TECHNICAL SPECIFICATION

MODEL NO : PD040QX1

The content of this information is subject to be changed without notice.
Please contact PVI or its agent for further information.
\square Customer's Confirmation

Customer

Date

By
\square PVI's Confirmation

Revision History

Rev.	Issued \quad Date	Revised Contents
1.0	December, 5, 2007	New
		Add
		Page 29 15.Handling Cautions $15-1$ item D)
2.0	March.24.2008	
		Modify Page 4 3. Mechanical Specifications Page 9 Note 5-2

TECHNICAL SPECIFICATION CONTENTS

NO.	ITEM	PAGE
-	Cover	1
-	Revision History	2
-	Contents	3
1	Application	4
2	Features	4
3	Mechanical Specifications	4
4	Mechanical Drawing of TFT-LCD module	5
5	Input / Output Terminals	6
6	Absolute Maximum Ratings	10
7	Electrical Characteristics	10
8	Pixel Arrangement	11
9	Display Color and Gray Scale Reference	12
10	Operation description	13
11	AC Characteristics	21
12	Waveform	22
13	Power On Sequence	26
14	Optical Characteristics	36
15	Handling Cautions	29
16	Reliability Test	30
17	Block Diagram	31
18	Packing	32

1. Application

This data sheet applies to a color TFT LCD module, PD040QX1.This module applies to OA product(must use Analog to Digital driving board), which requires high quality flat panel display. If you must use in severe reliability environments, please don't extend over PVI's reliability test conditions.

2. Features

. Amorphous silicon TFT LCD panel with LED back-light unit
Pixel in stripe configuration
. Slim and compact, designed for O/A application
TTL transmission interface
3. Mechanical Specifications

Parameter	Specifications	Unit
Screen Size	$4($ diagonal $)$	inch
Display Format	$320 \times(\mathrm{RGB}) \times 240$	dot
Active Area	$81.12(\mathrm{H}) \times 60.84(\mathrm{~V})$	mm
Pixel Pitch	$0.2535(\mathrm{H}) \times 0.2535(\mathrm{~V})$	mm
Pixel Configuration	Stripe	
Display Colors	16.7 M	
Surface Treatment	Anti-Glare +EWV	
Back-light	$8-\mathrm{LEDs}$	mm
Outline Dimension	$93.00(\mathrm{~W}) \times 73.50(\mathrm{H}) \times 4.9(\mathrm{D})(\mathrm{typ})$.	g
Weight	46 ± 5	
Display mode	Normally white	o'clock
Gray scale inversion direction	6 (ref to Note $14-1)$	

4. Mechanical Drawing of TFT-LCD Module

The information contained herein is the exclusive property of Prime View International Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Prime View International Co., Ltd.PAGE:5

PD040QX1
5. Input / Output Terminals

5-1) TFT-LCD Panel Driving
FPC Down Connect, 30 Pins, Pitch: 0.5 mm
CN 1

Pin No.	Symbol	Function	Remark
1	D27(B7)	Blue Data	Note 5-1
2	D26(B6)	Blue Data	
3	D25(B5)	Blue Data	
4	D24(B4)	Blue Data	
5	D23(B3)	Blue Data	
6	D22(B2)	Blue Data	
7	D21(B1)	Blue Data	
8	D20(B0)	Blue Data	
9	GND	Digital ground	Note 5-1
10	D17(G7)	Green Data	
11	D16(G6)	Green Data	
12	D15(G5)	Green Data	
13	D14(G4)	Green Data	
14	D13(G3)	Green Data	
15	D12(G2)	Green Data	
16	D11(G1)	Green Data	
17	D10(G0)	Green Data	
18	GND	Digital ground	Note 5-1
19	D07(R7)	Red Data	
20	D06(R6)	Red Data	
21	D05(R5)	Red Data	
22	D04(R4)	Red Data	
23	D03(R3)	Red Data	
24	D02(R2)	Red Data	
25	D01(R1)	Red Data	
26	D00(R0)	Red Data	
27	GND	Digital ground	
28	VEE	Negative power for gate driver	Note 5-8
29	VCC2	Digital power supply for gate driver	Note 5-9
30	VGG	Positive power for gate driver	Note 5-10

