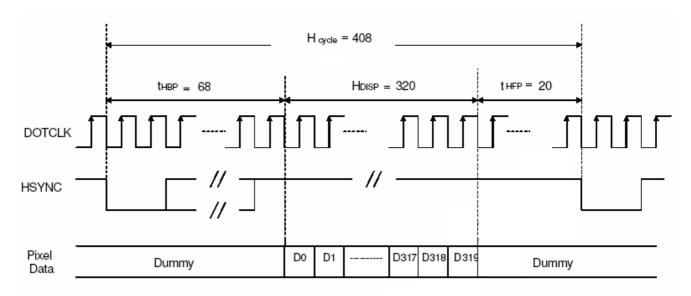
8. Pixel Arrangement

The LCD module pixel arrangement is the stripe.


R G B R G B R G B _{1st Line} R G B R G B _{2nd Line}	R G B R G B
R G B 3rd Line	RGB
lst Pixel	320th Pixel
$1 \text{ Pixel} = \boxed{\mathbf{R} \mathbf{G} \mathbf{B}}$	
R G B 238th Line	R G B
R G B R G B 239 th Line	R G B


PD035QX2

10. AC Characteristics


(Unless otherwise specified, Voltage Referenced to Vss, VoD = 3.3V, Ta = 25℃)

Characteristics	Symbol	mhol Min.		Тур.		Max.		Unit
Characteristics	Symbol	24 bit	8 bit	24 bit	8 bit	24 bit	8 bit	
DOTCLK Frequency	fDOTCLK	-		6.5	19.5	10	30	MHz
DOTCLK Period	tDOTCLK	100	33.3	154	51.3	-	-	ns
Vertical Sync Setup Time	tvsys	20	10	-	-	-	-	ns
Vertical Sync Hold Time	tvsyh	20	10	-	-	-	-	ns
Horizontal Sync Setup Time	thsys	20	10	-	-	-	-	ns
Horizontal Sync Hold Time	thsyh	20	10	-	-	-	-	ns
Phase difference of Sync Signal Falling Edge	thv		1		-		240	
DOTCLK Low Period	tCKL	50	15	-	-	-	-	ns
DOTCLK High Period	tCKH	50	15	-	-	-	-	ns
Data Setup Time	tds	12	8	-	-	-	-	ns
Data hold Time	tdh	12	8	-	-	-	-	ns
Reset pulse width	tRES	1	10		-		-	

Table 10.1 Pixel & tRES Timing

a) Horizontal Data Transaction Timing

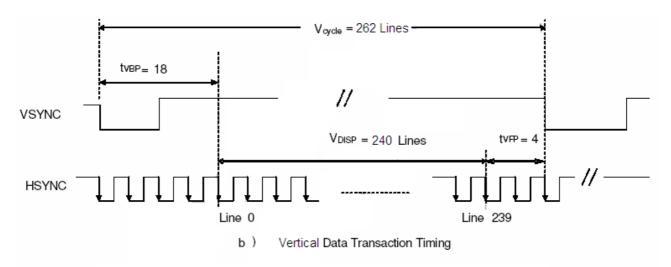


Figure 10.3 Data Transaction Timing in Parallel RGB (24 bit) Interface (SYNC Mode)

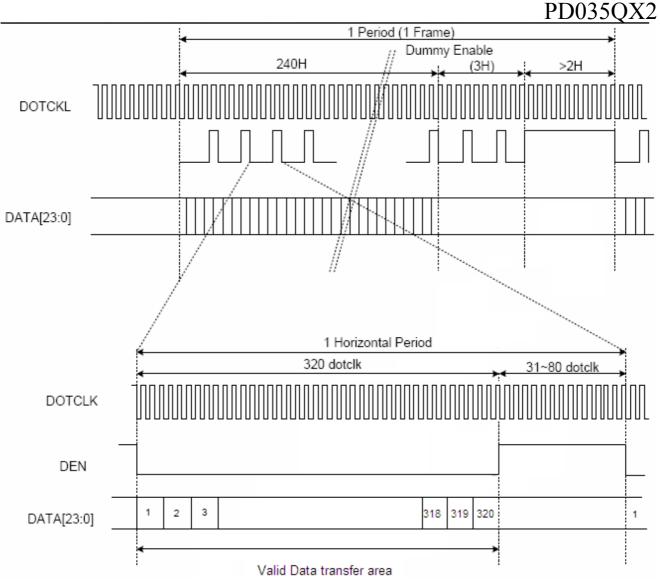


Figure 10. 4 Data Transaction Timing in Parallel RGB (24 bit) Interface (DE Mode)