CN 2

Pin No.	Symbol	Function	Remark
1	VLED	Voltage for LED	
2	GLED2	LED ground	
3	GLED2	LED ground	Note 5-7
4	GND	Digital ground	Note 5-11
5	VCOM	Voltage for common electrode	
6	VSET	Externally/Internally gamma voltage setup	
7	VDDA	Analog power supply for source driver	
8	V10	Gamma correction voltage 10	
9	V9	Gamma correction voltage 9	
10	V8	Gamma correction voltage 8	
11	V7	Gamma correction voltage 7	
12	V6	Gamma correction voltage 6	
13	V5	Gamma correction voltage 5	Note 5-12
14	V4	Gamma correction voltage 4	Note 5-12
15	V3	Gamma correction voltage 3	Note 5-6
16	V2	Gamma correction voltage 2	
17	V1	Gamma correction voltage 1	
18	VSSA	Analog ground for source drive	
19	L/R	Left/Right control for source driver	
20	U/D	Up/Down control for gate driver	Digital ground
21	GND	Digital power supply for source driver	Note 5-5
22	VCC1	Hardware global reset	Note 5-3
23	RESETB	Serial port data input/output	Note 5-4
24	SPDA	Serial port clock	
25	SPCK	Serial port data enable signal	
26	SPENA	Input data enable control	
27	DEN	Horizontal sync input	Vertical sync input
28	HS	VI	
29	VS	Clock signal. Latching data at the rising edge	
30	CLK		

Note 5-1 : Digital data input. DX0 is LSB and DX7 is MSB.
If parallel RGB input mode is used, D0X, D1X, and D2X indicate R, G and B data in turn. If serial RGB or CCIR601/656 input mode is selected, only D07~D00 are used, and others short to GND.

Note 5-2 : VDDA Typ. $=9.6 \mathrm{~V}$
Note 5-3 : Horizontal sync input in digital RGB mode and CCIR601 mode. (Short to GND if not used)
Note 5-4 : Vertical sync input in digital RGB mode and CCIR601 mode. (Short to GND if not used)

Note 5-5 : The SYNC(HS+VS) Mode and DEN mode are supported. If DEN signal is fixed low, SYNC Mode is used. Otherwise, DEN mode is used.

Note 5-6 : VCC1 Typ. $=3.3 \mathrm{~V}$
Note 5-7 : VCOM Typ. $=3.68 \mathrm{~V}$
Note 5-8 : VEE Typ. = -8V
Note 5-9 : VCC2 Typ. $=3.3 \mathrm{~V}$
Note 5-10 : VGG Typ. $=17 \mathrm{~V}$
Note 5-11 :If.VSET="H",the gamma correction voltage generated externally.
Note 5-12 : The definition of L/R, U/D
U/D CN2 (PIN20) $=$ Low
L/R CN2 (PIN 19) $=$ High
U/D CN2(PIN20) $=$ High
L/R CN2(PIN19)=Low

Typical Application Circuit (When VDDA $=9.6 \mathrm{~V}$)

The information contained herein is the exclusive property of Prime View International Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Prime View International Co., Ltd.PAGE:9

PD040QX1
6. Absolute Maximum Ratings:

GND $=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameters	Symbol	MIN.	MAX.	Unit	Remark
Supply Voltage	VCC2	-0.3	6.0	V	
	VCC1	-0.3	7.0	V	
	VDDA	-0.3	13.5	V	
	VGG	-0.3	40.0	V	
	VGG-VEE	-0.3	40.0	V	
	VEE	-20	0.3	V	

7. Electrical Characteristics

7-1) Recommended Operating Conditions:
VSSA $=\mathrm{GND}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Item	Symbol	Min.	Typ.	Max.	Unit	Remark
Supply Voltage for Source Driver	VCC1	2.7	3.3	3.6	V	Note $7-1$
	VDDA	6.5	9.6	13.5	V	
	VGG	-	17	-	V	
	VEE	-	-8	-	V	
	$\mathrm{VCC2}$	2.7	3.3	3.6	V	
VCOM Voltage	VCOM	-	4.1	-	V	
Digital Input Voltage	V_{HH}	$0.7 \mathrm{~V}_{\mathrm{CC}}$	-	V_{CC}	V	
	V_{IL}	0	-	$0.3 \mathrm{~V}_{\mathrm{CC}}$	V	

Note 7-1 : To test the current dissipation of V_{cc}, using the "color bars" testing pattern shown as below.