Characterist	line	Symbol	Mi	n.	Ту	′р .	M	Max. Li	
Characterist	lics	Symbol	24 bit	8 bit	24 bit	8 bit	24 bit	8 bit	Unit
DOTCLK Frequenc	ÿ	tDOTCLK	-	-	6.5	19.5	10	30	MHz
DOTCLK Period		tDOTCLK	100	33.3	154	51.3	-	-	ns
Horizontal Frequen		fH	-		15.	.72	22	.35	KHz
Vertical Frequency	(Refresh)	fV	-		6	0	ç	90	Hz
Horizontal Back Po	rch	tHBP	-	-	68	204	-	-	tDOTCLK
Horizontal Front Po	rch	tHFP	-	-	20	60	-	-	tDOTCLK
Horizontal Data Sta	rt Point	tHBP	-	-	68	204	-	-	tDOTCLK
Horizontal Blanking Period		tHBP + tHFP	-	-	88	264	-	-	tDOTCLK
Horizontal Display Area		HDISP	-	-	320	960	-	-	tDOTCLK
Horizontal Cycle		Hcycle	-	-	408	1224	450	1350	tDOTCLK
Vertical Back Porch	۱	tVBP	-		18		-		Lines
Vertical Front Porch	h	tVFP	-		4		-		Lines
Vertical Data Start	Point	tVBP	-		18		-		Lines
Vertical Blanking P	eriod	tVBP + tVFP	-		22		-		Lines
VS pulse width		tWV	-		4	1		-	Lines
Vertical Display	NTSC				24	40			
Area	PAL	VDISP	-		280(PA	LM=0)		-	Lines
Λισα	FAL				288(PALM=1)		1		
Vertical Cycle	NTSC	Vcycle	-	- 262 350		262		50	Lines
venucai Oycle	PAL	voyole			31	3			Lines

Table 10. 2 Data Transaction Timing in Normal Operating Mode

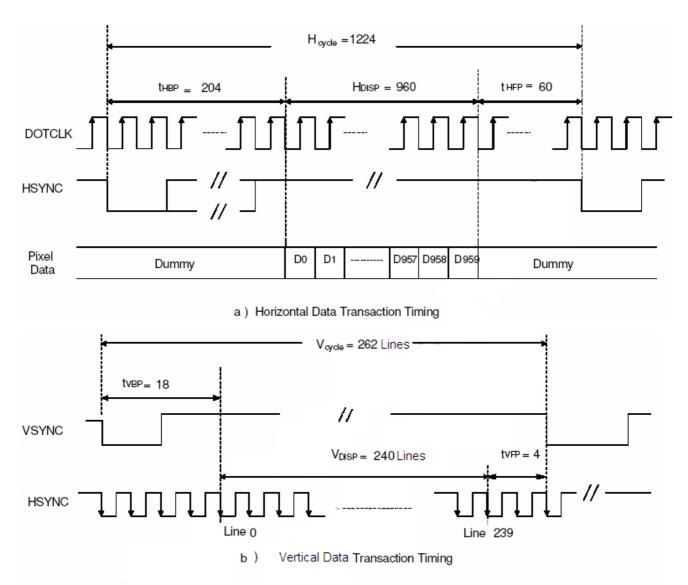


Figure 10.5 Data Transaction Timing in Serial RGB (8 bit) Interface (SYNC Mode)

PD035QX2

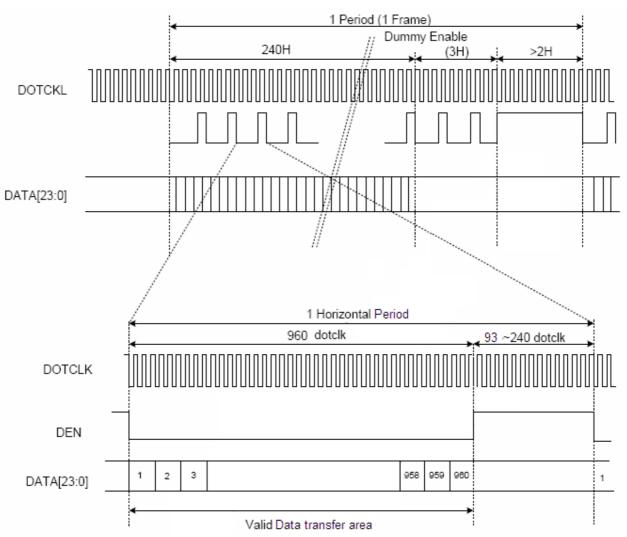
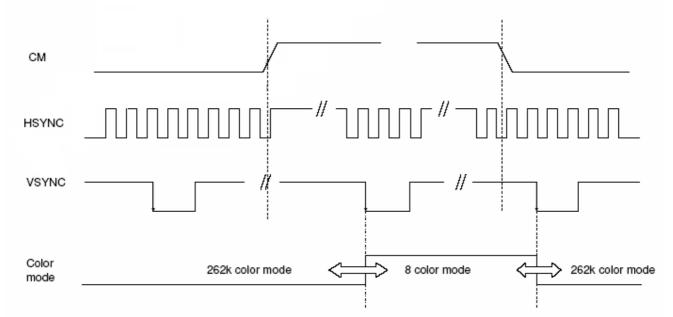



Figure 10. 6 Data Transaction Timing in Serial RGB (8 bit) Interface (DE Mode)

Note: The color mode conversion starts at the first falling edge of VSYNC after stage change of CM.

Figure 10.7 Color Mode Conversion Timing

PD035QX2

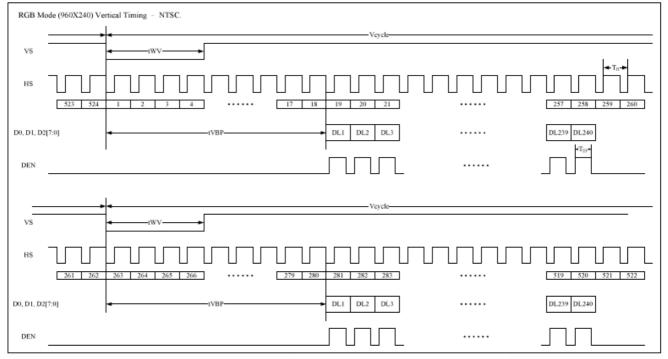


Figure 10. 8 Digital RGB NTSC mode Vertical Data Format for 262T_H

PD035QX2

SEL[2:0] = 100, NTSC/PAL
H _{quis} = 1560
HSYNC
RR[7:0] Invalid Data Cr1 X Y1 X Cb1 X Y2 Cr320 X Y639 X Cb320 X Y640 X Invalid Data
SEL[2:0] = 101, NTSC
HSYNC
RR[7:0] Invalid Data Cr1 X Y1 X Cb1 X Y2 Cr360 X Y719 X Cb360 X Y720 X Invalid Data
4_00 = HBP[6:0]*4+STP[1:0] Horse = 1440
SEL[2:0] = 101, PAL
H _{qrds} = 1728
HSYNC
RR[7.0] Invalid Data Cr1 Y1 Cb1 Y2 Cr360 Y719 Cb360 Y720 Invalid Data
SEL[2:0] = 110, NTSC
SEL[2:0] - 110, NTSC
HSYNC
RR[7:0] Invalid Data Cb1 X Y1 X Cr1 X Y2 Cb360 X Y719 X Cr360 X Y720 X Invalid Data
4_00 = HBP[6:0]*4+STP[1:0] Horse = 1440
SEL[2:0] = 110, PAL
Hgyda = 1728
HSYNC
RR[7:0] Invalid Data Cb1 Y1 Cr1 Y2 Cb360 Y719 Cr360 720 Invalid Data
4 Horse = HBP[6:0]*4+STP[1:0] → 4 Horse = 1440 → Horse = 1440
SEL[2:0] = 111, NTSC/PAL
RR[7:0] Invalid Data X Cb1 Y1 X Y2 Cb320 Y639 X Cr320 Y Invalid Data
A Alliha - una foral a cut for