1	2	3	4	5	6	7	8	1. White 2. Yellow 3. Cyan 4. Green 5. Magenta 6. Red 7. Blue 8. Black

$I_{D D}$ current dissipation testing pattern
7-2) Recommended Driving Condition for Back Light
$\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Unit	Remark
Supply voltage of LED backlight	$\mathrm{V}_{\text {LED }}$	-	-	(14)	V	Note 7-2
Supply current of LED backlight	$\mathrm{I}_{\text {LED }}$	-	20	-	mA	Note 7-3
Backlight Power Consumption	$\mathrm{P}_{\text {LED }}$	-	-	560	mW	Note 7-2, 7-4

Note 7-2 : $\mathrm{I}_{\text {LED }}=20 \mathrm{~mA}$, constant current
Note 7-3 : The LED driving condition is defined for each LED module. (4 LED Serial)
Input current $=20 \mathrm{~mA} * 2=40 \mathrm{~mA}$
Note 7-4: $\mathrm{P}_{\text {LED }}=\mathrm{V}_{\text {LED- }-1} * I_{\text {LED- }-1}+\mathrm{V}_{\text {LED- }-2} * \mathrm{I}_{\text {LED- } 2}$

Cathode

PD040QX1
7-3) Power Consumption

Parameter	Symbol	Condition	Typ.	Max.	Unit	Remark
Supply Current for Gate Driver (Hi level)	IGG	VGG $=17 \mathrm{~V}$	0.1	0.3	mA	
Supply Current for Gate Driver (Low level)	IEE	VEE $=-8 \mathrm{~V}$	0.1	0.3	mA	
Supply Current for Gate Driver (Digital)	ICC2	VCC2 $=3.3 \mathrm{~V}$	0.1	0.2	mA	
Supply Current for Source Driver (Digital)	ICC1	VCC1 $=3.3 \mathrm{~V}$	0.9	1.8	mA	
Supply Current for Source Driver (Analog)	IDD	VDD $=9.6 \mathrm{~V}$	4.6	9.2	mA	
LCD Panel Power Consumption	-	-	49.96	102.42	mW	Note 7-5
Backlight LED Power Consumption	PLED	-	512	560	mW	Note 7-6
Total Power Consumption	-	-	561.96	662.42	mW	

Note 7-5: The power consumption for backlight is not included.
Note 7-6: Back light power consumption is calculated by $I_{\llcorner } \times V_{L}$.

8. Pixel Arrangement

PD040QX1
9. Display Color and Gray Scale Reference

Color		Input Color Data																								
		Red								Green									Blue							
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G		G3	G2	G1	G0	B7	B6	B5	B4	B3	B2	B1	B0
Basic Colors	Black	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1		1	1	1	1	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	1	1	1	1	1	1	1	1
	Cyan	0	0	0	0	0	0	0	0	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1
	Magent	1	1	1	1	1	1	1	1	0	0	0	0		0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1
Red	Red	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
	Red	0	0	0	0	0	0	0	1	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
	Red	0	0	0	0	0	0	1	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
	Darker																									
	\downarrow		\downarrow																							
	Brighte																									
	Red	1	1	1	1	1	1	0	1	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
Green	Green	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	1	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	0	0	0	0		0	0	1	0	0	0	0	0	0	0	0	0
	Darker																									
	\downarrow		\downarrow																							
	Brighte																									
	Green	0	0	0	0	0	0	0	0	1	1	1	1		1	1	0	1	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1		1	1	1	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1		1	1	1	1	0	0	0	0	0	0	0	0
Blue	Blue	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	1
	Blue	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	1	0
	Darker																									
	\downarrow		\downarrow																							
	Brighte																									
	Blue	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	1	1	1	1	1	1	0	1
	Blue	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	1	1	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	1	1	1	1	1	1	1	1

10. Operation description

10-1) SPI Register Description

Register	Test	Address				Data							
Name	RW	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
R0	0	0	0	0	0	\triangle	\triangle	\triangle	\triangle	\triangle	PSC	STB	RESETB
						\triangle	\triangle	\triangle	\triangle	\triangle	0	0	1
R1	0	0	0	0	1	\triangle	\triangle	\triangle	RESL1	RESLO	IF2	IF1	IF0
						\triangle	\triangle	\triangle	1	0	0	0	1
R2	0	0	0	1	0	\triangle	\triangle	STHD5	STHD4	STHD3	STHD2	STHD1	STHDO
						\triangle	\triangle	0	0	0	0	0	0
R3	0	0	0	1	1	\triangle	\triangle	STVP3	STVP2	STVP1	STVP0	FRAD1	FRADO
						\triangle	\triangle	0	0	0	0	0	0
R4	0	0	1	0	0	CS	FRP	FRC	LPF	VS_POL	HS_POL	NPC_SET	NPC_IN
						1	0	0	1	0	0	0	1
R5	0	0	1	0	1	AUTO_DP	DSIP_ON	A_TIME1	A_TIME.	B_TIME2	B_TIME1	B_TIME0	1
						1	0	0	1	0	1	0	1

\triangle RW must always keep low
Register

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	reserved	RESETB						
Default	-	-	-	-	-	-	-	1

RESETB: Global reset.

RESETB $=$ " $\mathrm{L} "$ ", global reset the whole chip.
RESETB="H", Normal operation.

Register R1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	reserved	reserved	reserved	RESL1	RESL0	IF2	IF1	IF0
Default	-	-	-	1	0	0	0	1

Register R1 setting

RESL [1:0]:Display resolution selection

RESL1	RESL0	Resolution
0	0	$320 \times \mathrm{RGB} \times 240$
0	1	reserved
1	0	reserved
1	1	reserved

Display resolution selection
IF[2:0]:Data input mode selection

IF2	IF1	IF0	Data input format	operating freq
0	0	0	reserved	reserved
0	0	1	24-bis parallel RGB	$25.175 \mathrm{MHz}(\mathrm{MAX})$
0	1	0	reserved	reserved
0	1	1	reserved	reserved
1	0	0	reserved	reserved
1	0	1	reserved	reserved
1	1	0	reserved	reserved
1	1	1	reserved	reserved

Data input mode selection
Register R2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	reserved	reserved	STHD5	STHD4	STHD3	STHD2	STHD1	STHD0
Default	-	-	0	0	0	0	0	0

Register $\mathbf{R 2}$ setting

STHD[5:0]: adjust start pulse position by dot

STHD5	STHD4	STHD3	STHD2	STHD1	STHD0	STH position sdjust	Unit
0	0	0	0	0	0	0	TCPH
0	0	0	0	0	1	+1	TCPH
0	0	0	0	1	0	+2	TCPH
0	0	0	0	1	1	+3	TCPH
0	0	0	1	0	0	+4	TCPH
0	0	0	1	0	1	+5	TCPH
0	0	0	1	1	0	+6	TCPH
0	0	0	1	1	1	+7	TCPH
0	1	1	0	0	0	+24	TCPH
0	1	1	0	0	1	$+25$	TCPH
0	1	1	0	1	0	+26	TCPH
0	1	1	0	1	1	+27	TCPH
0	1	1	1	0	0	+28	TCPH
0	1	1	1	0	1	+29	TCPH
0	1	1	1	1	0	+30	TCPH
0	1	1	1	1	1	+31	TCPH
1	0	0	0	0	0	-1	TCPH
1	0	0	0	0	1	-2	TCPH
1	0	0	0	1	0	-3	TCPH
1	0	0	0	1	1	-4	TCPH
1	0	0	1	0	0	-5	TCPH
1	0	0	1	0	1	-6	TCPH
1	0	0	1	1	0	-7	TCPH
1	0	0	1	1	1	-8	TCPH
0	0	0	0	0	0	-25	TCPH
0	0	0	0	0	1	-26	TCPH
0	0	0	0	1	0	-27	TCPH
0	0	0	0	1	1	-28	TCPH
0	0	0	1	0	0	-29	TCPH
0	0	0	1	0	1	-30	TCPH
0	0	0	1	1	0	-31	TCPH
0	0	0	1	1	1	-32	TCPH