Figure 10. 9 CCIR601 Horizontal Timing

PD035QX2

SEL[2:0] = 100 ~ 111, NTSC
EVEN Field ODD Field
VSYNC
HSYNC
RR[7:0] → DL1 DL2 DL3 DL239 DL240
VSYNC
HSYNC
RR[7:0] DL1 DL2 DL3 DL239 DL240
SEL[2:0] = 100 ~ 111, PAL, PALM=0
EVEN ODD Field
HSYNC HSY
RR[7:0] → DL1 DL2 DL3 DL279 DL280
ODDEVEN FieldEVEN FIElD FIE
HSYNC
RR[7:0] → DL1 DL2 DL3 DL279 DL280
SEL[2:0] = 100 ~ 111, PAL, PALM=1
- EVEN Field - ODD Field - ODD Field
HSYNC _
RR[7:0] ← b _{vBP} = VBP[6:0] → DL1 DL2 DL3 DL287 DL288
ODDEVEN FieldEVEN FIEld
HSYNC
RR[7:0] ← t _{vBP} = VBP[6:0] + 1 → DL1 DL2 DL3 DL287 DL288

Figure 10. 10 CCIR601 Vertical Timing

PD035QX2

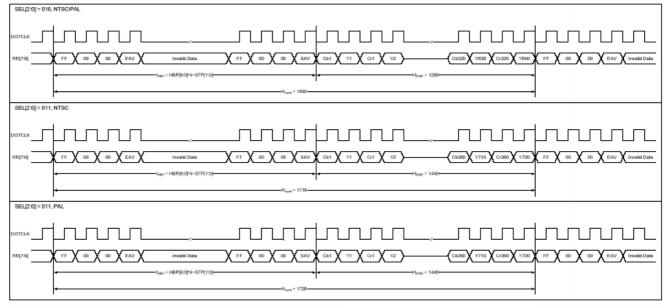
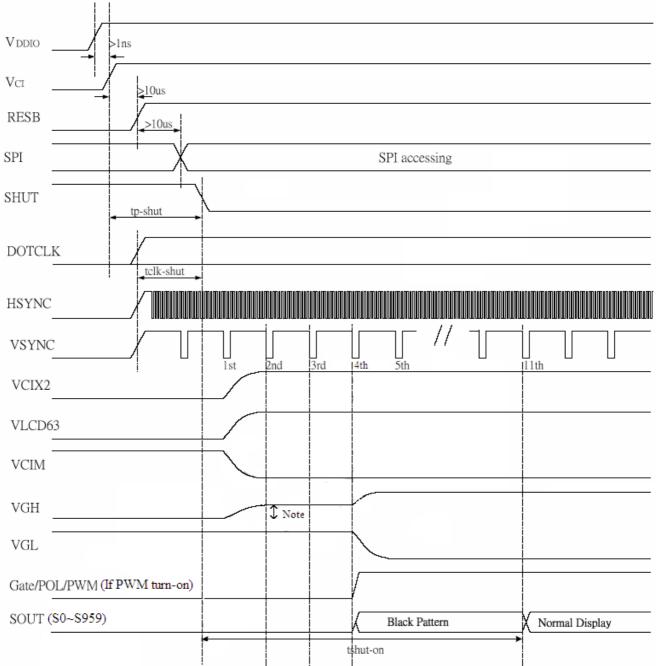



Figure 10. 11 CCIR656 Horizontal Timing

PD035QX2

SEL[2:0] = 010, 011, NTSC (F=0 à C	DD field, F=1 à EVEN fie	d)			
н						
V F		1	1.ver = VBP[6:0]		- 	
RR[7:0]	DL238 DL299 DL240				DL1 DL2 DL3 DL4	
н					5 286 287 288 289	
V F						
RR[7:0]			t _{vBP} = VBP[6:0]		DL1 DL2 DL3 DL4	
] = 010, 011, PAL, PALM=0		VEN field)			
н						4 25 26 27 28 29 30
V F						
RR[7:0]	0L270 DL200	-				DL1 DL2 DL3 DL4
н	1_1_1_1_ [305]306]307]308]309]310					
v						
F RR[7:0]	DL279DL280	4		t _{VBP} = VBP[6:0] + 1		DL1 DL2 DL3
] = 010, 011, PAL, PALM=1		VEN field)			
						4 25 26 27 28 29 30
V F						
RR[7:0]	DL283 DL284 DL285 DL286 DL287 DL288	◄	t _{/BP} = V	'BP[6:0]	DL1 D	12 013 014 015 016 017 018
н						
v	1999 1900 1907 1900 1909 1910 1999 1990 1997 1990 1999 1910				333 334 333 3.	50 500 500 570 571 542
F 88(7:01	DL283DL284DL285DL285DL285DL285DL285	∢	t _{vBP} = V	/BP[6:0] + 1		L1 DL2 DL3 DL4 DL5 DL6 DL7
		1				

Figure 10. 12 CCIR656 Vertical Timing

Note: There is a diode between VCIX2 and VGH. Switch on VCIX2 will move VGH up.

Figure 10. 13 Power Up Sequence

Characteristics	Symbol	Min.	Тур.	Max.	Unit
VCI/ VDDIO on to falling edge of SHUT	tp-shut	1	-	-	us
DOTCLK to falling edge of SHUT	tclk-shut (Note1)	1	-	-	clk
Falling edge of SHUT to display start - 1 line: 408 clk - 1 frame: 262 line -DOTCLK = 6.5MHz	tshut-on (Note2)	-	-	11	frame

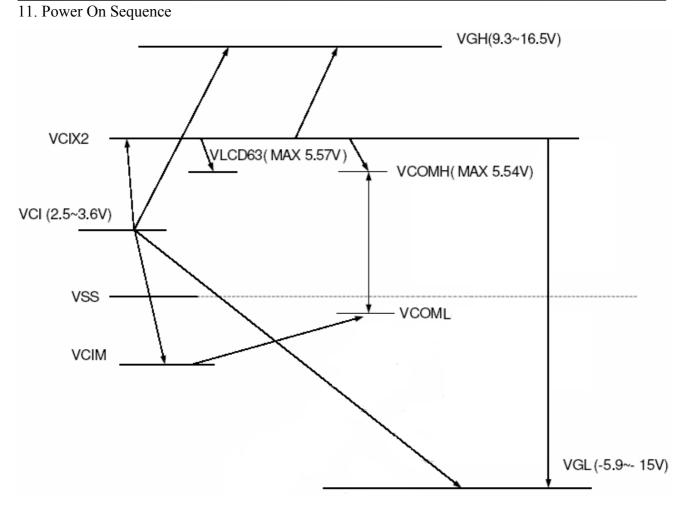
Table 10. 3 Power Up Sequence

Note1: It is necessary to input DOTCLK before the falling edge of SHUT.
Note2: Display starts at 11th falling edge of VSTNC after the falling edge of SHUT. The display starts at the falling edge of VSYNC which is determined by BLT[1:0] of R04h.

PD035QX2

Vddio								
Vci								<u>\</u>
RESB								∖
SPI			SPI	accessing				X
SHUT	/							\
DOTCLE	ζ							
HSYNC								
VSYNC		1s	t 2nd	3rd	4th	5th	6th	
VCIX2							Floating	
VLCD6	3						Floating	
VCIM							Floating	
VGH							Floating	
VGL							VGL discharge	to ground
Gate/PO	L/PWM (If PW	M turn-on)					<u> </u>	
SOUT (S0~S959	Normal Disp	play X	Black Pattern(for	normally Black),	or White Pattern(fo	or normally White)	<u>}</u>	
(50 5)5,				tshut	-off			