The information contained herein is the exclusive property of Prime View International Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Prime View International Co., Ltd.PAGE:15

Register R3

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	reserved	reserved	STVP3	STVP2	STVP1	STVP0	FRAD1	FRAD0
Default	-	-	0	0	0	0	0	0

Register R3 setting

STVP3	STVP2	STVP1	STVP0	STV position adjust	Unit
0	0	0	0	0	T_{H}
0	0	0	1	+1	T_{H}
0	0	1	0	+2	T_{H}
0	0	1	1	+3	T_{H}
0	1	0	0	+4	T_{H}
0	1	0	1	+5	T_{H}
0	1	1	0	+7	T_{H}
0	1	1	1	-1	T_{H}
1	0	0	0	-2	T_{H}
1	0	0	1	-3	T_{H}
1	0	1	0	-4	T_{H}
1	0	1	1	-5	T_{H}
1	1	0	0	-6	T_{H}
1	1	0	1	-7	T_{H}
1	1	1	0	1	-8

Adjust first line position by line
FRAD[1:0]:Odd frame or Even frame advance control

FRAD1	FRAD0	Advance Frame	Notes
0	0	reserved	reserved
0	1	reserved	reserved
1	0	Even Frame	Odd frame Tstv=STVP setting +1 H
1	1	Reserve	Reserve

Odd frame or Even frame Advance control

Register R4

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	reserved	reserved	reserved	reserved	VS_POL	HS_POL	NPC_SET	NPC_IN
Default	-	-	-	-	0	0	0	1

Register R4 setting

VS_POL: VS polarity setting.
VS_POL=L, negative polarity,
VS_POL=H, positive polarity.
Note: Please set the VS_POL=H when CCIR601 mode for video decoder SAA7114.
(Please refer the input timing of the "13-4) Data input format for CCIR601 Mode")

HS_POL: HS polarity setting.
HS_POL=L, negative polarity,
HS_POL=H, positive polarity.

NPC_SET; Set the NTSC/PAL auto detection or define by NPC_IN. NPC_SET=L, auto detection. NPC_SET $=H$, define by NPC_IN.

NPC_IN: Define the NTSC/PAL mode by SPI.
NPC_IN=L, PAL.
NPC_IN=H, NTSC.

Register R5

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	AUTO_DP	SISP_ON	A_TIME1	A_TIME0	B_TIME2	B_TIME2	B_TIME0	reserved
Default	1	0	0	1	0	1	0	-

Register R5 setting
AUTO_DP: When power on, select blank image display time decided by A_TIME (bit 5,4) or DISP_ON (bit 6).
AUTO_DP $=$ "L", Blank image display time decided by DISP ON (bit 6). AUTO_DP $=$ "H", Blank image display time decided by A TIME (bit 5,4).

DISP_ON: When AUTO_DP (bit 7) = "L", and DISP_ON = "H", blank image display off, then display normal image.

A_TIME [1:0]: When AUTO_DP(bit 7$)=$ "H". the blank image display time is decided by A_TIME
00 : blank image display time is 8 VS time
01: blank image display time is 16 VS time
10: blank image display time is 32 VS time
11: blank image display time is 64 VS time

B_TIME [2:0]: When into STB mode the blank image display time is decided by B_TIME.
000 : blank image display time is 3 VS time.
001: blank image display time is 4 VS time.
010: blank image display time is 5 VS time.
011: blank image display time is 6 VS time.
100: blank image display time is 7 VS time.
101: blank image display time is 8 VS time.
110: blank image display time is 9 VS time.
111: blank image display time is 10 VS time.

PD040QX1
10-2) Power ON/OFF sequence
To prevent the device damage from latch up, the power ON/OFF sequence shown below must be followed.

Power ON: VCC1, GND \rightarrow VDDA, VSSA \rightarrow V1 to V10
Power OFF: V1 to V10 \rightarrow VDDA, VSSA \rightarrow VCC1, GND
10-3) Power ON Control
Source drive has a power ON sequence control function. There are two kinds of the mode. One is auto mode, and another is manual mode.

Auto Mode: When power is ON, blank data is outputted for 16 -frames(default value) first, from the falling edge of the following VS signal. The blank data would be gray level 255 for normally white panel.
It can be defined in register R5 A_TiME1 (bit 5) and ATIMEO (bit 4) when
AUTO_DP(bit 7) $=$ " H^{\prime}

RESETB

Manual Mode: When power is ON, you should set the register R5 AUTO_DP(bit 7) $=$ "L" to stay at the manual mode. Blank data is outputted until the DISP_D $\mathrm{O}($ bit 6$)=$ H then display the normal image.

Power on control for Mariual Mode

Source dive has a standby ON/OFF sequence control function. When STB pin is "L", blank data is outputted for 5 -frames (default value) first, from the falling edge of the following VSYNC signal. The blank data would be gray level 255 for normally white panel. It can be defined in register R5 B_TIME[2:0] to adjust the frame number of the biank data.

10-5) Reset when power on
Source drive is internally initialized by the global reset signal. RESETB. The reset input must be held for at least 1 ms after power is stable.

RESETB control after power stable

PD040QX1

11.AC Characteristics

11-1) SPI timing characteristics

PARAMETER		Symbol	Unit		
				Max.	
SPCK period	$T_{C K}$	60	-	-	ns
SPCK high width	$T_{C K H}$	30	-	-	ns
SPCK low width	$T_{\text {CKL }}$	30	-	-	ns
Data setup time	$\mathrm{T}_{\text {SUI }}$	12	-	-	ns
Data hold time	$T_{H D I}$	12	-	-	ns
SPENA to SPCK setup time	$T_{C E}$	20	-	-	ns
SPENA to SPDA hold time	$T_{C E}$	20	-	-	ns
SPENA high pulse width	$T_{C D}$	50		-	ns

11-2) Digital Parallel RGB interface

PARAMETER		Symbol	Spec.		
Unit					
		Min.	Typ.	Max.	
CLK frequency	$\mathrm{F}_{\text {CPH }}$	-	6.43	-	MHz
CLK period	$T_{\text {CPH }}$	-	155.62	-	nS
CLK pulse duty	$T_{\text {CWH }}$	40	50	60	$\%$
HS period	T_{H}	-	408	-	$T_{\text {CPH }}$
HS pulse width	$T_{\text {WH }}$	5	30	-	$T_{\text {CPH }}$
HS-first horizontal data time	$T_{\text {HS }}$	36	68	99	$T_{\text {CPH }}$
DEN pulse width	$T_{\text {EF }}$	-	320	-	$T_{\text {CPH }}$
VS pulse width	$T_{\text {WV }}$	1	3	5	T_{H}
VS-DEN time	NTSC	$T_{\text {STV }}$	-	18	-
	PAL	$T_{\text {STV }}$	-	26	-

Note: When SYNC mode is used, 1st data start from 204th CLK after HS falling (when STHD[5.0]=000000)

PARAMETER	Symbol	Spec.			Unit
		Min.	Typ.	Max.	
OEV pulse width	Toev	-	26	-	TCPH
CKV pulse width	Tciv	-	24	-	$\mathrm{T}_{\text {CPH }}$
HS-CKV time	T	-	16	-	$\mathrm{T}_{\mathrm{CPH}}$
HS-OEV time	T_{2}	-	8	-	$\mathrm{T}_{\text {CPH }}$
HS-POL time	T3	-	25	-	$\mathrm{T}_{\mathrm{CPH}}$
STV setup time	Tsuv	-	10	-	$\mathrm{T}_{\mathrm{CPH}}$
STV pulse width	Twsty	-	1	-	T_{H}

12. Waveform

Timing Controller Timing Chart
12-1) SPI timing

SPI timing

12-2) Clock and Data input waveforms

Clock and Data input waveforms.