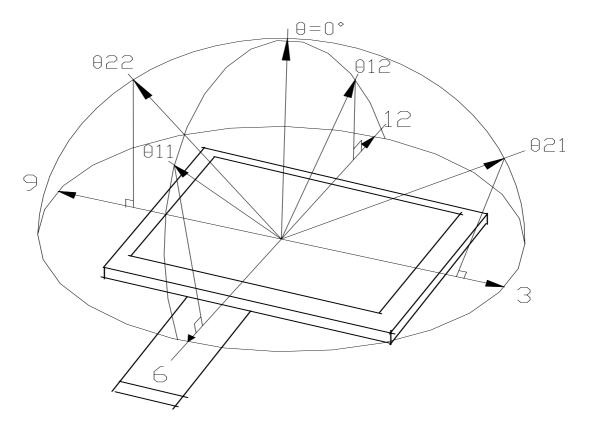
Figure 10. 14 Power Down Sequence


Characteristics	Symbol	Min.	Тур.	Max.	Unit
Rising edge of SHUT to display off - 1 line: 408 clk - 1 frame: 262 line - DOTCLK = 6.5MHz	tshut-off	-	-	6	frame

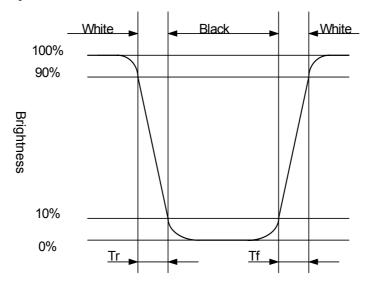
Note: DOTCLK must be maintained at lease 6 frames after the rising edge of SHUT.

Display become off at the 6nd falling edge of VSTNC after the falling edge of SHUT.

If RESET signal is necessary for power down, provide it after the 6-frames-cycle of the SHUT period.


Table 10. 4 Power Down Sequence

12. Optical Characteristics12-1) Specification:


								Ta=25℃
Parameter		Symbol	Condition	MIN.	TYP.	MAX.	Unit	Remarks
	Horizontal	θ (Horizontal)		55	60		deg	Note 12-1
Viewing Angle	Vertical	θ (12 o'clock)	CR>10	35	40		deg	
	vertical	<i>θ</i> (6 o'clock)		50	55		deg	
Contrast Ratio		CR			400		-	Note 12-2
Response time	Rise	Tr	$\theta = 0^{\circ}$		15	30	ms	Note 12-3
Response time	Fall	Tf	U –0		25	50	ms	
Brightness		L	$\boldsymbol{\theta} = 0^{\circ} / \boldsymbol{\phi} = 0$		450	-	cd/m²	Note 12-4
Luminance U	Luminance Uniformity		-		TBD		%	Note 12-6
White Chromaticity		Х	$\theta = 0^{\circ} / \phi = 0$		TBD		-	
		У	$\mathbf{v} = \mathbf{v} + \mathbf{v} = \mathbf{v}$		TBD		-	
LED Life Time			+25°C	20000			hrs	Note 12-5
Cross Talk			$\boldsymbol{\theta}=0^{\circ}$			3.5	%	Note 12-7

Note 12-1: The definitions of viewing angles are as follow

Note 12-2: The definition of contrast ratio $CR = \frac{\text{Luminance at gray level 63}}{\text{Luminance at gray level 0}}$

Note 12-3: Definition of Response Time Tr and Tf

Note 12-4: Topcon BM-5A or BM-7 fast luminance meter 1°field of view is used in the testing

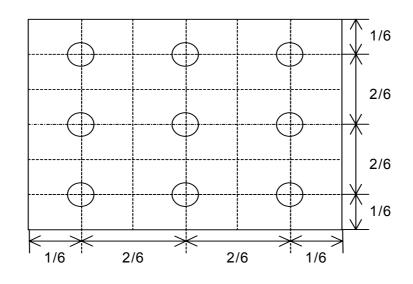
Note 12-5: The "LED Life time " is defined as the module brightness decrease to 50% original Brightness that the ambient temperature is 25°C and I_{LED} =20mA.

PD035QX2

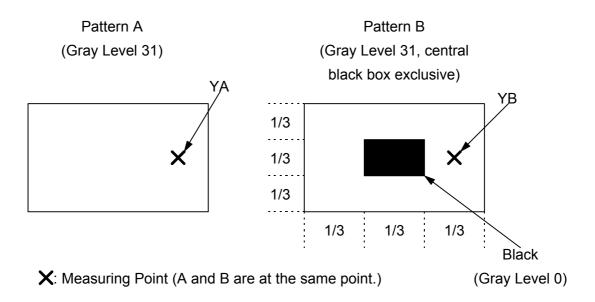
Note 12-6: The uniformity of LCD is defined as

 $U = \frac{\text{The Minimum Brightness of the 9 testing Points}}{2}$

 $U = \frac{1}{1}$ The Maximum Brightness of the 9 testing Points


Luminance meter : BM-5A or BM-7 fast(TOPCON)

Measurement distance : 500 mm +/- 50 mm


Ambient illumination : < 1 Lux

Measuring direction : Perpendicular to the surface of module

The test pattern is white (Gray Level 63).

Note 12-7: Cross Talk (CTK) = $\frac{|YA-YB|}{YA}$ × 00% YA: Brightness of Pattern A YB: Brightness of Pattern B Luminance meter : BM 5A or BM-7 fast (TOPCON) Measurement distance : 500 mm +/- 50 mm Ambient illumination : < 1 Lux Measuring direction : Perpendicular to the surface of module

13. Handling Cautions

- 13-1) Mounting of module
 - a) Please power off the module when you connect the input/output connector.
 - b) Polarizer which is made of soft material and susceptible to flaw must be handled carefully.
 - c) Protective film (Laminator) is applied on surface to protect it against scratches and dirt's. It is recommended to peel off the laminator before use and taking care of static electricity.
- 13-2) Precautions in mounting
 - a) When metal part of the TFT-LCD module (shielding lid and rear case) is soiled, wipe it with soft dry cloth.
 - b) Wipe off water drops or finger grease immediately. Long contact with water may cause discoloration or spots.
 - c) TFT-LCD module uses glass which breaks or cracks easily if dropped or bumped on hard surface. Please handle with care.
 - d) Since CMOS LSI is used in the module. So take care of static electricity and earth yourself when handling.
- 13-3) Adjusting module
 - a) Adjusting volumes on the rear face of the module have been set optimally before shipment.
 - b) Therefore, do not change any adjusted values. If adjusted values are changed, the specifications described may not be satisfied.
- 13-4) Others
 - a) Do not expose the module to direct sunlight or intensive ultraviolet rays for many hours.
 - b) Store the module at a room temperature place.
 - c) The voltage of beginning electric discharge may over the normal voltage because of leakage current from approach conductor by to draw lump read lead line around.
 - d) If LCD panel breaks, it is possibly that the liquid crystal escapes from the panel. Avoid putting it into eyes or mouth. When liquid crystal sticks on hands, clothes or feet. Wash it out immediately with soap.
 - e) Observe all other precautionary requirements in handling general electronic components.
 - f) Please adjust the voltage of common electrode as material of attachment by 1 module.
- 13-5) Polarizer mark

The polarizer mark is to describe the direction of wide view angle film how to mach up with the rubbing direction.

14. Reliability Test

No	Test Item	Test Condition			
1	High Temperature Storage Test	Ta = 95°C, 240 hrs			
2	Low Temperature Storage Test	$Ta = -40^{\circ}C$, 240 hrs			
3	High Temperature Operation Test	$Ta = 85^{\circ}C$, 240 hrs			
4	Low Temperature Operation Test	$Ta = -30^{\circ}C$, 240 hrs			
5	High Temperature & High Humidity	$Ta = 60^{\circ}C$, 90%RH, 240 hrs			
5	Operation Test	(No Condensation)			
6	6 Thermal Cycling Test (non-operating)	-25°C→70°C, 200 Cycles			
0		30min 30min			
		Frequency : $10 \sim 55 \text{ H}_{Z_{,}}$			
7	Vibration Test (non-operating)	Amplitude : 1 mm			
/		Sweep time: 11 min			
		Test Period: 6 Cycles for each direction of X, Y, Z			
8	Shool Test (non exercting)	100G, 6ms			
0	Shock Test (non-operating)	Direction: ±X, ±Y, ±Z Cycle: 3 times			
9	Electrostatic Discharge Test (non-operating)	200pF, 0 Ω ±200V			
9 1	Discussion Discharge Test (non-operating)	1 time / each terminal			

Ta: ambient temperature

Note : The protective film must be removed before temperature test.

[Criteria]

In the standard conditions, there is not display function NG issue occurred. (including : line defect ,no image). All the cosmetic specification is judged before the reliability stress.

15. Packing Diagram TBD