12-3) Data input format for RGB Mode

Parallel RGB Horizontal Data Format

Digital RGB NTSC mode Vertical Data Format for $\mathbf{2 6 2 . 5}_{\mathrm{H}}$

Figu Digital RGB PAL mode Vertical Data Format for $312.5 T_{\mathrm{H}}$

Digital RGB NTSC mode Vertical Data Format for $\mathbf{2 6 2} \mathrm{T}_{\mathrm{H}}$

Digital RGB PAL mode Vertical Data Format for $312 \mathrm{~T}_{\mathrm{H}}$

12-4) The HS \& VS timing of the ODD/EVEN field

Define the HSYNC to VSYNC timing for RGB mode

13.Power On Sequence

1. $0<\mathrm{t} 1 \leqq 20 \mathrm{~ms}$
2. $0<\mathrm{t} 2 \leqq 50 \mathrm{~ms}$
3. $0<\mathrm{t} 3 \leqq 1$ s

14. Optical Characteristics

14-1) Specification:

$\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter		Symbol	Condition	MIN.	TYP.	MAX.	Unit	Remarks
Viewing Angle	Horizontal	Ө21, $\theta 22$	$C R \geqq 10$	75	80	---	deg	Note 14-1
	Vertical	$\theta 12$		45	50	---	deg	
		$\theta 11$		55	60	---	deg	
Contrast Ratio		CR	At optimized Viewing angle	200	400	---		Note 14-2
Luminance		L	$\theta=0^{\circ}$	300	350	---	$\mathrm{cd} / \mathrm{m}^{2}$	
White Chromaticity		X	$\theta=0^{\circ}$	0.26	0.30	0.34		
		y	$\theta=0^{\circ}$	0.29	0.33	0.37		
Response time	Rise	Tr	$\theta=0^{\circ}$	---	15	30	ms	Note 14-3
	Fall	Tf		---	25	50	ms	
Uniformity		U	-	75	80	---	\%	Note 14-5
Cross Talk Ratio		CTK	-	---	---	3.5	\%	Note 14-6
LED Life Time			$+25^{\circ} \mathrm{C}$	20000	30000	---	hrs	Note 14-4

Note 14-1: The definitions of viewing angles

Note 14-2 : CR $=\frac{\text { Luminance when Testing point is White }}{\text { Luminance when Testing point is Black }}$
Contrast Ratio is measured in optimum common electrode voltage.

Note 14-3 : The definition of response time :

Note 14-4: The "LED Life time" is defined as the module brightness decrease to 50% original Brightness that the ambient temperature is $25^{\circ} \mathrm{C}$ and $\mathrm{I}_{\text {LED }}=20 \mathrm{~mA}$

Note 14-5: The uniformity of LCD is defined as
$\mathrm{U}=$ The Minimum Brightness of the 9 testing Points
The Maximum Brightness of the 9 testing Points
Luminance meter : BM-5A or BM-7 fast(TOPCON)
Measurement distance : $500 \mathrm{~mm}+/-50 \mathrm{~mm}$
Ambient illumination : < 1 Lux
Measuring direction : Perpendicular to the surface of module
The test pattern is white (Gray Level 63).

Note 14-6: Cross Talk (CTK) $=\frac{|\mathrm{YA}-\mathrm{YB}|}{\mathrm{YA}} \times 100 \%$
YA: Brightness of Pattern A
YB: Brightness of Pattern B
Luminance meter : BM 5A (TOPCON)
Measurement distance : $500 \mathrm{~mm}+/-50 \mathrm{~mm}$
Ambient illumination : < 1 Lux
Measuring direction : Perpendicular to the surface of module

Pattern A
(Gray Level 31)

Pattern B
(Gray Level 31, central black box exclusive)

X: Measuring Point (A and B are at the same point.)
(Gray Level 0)

15. Handling Cautions

15-1) Mounting of module
A)Please power off the module when you connect the input/output connector.
B)Polarizer which is made of soft material and susceptible to flaw must be handled carefully.
C)Protective film (Laminator) is applied on surface to protect it against scratches and dirt.
D)Please following the tear off direction as figure15-1 to remove the protective film as slowly as possible, so that electrostatic charge can be minimized.
15-2) Precautions in mounting
A) When metal part of the TFT-LCD module (shielding lid and rear case) is soiled, wipe it with soft dry cloth.
B) Wipe off water drops or finger grease immediately. Long contact with water may cause discoloration or spots.
C) TFT-LCD module uses glass which breaks or cracks easily if dropped or bumped on hard surface. Please handle with care.
D) Since CMOS LSI is used in the module. So take care of static electricity and earth yourself when handling.
15-3) Adjusting module
A) Adjusting volumes on the rear face of the module have been set optimally before shipment.
B) Therefore, do not change any adjusted values. If adjusted values are changed, the specifications described may not be satisfied.
15-4) Others
A) Do not expose the module to direct sunlight or intensive ultraviolet rays for many hours.
B) Store the module at a room temperature place.
C) The voltage of beginning electric discharge may over the normal voltage because of leakage current from approach conductor by to draw lump read lead line around.
D) If LCD panel breaks, it is possibly that the liquid crystal escapes from the panel.

Avoid putting it into eyes or mouth. When liquid crystal sticks on hands, clothes or feet. Wash it out immediately with soap.
E) Observe all other precautionary requirements in handling general electronic components.
F) Please adjust the voltage of common electrode as material of attachment by 1 module.

15-5) Polarizer mark
The polarizer mark is to describe the direction of view angle film how to mach up with the rubbing direction.

Protective film

Figure 15-1 the way to peel off protective film
16. Reliability Test

No	Test Item	Test Condition
1	High Temperature Storage Test	$\mathrm{Ta}=+80^{\circ} \mathrm{C}, 240 \mathrm{hrs}$
2	Low Temperature Storage Test	$\mathrm{Ta}=-40^{\circ} \mathrm{C}, 240 \mathrm{hrs}$
3	High Temperature Operation Test	$\mathrm{Ta}=+80^{\circ} \mathrm{C}, 240 \mathrm{hrs}$
4	Low Temperature Operation Test	$\mathrm{Ta}=-30^{\circ} \mathrm{C}, 240 \mathrm{hrs}$
5	High Temperature \& High Humidity Operation Test	$\mathrm{Ta}=+60^{\circ} \mathrm{C}, 90 \% \mathrm{RH}, 240 \mathrm{hrs}$
6	Thermal Cycling Test (non-operating)	$\begin{aligned} & \hline-30^{\circ} \mathrm{C} \rightarrow+80^{\circ} \mathrm{C}, 200 \mathrm{Cycles}, \\ & 30 \mathrm{~min} 30 \mathrm{~min} \\ & \hline \end{aligned}$
7	Vibration Test (non-operating)	Frequency: $10 \sim 55 \mathrm{H}_{\mathrm{Z}}$ Amplitude: 1.5 mm Sweep time: 11 mins Test Period:6 Cycles for each direction of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$
8	Shock Test (non-operating)	$100 \mathrm{G}, 6 \mathrm{~ms}$ Direction: $\pm X, \pm Y, \pm Z$ Cycle : 3 times
9	Electrostatic Discharge Test (non-operating)	$\begin{gathered} 200 \mathrm{pF}, 0 \Omega \pm 200 \mathrm{~V} \\ 1 \text { time / each terminal } \\ \hline \end{gathered}$

Ta: ambient temperature
Note : The protective film must be removed before temperature test.
[Criteria]
In the standard conditions, there is not display function NG issue occurred. (including : line defect , no image).All the cosmetic specification is judged before the reliability stress.
17. Block Diagram

© PRIME VIEW

PD040QX1
18. Packing

The information contained herein is the exclusive property of Prime View International Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Prime View International Co., Ltd.PAGE:32

